Нахождение радиуса вписанной окружности в треугольник. Как найти радиус окружности: в помощь школьникам

Окружность, вписанная в треугольник

Существование окружности, вписанной в треугольник

Напомним определение биссектрисы угла .

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Рис. 1

Доказательство D , лежащую на биссектрисе угла BAC , и DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны , поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

DF = DE,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая , то она лежит на биссектрисе угла (рис.2).

Рис. 2

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны , поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Рис.3

a , b , c – стороны треугольника, S –площадь,

r радиус вписанной окружности, p – полупериметр

.

Посмотреть вывод формулы

a боковая сторона равнобедренного треугольника , b – основание, r радиус вписанной окружности

a r радиус вписанной окружности

Посмотреть вывод формул

,

где

,

то, в случае равнобедренного треугольника, когда

получаем

что и требовалось.

Теорема 7 . Для справедливо равенство

где a – сторона равностороннего треугольника, r радиус вписанной окружности (рис. 8).

Рис. 8

Доказательство .

,

то, в случае равностороннего треугольника, когда

b = a,

получаем

что и требовалось.

Замечание . Я рекомендую вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

где a , b – катеты прямоугольного треугольника, c гипотенуза , r радиус вписанной окружности.

Доказательство . Рассмотрим рисунок 9.

Рис. 9

Поскольку четырёхугольник CDOF является , у которого соседние стороны DO и OF равны, то этот прямоугольник – . Следовательно,

СВ = СF= r,

В силу теоремы 3 справедливы равенства

Следовательно, принимая также во внимание , получаем

что и требовалось.

Подборка задач по теме «Окружность, вписанная в треугольник».

1.

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

2.

3

В треугольнике ABC АС=4, ВС=3, угол C равен 90º. Найдите радиус вписанной окружности.

4.

Катеты равнобедренного прямоугольного треугольника равны 2+. Найдите радиус окружности, вписанной в этот треугольник.

5.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу c этого треугольника. В ответе укажите с(–1).

Приведем ряд задач из ЕГЭ с решениями.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

Ответ: .

Задача 2.

1. В произвольном две боковые стороны 10см и 6см (AB и BC). Найти радиусы описанной и вписанной окружностей
Задача решается самостоятельно с комментированием.

Решение:


В .

1) Найти:
2) Доказать:
и найти СK
3) Найти: радиусы описанной и вписанной окружностей

Решение:


Задача 6.

Р адиус окружности вписанной в квадрат равен . Найти радиус окружности описанной около этого квадрата. Дано :

Найти : ОС=?
Решение : в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.


Задача 7.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу с этого треугольника. В ответе укажите .

S – площадь треугольника

Нам неизвестны ни стороны треугольника, ни его площадь. Обозначим катеты как х, тогда гипотенуза будет равна:

А площадь треугольника будет равна 0,5х 2 .

Значит


Таким образом, гипотенуза будет равна:

В ответе требуется записать:

Ответ: 4

Задача 8.

В треугольнике ABC АС = 4, ВС = 3, угол C равен 90 0 . Найдите радиус вписанной окружности.

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c – стороны треугольника

S – площадь треугольника

Две стороны известны (это катеты), можем вычислить третью (гипотенузу), также можем вычислить и площадь.

По теореме Пифагора:

Найдём площадь:

Таким образом:

Ответ: 1

Задача 9.

Боковые стороны равнобедренного треугольника равны 5, основание равно 6. Найдите радиус вписанной окружности.

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c – стороны треугольника

S – площадь треугольника

Известны все стороны, вычислим и площадь. Её мы можем найти по формуле Герона:


Тогда

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Очень часто при решении геометрических задач приходится совершать действия со вспомогательными фигурами. Например, находить радиус вписанной или описанной окружности и т.д. Данная статья покажет, как находить радиус окружности, описанной около треугольника. Или, иными словами, радиус окружности, в которую вписан треугольник.

Как найти радиус окружности, описанной около треугольника – общая формула

Общая формула выглядит следующим образом: R = abc/4√p(p – a)(p – b)(p – c), где R – радиус описанной окружности, p – периметр треугольника поделенный на 2 (полупериметр). a, b, c – стороны треугольника.

Найти радиус описанной окружности треугольника, если a = 3, b = 6, c = 7.

Таким образом, исходя из вышеприведенной формулы, вычисляем полупериметр:
p = (a + b + c)/2 = 3 + 6 + 7 = 16. => 16/2 = 8.

Подставляем значения в формулу и получаем:
R = 3 × 6 × 7/4√8(8 – 3)(8 – 6)(8 – 7) = 126/4√(8 × 5 × 2 × 1) = 126/4√80 = 126/16√5.

Ответ: R = 126/16√5

Как найти радиус окружности, описанной около равностороннего треугольника

Для нахождения радиуса окружности, описанной около равностороннего треугольника, существует довольно простая формула: R = a/√3, где a – величина его стороны.

Пример: Сторона равностороннего треугольника равна 5. Найти радиус описанной окружности.

Так как у равностороннего треугольника все стороны равны, для решения задачи нужно всего лишь вписать ее значение в формулу. Получим: R = 5/√3.

Ответ: R = 5/√3.


Как найти радиус окружности, описанной около прямоугольного треугольника

Формула выглядит следующим образом: R = 1/2 × √(a² + b²) = c/2, где a и b – катеты и c – гипотенуза. Если сложить квадраты катетов в прямоугольном треугольнике, то получим квадрат гипотенузы. Как видно из формулы, данное выражение находится под корнем. Вычислив корень из квадрата гипотенузы, мы получим саму длину. Умножение получившегося выражения на 1/2 в итоге приводит нас к выражению 1/2 × c = c/2.

Пример: Вычислить радиус описанной окружности, если катеты треугольника равны 3 и 4. Подставим значения в формулу. Получим: R = 1/2 × √(3² + 4²) = 1/2 × √25 = 1/2 × 5 = 2.5.

В данном выражение 5 – длина гипотенузы.

Ответ: R = 2.5.


Как найти радиус окружности, описанной около равнобедренного треугольника

Формула выглядит следующим образом: R = a²/√(4a² – b²), где a – длина бедра треугольника и b – длина основания.

Пример: Вычислить радиус окружности, если его бедро = 7, а основание = 8.

Решение: Подставляем в формулу данные значения и получаем: R = 7²/√(4 × 7² – 8²).

R = 49/√(196 – 64) = 49/√132. Ответ можно записать прямо так.

Ответ: R = 49/√132


Онлайн ресурсы для вычисления радиуса окружности

Можно очень легко запутаться во всех этих формулах. Поэтому при необходимости можно воспользоваться онлайн калькуляторами, которые помогут вам в решении задач на нахождение радиуса. Принцип работы таких мини-программ очень прост. Подставляете значение стороны в соответствующее поле и получаете готовый ответ. Можно выбрать несколько вариантов округления ответа: до десятичных, сотых, тысячных и т.д.

МКОУ «Волчихинская СШ №2»

Учитель Бакута Е.П.

9 класс

Урок по теме «Формулы радиусов вписанных и описанных окружностей правильных многоугольников"

Цели урока:

Образовательные: изучение формул радиусов вписанных и описанных окружностей правильных многоугольников;

Развивающие: активизация познавательной деятельности учащихся через решение практических задач, умение выбирать правильное решение, лаконично излагать свои мысли, анализировать и делать выводы.

Воспитательные: организация совместной деятельности, воспитание у учащихся интереса к предмету, доброжелательности, умения выслушивать ответы товарищей.

Оборудование: Мультимедийный компьютер, мультимедиапроектор, экспозиционный экран

Ход урок:

1. Организационный момент

Чтобы спорилось нужное дело,

А девизом нашего урока буду такие слова:

Думать - коллективно!

Решать - оперативно!

Отвечать - доказательно!

Бороться - старательно!

2. Мотивация урока.

3. Актуализация опорных знаний. Проверка д/з.

Фронтальный опрос:

    Какая фигура называется многоугольником?

    Какой многоугольник называется правильным?

    Какое другое название правильного треугольника?

    Какое другое название правильного четырехугольника?

    Формула суммы углов выпуклого многоугольника.

    Формула угла правильного многоугольника.

4. Изучение нового материала. (слайды)

    Окружность называется вписанной в многоугольник, если все стороны многоугольника касаются окружности.

    Окружность называется описанной около многоугольника, если все вершины многоугольника лежат на окружности.

    Окружность можно вписать или описать около любого треугольника, причём центр вписанной в треугольник окружности лежит на пересечении биссектрис треугольника, а центр описанной около треугольника окружности лежит на пересечении серединных перпендикуляров.

    Около любого правильного многоугольника можно описать окружность, и в любой правильный многоугольник можно вписать окружность, причём центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в тот же многоугольник.

    Формулы для радиусов вписанных и описанных окружностей правильного треугольника, правильного четырехугольника, правильного шестиугольника.

Радиус вписанной окружности в правильный многоугольник (r):

a - сторона многоугольника, N - количество сторон многоугольника

Радиус описанной окружности правильного многоугольника(R):

a - сторона многоугольника, N - количество сторон многоугольника.

Заполним таблицу для правильного треугольника, правильного четырехугольника, правильного шестиугольника.

5. Закрепление нового материала.

Решить № 1088, 1090, 1092, 1099.

6. Физминутка . Раз – потянуться Два – нагнуться

Три – оглянуться Четыре – присест

Пять – руки вверх Шесть – вперед

Семь – опустили Восемь – сели

Девять – встали Десять – снова сели

7. Самостоятельная работа учащихся (работа в группах)

Решить № 1093.

8.Итоги урока. Рефлексия. Д/з.

Какое впечатление у Вас сложилось? (Понравилось – не понравилось)

– Какое настроение после урока? (Радостное – грустное)

– Какое самочувствие? (Устал – не устал)

– Какое отношение к пройденному материалу? (Понял – не понял)

– Какова твоя самооценка после урока? (Доволен – не доволен)

– Оцени свою активность на уроке. (Старался – не старался).

    п.105-108 повторить;

    выучить формулы;

    1090, 1091, 1087(3)

Есть у математики молва,

Что она в порядок ум приводит,

Потому хорошие слова

Часто говорят о ней в народе.

Ты нам, геометрия, даёшь

Для победы важную закалку.

Учится с тобою молодёжь

Развивать и волю, и смекалку.

Примечание Презентация содержит разделы:

Повторение теоретического материала

Проверка домашнего задания

Вывод основных формул, т.е. новый материал

Закрепление: решение задач в группах и самостоятельно

Просмотр содержимого презентации
«9_klass_pravilnye_mnogougolniki_urok_2»



  • Чтобы спорилось нужное дело,
  • Чтобы в жизни не знать неудач,
  • В математики мир отправимся смело,
  • В мир примеров и разных задач.

ДЕВИЗ УРОКА

Думать - коллективно!

Решать - оперативно!

Отвечать - доказательно!

Бороться - старательно!

И открытия нас ждут обязательно!



Повторение.

  • Какая геометрическая фигура

изображена на рисунке?

D

Е

2.Какой многоугольник называется

правильным?

О

3.Какая окружность называется

вписанной в многоугольник?

F

С

4.Какая окружность называется

описанной около многоугольника?

5.Назовите радиус вписанной окружности.

А

В

Н

6.Назовите радиус описанной окружности.

7.Как найти центр вписанной в правильный

многоугольник окружности?

8.Как найти центр окружности описанной около

правильного многоугольника?


Проверка выполнения

домашнего задания ..

1084.

β – угол, соответствующий

дуге, которую стягивает

сторона многоугольника .

О

А п

А 2

β

Ответы:

а) 6;

б) 12;

А

А 1

в) 4;

г) 8;

г) 10

д) 20;

е) 7.

е) 5.



ПРАВИЛЬНЫЙ МНОГОУГОЛЬНИК

Правильным многоугольником называется выпуклый многоугольник, у которого все углы равны и все стороны равны.


Сумма углов правильного n -угольника

Угол правильного n - угольника


Окружность называется вписанной в многоугольник,

если все стороны многоугольника касаются этой окружности.

Окружность называется описанной около многоугольника, если все его вершины лежат на этой

окружности.


Вписанная и описанная окружность

Окружность, вписанная в правильный многоугольник, касается сторон многоугольника в их серединах.

Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в тот же многоугольник.



Выведем формулу радиуса вписанной и радиуса описанной окружности правильного многоугольника.

Пусть r – радиус вписанной окружности,

R – радиус описанной окружности,

п – количество сторон и углов многоугольника.

Рассмотрим правильный п-угольник.

Пусть а – сторона п-угольника,

α – угол.

Построим точку О – центр вписанной и описанной окружности.

ОС – высота ∆АОВ.

∟ С = 90 º - (по построению),

Рассмотрим ∆АОС:

∟ ОАС = α /2 - (ОА – биссектриса угла п- угольника),

АС = а/2 – (ОС – медиана к основанию равнобедренного треугольника),

∟ АОВ = 360 º: п,

пусть ∟АОС = β .

тогда β = 0,5 ∙ ∟АОВ

0,5 ∙ (360 º: п)

2 sin (180 º: п)

2 tg (180 º: п)


Площадь правильного многоугольника

Сторона правильного многоугольника

Радиус вписанной окружности


Группа 1 Дано: R , n =3 Найти: а

Группа 2 Дано: R , n =4 Найти: а

Группа 3 Дано: R , n =6 Найти: а

Группа 4 Дано: r , n =3 Найти: а

Группа 5 Дано: r , n = 4 Найти: а

Группа 6 Дано: r , n = 6 Найти: а


Группа 1 Дано: R , n =3 Найти: а


Группа 2 Дано: R , n =4 Найти: а


Группа 3 Дано: R , n =6 Найти: а


Группа 4 Дано: r , n =3 Найти: а


Группа 5 Дано: r , n = 4 Найти: а


Группа 6 Дано: r , n = 6 Найти: а


п = 3

п = 4

п = 6



2 tg (180 º: п)

2 sin (180 º: п)

тогда 180 º: п

У правильного треугольника п = 3,

откуда 2 sin 60 º =

тогда 180 º: п

У правильного четырехугольника п = 4,

откуда 2 sin 45 º =

У правильного шестиугольника п = 6,

тогда 180 º: п

откуда 2 sin 30 º =


Используя формулы радиусов вписанных и описанных окружностей некоторых правильных многоугольников, вывести формулы для нахождения зависимости сторон правильных многоугольников от радиусов вписанных и описанных окружностей и заполнить таблицу:

2 R ∙ sin (180 º: п)

2 r ∙ tg (180 º: п)


треугольник

шестиугольник


Пп. 105 – 108;

1087;

1088 – подготовить таблицу.


n = 4

R

r

a 4

P

2

6

4

S

28

16

3

3√2

24

32

2√2

4

16

16

16√2

32

4√2

2√2

7

3,5√2

3,5

49

4

2√2

16

2


1087(5)

Дано: S=16 , n =4

Найти: a, r, R, P

Мы знаем формулы:


1088( 5 )

Дано: P=6 , n = 3

Найти: R, a, r, S

Мы знаем формулы:


108 9

Дано:

Найти:


Подведем итог

Мы знаем формулы:

  • п.105-108 повторить;
  • выучить формулы;
  • 1090, 1091, 1087(3)

В современном машиностроении используется масса элементов и запчастей, которые имеют в своей структуре как внешние окружности, так и внутренние. Самым ярким примером могут служить корпус подшипника, детали моторов, узлы ступицы и многое другое. При их изготовлении применяются не только высокотехнологичные приспособления, но и знания из геометрии, в частности информация об окружностях треугольника. Более детально с подобным знаниями познакомимся ниже.

Вконтакте

Какая окружность вписана, а какая описана

Прежде всего вспомним, что окружностью называется бесконечное множество точек, удаленных на одинаковом расстоянии от центра . Если внутри многоугольника допускается построить окружность, которая с каждой стороной будет иметь только одну общую точку пересечения, то она будет называться вписанной. Описанной окружностью (не круг, это разные понятия) называется такое геометрическое место точек, при котором у построенной фигуры с заданным многоугольником общими точками будут только вершины многоугольника. Ознакомимся с этими двумя понятиями на более наглядном примере (см. рис 1.).

Рисунок 1. Вписанная и описанная окружности треугольника

На изображении построены две фигуры большого и малого диаметров, центры которых находятся G и I. Окружность большего значения называется описанной окр-тью Δ ABC, а малого – наоборот, вписанной в Δ ABC.

Для того чтобы описать вокруг треугольника окр-ть, требуется провести через середину каждой стороны перпендикулярную прямую (т.е. под углом 90°) – это точка пересечения, она играет ключевую роль. Именно она будет представлять собой центр описанной окружности. Перед тем как найти окружность, ее центр в треугольнике, требуется построить для каждого угла , после чего выделить точку пересечения прямых. Она в свою очередь будет центром вписанной окр-ти, а ее радиус при любых условиях будет перпендикулярен любой из сторон.

На вопрос:«Какое количество окружностей вписанных может быть для многоугольника с тремя ?» ответим сразу, что в любой треугольник можно вписать окружность и притом только одну. Потому что существует только одна точка пересечения всех биссектрис и одна точка пересечения перпендикуляров, исходящих из середин сторон.

Свойство окружности, которой принадлежат вершины треугольника

Описанная окружность, которая зависит от длин сторон при основании, имеет свои свойства. Укажем свойства описанной окружности:

Для того чтобы более наглядно понять принцип описанной окружности, решим простую задачу. Допустим, что дан треугольник Δ ABC, стороны которого равны 10, 15 и 8,5 см. Радиус описанной окружности около треугольника (FB) составляет 7,9 см. Найти значение градусной меры каждого угла и через них площадь треугольника.

Рисунок 2. Поиск радиуса окружности через отношение сторон и синусов углов

Решение: опираясь на ранее указанную теорему синусов, найдем значение синуса каждого угла в отдельности. По условию известно, что сторона АВ равна 10 см. Вычислим значение С:

Используя значения таблицы Брадиса, узнаем, что градусная мера угла С равна 39°. Таким же методом найдем и остальные меры углов:

Откуда узнаем, что CAB = 33°, а ABC = 108°. Теперь, зная значения синусов каждого из углов и радиус, найдем площадь, подставляя найденные значения:

Ответ: площадь треугольника равна 40,31 см², а углы равны соответственно 33°, 108° и 39°.

Важно! Решая задачи подобного плана, будет нелишним всегда иметь таблицы Брадиса либо соответствующее приложение на смартфоне, так как вручную процесс может затянуться на длительное время. Также для большей экономии времени не требуется обязательно строить все три середины перпендикуляра либо три биссектрисы. Любая третья из них всегда будет пересекаться в точке пересечения первых двух. А для ортодоксального построения обычно третью дорисовывают. Может, это неправильно в вопросе алгоритма, но на ЕГЭ или других экзаменах это здорово экономит время.

Исчисление радиуса вписанной окружности

Все точки окружности одинаково удалены от ее центра на одинаковом расстоянии. Длину этого отрезка (от и до) называют радиусом. В зависимости от того, какую окр-ть мы имеем, различают два вида – внутренний и внешний. Каждый из них вычисляется по собственной формуле и имеет прямое отношение к вычислению таких параметров, как:

  • площадь;
  • градусная мера каждого угла;
  • длины сторон и периметр.

Рисунок 3. Расположение вписанной окружности внутри треугольника

Вычислить длину расстояния от центра до точки соприкосновения с любой из сторон можно такими способами: через стороны, боковые стороны и углы (для равнобокого треугольника).

Использование полупериметра

Полупериметром называется половина суммы длин всех сторон. Такой способ считается самым популярным и универсальным, потому как независимо от того, какой тип треугольника дан по условию, он подходит для всех. Порядок вычисления имеет следующий вид:

Если дан «правильный»

Одним из малых преимуществ «идеального» треугольника является то, что вписанная и описанная окружности имеют центр в одной точке . Это удобно при построении фигур. Однако в 80% случаев ответ получается «некрасивым». Тут имеется ввиду, что очень редко радиус вписанной окр-ти будет целым , скорее наоборот. Для упрощенного исчисления используется формула радиуса вписанной окружности в треугольник:

Если боковины одинаковой длины

Одним из подтипов задач на гос. экзаменах будет нахождение радиуса вписанной окружности треугольника, две стороны которого равны между собой, а третья нет. В таком случае рекомендуем использовать этот алгоритм, который даст ощутимую экономию времени на поиск диаметра вписанной окр-ти. Радиус вписанной окружности в треугольник с равными «боковыми» вычисляется по формуле:

Более наглядное применение указанных формул продемонстрируем на следующей задаче. Пускай имеем треугольник (Δ HJI), в который вписана окр-ть в точке K. Длина стороны HJ = 16 см, JI = 9,5 см и сторона HI равна 19 см (рисунок 4). Найти радиус вписанной окр-ти, зная стороны.

Рисунок 4. Поиск значения радиуса вписанной окружности

Решение: для нахождения радиуса вписанной окр-ти найдем полупериметр:

Отсюда, зная механизм вычисления, узнаем следующее значение. Для этого понадобятся длины каждой из сторон (дано по условию), а также половину периметра, получается:

Отсюда следует, что искомый радиус равен 3,63 см. Согласно условию, все стороны равны, тогда искомый радиус будет равен:

При условии, если многоугольник равнобокий (например, i = h = 10 см, j = 8 см), диаметр внутренней окр-ти с центром в точке K будет равен:

В условии задачи может даваться треугольник с углом 90°, в таком случае запоминать формулу нет необходимости. Гипотенуза треугольника будет равна диаметру. Более наглядно это выглядит так:

Важно! Если задана задача на поиск внутреннего радиуса, не рекомендуем проводить вычисления через значения синусов и косинусов углов, табличное значение которых точно не известно. В случае, если иначе узнать длину невозможно, не пытайтесь «вытащить» значение из-под корня. В 40% задач полученное значение будет трансцендентным (т.е. бесконечным), а комиссия может не засчитать ответ (даже если он будет правильным) из-за его неточности или неправильной формы подачи. Особое внимание уделите тому, как может видоизменяться формула радиуса описанной окружности треугольника в зависимости от предложенных данных. Такие «заготовки» позволяют заранее «видеть» сценарий решения задачи и выбрать наиболее экономное решение.

Радиус внутренней окружности и площадь

Для того чтобы вычислить площадь треугольника, вписанного в окружность, используют лишь радиус и длины сторон многоугольника :

Если в условии задачи напрямую не дано значение радиуса, а только площадь, то указанная формула площади трансформируется в следующую:

Рассмотрим действие последней формулы на более конкретном примере. Предположим, что дан треугольник, в который вписана окр-ть. Площадь окр-ти составляет 4π, а стороны равны соответственно 4, 5 и 6 см. Вычислим площадь заданного многоугольника при помощи вычисления полупериметра.

Используя вышеуказанный алгоритм, вычислим площадь треугольника через радиус вписанной окружности:

В силу того, что в любой треугольник можно вписать окружность, число вариаций нахождения площади значительно увеличивается. Т.е. поиск площади треугольника, включает в себя обязательное знание длины каждой стороны, а также значение радиуса.

Треугольник, вписанный в окружность геометрия 7 класс

Прямоугольные треугольники, вписанные в окружность

Вывод

Из указанных формул можно убедиться, что сложность любой задачи с использованием вписанной и описанной окружностей заключается только в дополнительных действия по поиску требуемых значений. Задачи подобного типа требуют только досконально понимания сути формул, а также рациональности их применения. Из практики решения отметим, что в будущем центр описанной окружности будет фигурировать и в дальнейших темах геометрии, поэтому запускать ее не следует. В противном случае решение может затянуться с использованием лишних ходов и логических выводов.