Построение детали в изометрии. Построение аксонометрических проекций

Построение аксонометрических проекций начинают с проведения аксонометрических осей.

Положение осей. Оси фронтальной ди-метрической проекции располагают, как показано на рис. 85, а: ось х - горизонтально, ось z - вертикально, ось у - под углом 45° к горизонтальной линии.

Угол 45° можно построить при помощи чертежного угольника с углами 45, 45 и 90°, как показано на рис. 85, б.

Положение осей изометрической проекции показано на рис. 85, г. Оси х и у располагают под углом 30° к горизонтальной линии (угол 120° между осями). Построение осей удобно проводить при помощи угольника с углами 30, 60 и 90° (рис. 85, д).

Чтобы построить оси изометрической проекции с помощью циркуля, надо провести ось z, описать из точки О дугу произвольного радиуса; не меняя раствора циркуля, из точки пересечения дуги и оси z сделать засечки на дуге, соединить полученные точки с точкой О.

При построении фронтальной диметрической проекции по осям х и z (и параллельно им) откладывают действительные размеры; по оси у (и параллельно ей) размеры сокращают в 2 раза, отсюда и название "диметрия", что по-гречески означает "двойное измерение".

При построении изометрической проекции по осям х, у, z и параллельно им откладывают действительные размеры предмета, отсюда и название "изометрия", что по-гречески означает "равные измерения".

На рис. 85, в и е показано построение аксонометрических осей на бумаге, разлинованной в клетку. В этом случае, чтобы получить угол 45°, проводят диагонали в квадратных клетках (рис. 85, в). Наклон оси в 30° (рис. 85, г) получается при соотношении длин отрезков 3: 5 (3 и 5 клеток).

Построение фронтальной диметрической и изометрической проекций . Построить фронтальную диметрическую и изометрическую проекции детали, три вида которой приведены на рис. 86.

Порядок построения проекций следующий (рис. 87):

1. Проводят оси. Строят переднюю грань детали, откладывая действительные величины высоты - вдоль оси z, длины - вдоль оси х (рис. 87, а).

2. Из вершин полученной фигуры параллельно оси v проводят ребра, уходящие вдаль. Вдоль них откладывают толщину детали: для фронтальной ди-метрической проекции - сокращенную в 2 раза; для изометрии - действительную (рис. 87, б).

3. Через полученные точки проводят прямые, параллельные ребрам передней грани (рис. 87, в).

4. Удаляют лишние линии, обводят видимый контур и наносят размеры (рис. 87, г).

Сравните левую и правую колонки на рис. 87. Что общего и в чем различие данных на них построений?

Из сопоставления этих рисунков и приведенного к ним текста можно сделать вывод о том, что порядок построения фронтальной диметрической и изометрической проекций в общем одинаков. Разница заключается в расположении осей и длине отрезков, откладываемых вдоль оси у.

В ряде случаев построение аксонометрических проекций удобнее начинать с построения фигуры основания. Поэтому рассмотрим, как изображают в аксонометрии плоские геометрические фигуры, расположенные горизонтально.

Построение аксонометрической проекции квадрата показано на рис. 88, а и б.

Вдоль оси х откладывают сторону квадрата а, вдоль оси у - половину стороны а/2 для фронтальной диметрической проекции и сторону а для изометрической проекции. Концы отрезков соединяют прямыми.

Построение аксонометрической проекции треугольника показано на рис. 89, а и б.

Симметрично точке О (началу осей координат) по оси х откладывают половину стороны треугольника а/2, а по оси у - его высоту h (для фронтальной диметрической проекции половину высоты h/2). Полученные точки соединяют отрезками прямых.

Построение аксонометрической проекции правильного шестиугольника показано на рис. 90.

По оси х вправо и влево от точки О откладывают отрезки, равные стороне шестиугольника. По оси у симметрично точке О откладывают отрезки s/2, равные половине расстояния между противоположными сторонами шестиугольника (для фронтальной диметрической проекции эти отрезки уменьшают вдвое). От точек m и n, полученных на оси у, проводят вправо и влево параллельно оси х отрезки, равные половине стороны шестиугольника. Полученные точки соединяют отрезками прямых.

Ответьте на вопросы

1. Как располагают оси фронтальной диметрической и изометрической проекций? Как их строят?

Построение аксонометрических проекций

5.5.1. Общие положения. Ортогональные проекции объекта дают полное представление о его форме и размерах. Однако очевидным недостатком таких изображений является их малая наглядность – образная форма слагается из нескольких изображений, выполненных на разных плоскостях проекций. Только в результате опыта развивается умение представлять себе форму объекта – «читать чертежи».

Затруднения при чтении изображений в ортогональных проекциях обусловили возникновение ещё одного метода, который должен был объединить простоту и точность ортогональных проекций с наглядностью изображения,– метода аксонометрических проекций.

Аксонометрической проекцией называют наглядное изображение, получаемое в результате параллельного проецирования предмета вместе с осями прямоугольных координат, к которым он отнесен в пространстве, на какую-либо плоскость.

Правила выполнения аксонометрических проекций устанавливаются ГОСТ 2.317-69.

Аксонометрия (от греческого axon – ось, metreo – мерю) – процесс построения, основанный на воспроизведении размеров предмета по направлениям трёх его осей – длины, ширины, высоты. В результате получается объёмное изображение, воспринимаемое как осязаемая вещь (рис. 56б), в отличие от нескольких плоских изображений, не дающих образной формы предмета (рис. 56а).

Рис. 56. Наглядное изображение аксонометрии

В практической работе аксонометрические изображения применяются для различных целей, поэтому были созданы различные их виды. Общим для всех видов аксонометрии является то, что за основу изображения любого предмета принимается то или иное расположение осей OX, OY, OZ , по направлению которых определяют размеры предмета – длину, ширину, высоту.

В зависимости от направления проецирующих лучей по отношению к картинной плоскости, аксонометрические проекции подразделяются на:

а) прямоугольные – проецирующие лучи перпендикулярны картинной плоскости (рис. 57а);

б) косоугольные – проецирующие лучи наклонены к картинной пло­скости (рис. 57б).

Рис. 57. Прямоугольная и косоугольная аксонометрия

В зависимости от положения предмета и осей координат относительно плоскостей проекций, а также в зависимости от направления проециро­вания единицы измерения проецируются в общем случае с искажением. Искажаются и размеры проецируемых предметов.

Отношение длины аксонометрической единицы к ее истинной вели­чине называют коэффициентом искажения для данной оси.

Аксонометрические проекции называют: изометрическими , если коэф­фициенты искажения по всем осям равны (х= у= z ); диметрическими, если коэффициенты искажения равны по двум осям(x=z );триметрическими, если коэффициенты искажения различны.

Для аксонометрических изображений предметов применяют пять видов аксонометрических проекций, установленных ГОСТ 2.317 – 69:

прямоугольные изометрические и диметрические;

косоугольные фронтальные диметрические, фронтальныеизомет­рические , горизонтальные изометрические.

Имея ортогональные проекции любого предмета, можно построить его аксонометрическое изображение.

Всегда необходимо выбирать из всех видов лучший вид данного изо­бражения – тот, который обеспечивает хорошую наглядность и простоту построения аксонометрии.

5.5.2. Общий порядок построения. Общий порядок построения любого вида аксонометрии сводится к следующему:

а) выбирают оси координат на ортогональной проекции детали;

б) строят эти оси в аксонометрической проекции;

в) строят аксонометрию полного изображения предмета, а затем и его элементов;

г) наносят контуры сечения детали и убирают изображение отсечённой части;

д) обводят оставшуюся часть и проставляют размеры.

5.5.3. Прямоугольная изометрическая проекция. Этот вид аксонометрической проекции широко распространён благо­даря хорошей наглядности изображений и простоте построений. В пря­моугольной изометрии аксонометрические оси OX, OY, OZ расположены под углами 120 0 одна к другой. Ось OZ вертикальна. Оси OX и OY удобно строить, откладывая с помощью угольника от горизонтали углы 30 0 . Поло­жение осей можно также определить, отложив от начала координат в обе стороны по пять произвольных равных единиц. Через пятые деления про­водят вниз вертикальные линии и откладывают на них по 3 такие же еди­ницы. Действительные коэффициенты искажения по осям равны 0,82. Что­бы упростить построение, применяют приведённый коэффициент, равный 1. В этом случае при построении аксонометрических изображений измере­ния предметов, параллельные направлениям аксонометрических осей, от­кладывают без сокращений. Расположение аксонометрических осей и по­строение прямоугольной изометрии куба, в видимые грани которого впи­саны окружности, показаны на рис. 58, а, б.

Рис. 58. Расположение осей прямоугольной изометрии

Окружности, вписанные в прямоугольную изометрию квадратов – трех видимых граней куба, – представляют собой эллипсы. Большая ось эллип­са равна 1,22 D , а малая – 0,71 D , где D – диаметр изображаемой окруж­ности. Большие оси эллипсов перпендикулярны соответствующим аксоно­метрическим осям, а малые оси совпадают с этими осями и с направле­нием, перпендикулярным плоскости грани куба (на рис. 58б – утолщенные штрихи).

При построении прямоугольной аксонометрии окружностей, лежащих в координатных или им параллельных плоскостях, руководствуются пра­вилом: большая ось эллипса перпендикулярна той координатной оси, ко­торая отсутствует в плоскости окружности.

Зная размеры осей эллипса и проекции диаметров, параллельных координатным осям, можно построить эллипс по всем точкам, соединяя их с помощью лекала.

Построение овала по четырём точкам – концам сопряжённых диамет­ров эллипса, расположенных на аксонометрических осях, показано на рис. 59.

Рис. 59. Построение овала

Через точкуО пересечения сопряжённых диаметров эллипса проводят горизонтальную и вертикальную прямые и из неё описывают окружность радиусом, равным половине сопряжённых диаметров АВ=СД . Эта окружность пересечёт вертикальную линию в точках 1 и 2 (центры двух дуг). Из точек 1, 2 проводят дуги окружностей радиусом R=2-А (2-D) или R=1-C (1-B) . Радиусом ОЕ делают засечки на горизонтальной прямой и получают еще два центра сопрягаемых дуг 3 и 4 . Далее соединяют центры 1 и 2 с центрами 3 и 4 линиями, которые в пересечении с дугами радиусомR дают точки сопряжений K, N, P, M. Крайние дуги проводят из центров 3 и 4 радиусом R 1 =3-М (4-N).



Построение прямоугольной изометрии детали, заданной её проекция­ми, производят в следующем порядке (рис. 60, 61).

1. Выбирают оси координат X, Y, Z на ортогональных проекциях.

2. Строят аксонометрические оси в изометрии.

3. Строят основание детали – параллелепипед. Для этого от начала координат по оси Х откладывают отрезки ОА и ОВ , соответственно равные отрезкам О 1 А 1 и О 1 В 1 , взятым с горизонтальной проекции детали, и получают точкиА и В , через которые проводят прямые, параллельные оси Y , и откладывают отрезки, равные половине ширины параллелепипеда.

Получают точки C, D, J, V , которые являются изометрическими проек­циями вершин нижнего прямоугольника, и соединяют их прямыми, па­раллельными оси Х . От начала координат О по оси Z откладывают отрезок ОО 1 , равный высоте параллелепипеда О 2 О 2 ´; через точку О 1 проводят оси Х 1 , Y 1 и строят изометрию верхнего прямоугольника. Вершины прямо­угольников соединяют прямыми, параллельными оси Z .

4. Строят аксонометрию цилиндра. По оси Z от О 1 откладывают отре­зок О 1 О 2 , равный отрезку О 2 ´О 2 ´´ , т.е. высоте цилиндра, и через точку О 2 проводят оси X 2 ,Y 2 . Верхнее и нижнее основания цилиндра являются окружностями, расположенными в горизонтальных плоскостях X 1 O 1 Y 1 и X 2 O 2 Y 2 ; строят их аксонометрические изображения – эллипсы. Очерковые образующие цилиндра проводят касательно к обоим эллипсам (парал­лельно оси Z ). Построение эллипсов для цилиндрического отверстия вы­полняют аналогично.

5. Строят изометрическое изображение ребра жёсткости. От точки О 1 по оси Х 1 откладывают отрезок О 1 Е=О 1 Е 1 . Через точку Е проводят прямую, параллельную оси Y , и откладывают в обе стороны отрезки, равные половине ширины ребра Е 1 К 1 и Е 1 F 1 . Из полученных точек К, Е, F параллельно оси Х 1 проводят прямые до встречи с эллипсом (точки Р, N, М ). Далее проводят прямые, параллельные оси Z (линии пересечения плоскостей ребра с поверхностью цилиндра), и на них откладывают отрезки РТ, MQ и NS , равные отрезкам Р 2 Т 2 , M 2 Q 2 , и N 2 S 2 . Точки Q, S, T соединяют и обводят по лекалу, а точки К, Т и F, Q соединяют прямыми.

6. Строят вырез части заданной детали, для чего проводят две секущие плоскости: одну через оси Z и Х , а другую – через оси Z и Y .

Первая секущая плоскость разрежет нижний прямоугольник паралле­лепипеда по оси Х (отрезок ОА ), верхний – по оси Х 1 , а ребро – по линиям EN и ES , цилиндры – по образующим, верхнее основание цилиндра – по оси Х 2 .

Аналогично вторая секущая плоскость разрежет верхний и нижний прямоугольники по осям Y и Y 1 , а цилиндры – по образующим, верхнее основание цилиндра – по оси Y 2 .

Плоские фигуры, полученные от сечения, заштриховываются. Для определения направления штриховки необходимо на аксонометрических осях отложить от начала координат равные отрезки, а затем концы их со­единить.


Рис. 60. Построение трех проекций детали

Рис. 61. Выполнение прямоугольной изометрии детали


Линии штриховки для сечения, расположенного в плоскости XOZ , будут параллельны отрезку 1-2 , а для сечения, лежащего в плоскости ZOY , – параллельны отрезку 2-3 . Удаляют все невидимые линии и обводят контурные линии. Изометрическую проекцию применяют в тех случаях, когда необходимо построить окружности в двух или трёх плоскостях, параллельных координатным осям.

5.5.4. Прямоугольная диметрическая проекция. Аксонометрические изображения, построенные прямоугольной димет­рии, обладают наилучшей наглядностью, однако построение изображений сложнее, чем в изометрии. Расположение аксонометрических осей в диметрии следующее: ось OZ направлена вертикально, а оси и OY составляют с горизонтальной линией, проведённой через начало координат (точка О ), углы, соответственно, 7º10´ и 41º25´. Положение осей можно также определить, отложив от начала координат в обе стороны по восемь равных отрезков; через восьмые деления проводят вниз линии и на левой вертикали откладывают один отрезок, а на правой – по семь отрезков. Соединив полученные точки с началом координат, определяют направление осей ОХ и ОУ (рис. 62).

Рис. 62. Расположение осей в прямоугольной диметрии

Коэффициенты искажения по осям ОХ , OZ равны 0,94, а по оси ОY – 0,47. Для упрощения в практике пользуются приведёнными коэффициентами искажения: по осям OX и OZ коэффициент равен 1, по оси ОY – 0,5.

Построение прямоугольной диметрии куба с окружностями, вписанными в три видимые его грани показано на рис. 62б. Окружности, вписанные в грани, представляют собой эллипсы двух видов. Оси эллипса, расположенного в грани, которая параллельна координатной плоскости XOZ , равны: большая ось – 1,06 D ; малая – 0,94 D , где D – диаметр окружности, вписанной в грань куба. В двух других эллипсах большие оси равны 1,06 D , а малые – 0,35 D .

Для упрощения построений можно заменить эллипсы овалами. На рис. 63 даны приёмы построения четырех центровых овалов, заменяющих эллипсы. Овал в передней грани куба (ромба) строится следующим образом. Из середины каждой стороны ромба (рис. 63а) проводят перпендикуляры до пересечения с диагоналями. Полученные точки 1-2-3-4 будут являться центрами сопрягающих дуг. Точки сопряжений дуг находятся посредине сторон ромба. Построение можно выполнить и другим способом. Из середин вертикальных сторон (точки N и M ) проводят горизонтальные прямые линии до пересечения с диагоналями ромба. Точки пересечения будут искомыми центрами. Из центров 4 и 2 проводят дуги радиусом R , а из центров 3 и 1 – радиусом R 1 .

Рис. 63. Построение окружности в прямоугольной диметрии

Овал, заменяющий два других эллипса, выполняют следующим образом (рис. 63б). Прямые LP и MN , проведенные через середины противоположных сторон параллелограмма, пересекаются в точке S . Через точку S проводят горизонтальную и вертикальную линии. Прямую LN , соединяющую середины смежных сторон параллелограмма, делят пополам, и через ее середину проводят перпендикуляр до пересечения его с вертикальной линией в точке 1 .

на вертикальной прямой откладывают отрезок S-2 = S-1 .Прямые2-М и 1-N пересекают горизонтальную прямую в точках 3 и 4 . Полученные точки 1 , 2, 3 и 4 будут центрами овала. Прямые 1-3 и 2-4 определяют точки сопряжения T и Q .

из центров 1 и 2 описывают дуги окружностей TLN и QPM , а из центров 3 и 4 – дуги MT и NQ . Принцип построения прямоугольной диметрии детали (рис. 64) аналогичен принципу построения прямоугольной изометрии, приведённой на рис. 61.

Выбирая тот или иной вид прямоугольной аксонометрической проекции, следует иметь в виду, что в прямоугольной изометрии поворот боковых сторон предмета получается одинаковым и поэтому изображение иногда оказывается не наглядным. Кроме того, часто диагональные в плане ребра предмета на изображении сливаются в одну линию (рис. 65б). Эти недостатки отсутствуют на изображениях, выполненных в прямоугольной диметрии (рис. 65в).

Рис. 64. Построение детали в прямоугольной диметрии

Рис. 65. Сравнение различных видов аксонометрии

5.5.5. Косоугольная фронтальная изометрическая проекция.

Аксонометрические оси располагаются следующим образом. Ось OZ - вертикальная, ось ОХ – горизонтальная, ось ОУ относительно горизон­тальной прямой расположена над углом 45 0 (30 0 , 60 0) (рис. 66а). По всем осям размеры откладывают без сокращений, в истинную величину. На рис. 66б показана фронтальная изометрия куба.

Рис. 66. Построение косоугольной фронтальной изометрии

Окружности, расположенные в плоскостях, параллельных фронтальной плоскости, изображаются в натуральную величину. Окружности, расположенные в плоскостях, параллельных горизонтальной и профильной плоскостям, изображаются в виде эллипсов.

Рис. 67. Деталь в косоугольной фронтальной изометрии

Направление осей эллипсов совпадает с диагоналями граней куба. Для плоскостей ХОY и ZОY величина большой оси равна 1,3 D , а малой – 0,54 D (D – диаметр окружности).

Пример фронтальной изометрии детали приведён на рис. 67.

Для трёхмерных объектов и панорам.

Ограничения аксонометрической проекции

Изометрическая проекция в компьютерных играх и пиксельной графике

Рисунок телевизора в почти-изометрической пиксельной графике. У пиксельного узора видна пропорция 2:1

Примечания

  1. По ГОСТ 2 .317-69 - Единая система конструкторской документации. Аксонометрические проекции.
  2. Здесь горизонтальной называется плоскость, перпендикулярная оси Z (которая является прообразом оси Z").
  3. Ingrid Carlbom, Joseph Paciorek. Planar Geometric Projections and Viewing Transformations // ACM Computing Surveys (CSUR) : журнал. - ACM , декабрь 1978. - Т. 10. - № 4. - С. 465-502. - ISSN 0360-0300 . - DOI :10.1145/356744.356750
  4. Jeff Green. GameSpot Preview: Arcanum (англ.) . GameSpot (29 февраля 2000).(недоступная ссылка - история ) Проверено 29 сентября 2008.
  5. Steve Butts. SimCity 4: Rush Hour Preview (англ.) . IGN (9 сентября 2003). Архивировано
  6. GDC 2004: The History of Zelda (англ.) . IGN (25 марта 2004). Архивировано из первоисточника 19 февраля 2012. Проверено 29 сентября 2008.
  7. Dave Greely, Ben Sawyer.

Рассмотрите рис. 92. На нем дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями.

Окружности, расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами. Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем. Поэтому фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подооных представленными на рис. 93.

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием . Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 94, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 94, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 94, в).

Изометрические проекции окружностей. Квадрат в изометрической проекции проецируется в ромб. Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 95), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 96, а). Для этого через точку О проводят изометрические оси х и у и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, w, с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал. Для этого из вершин тупых углов (точек А и В) описывают дуги радиусом R, равным расстоянию от вершины тупого угла (точек А и В) до точек a, b или с, d соответственно. Через точки В и а, В и b проводят прямые (рис. 96, б); пересечение этих прямых с большей диагональю ромба дает точки С и D, которые будут центрами малых дуг; радиус R 1 малых дуг равен Са (Db). Дугами этого радиуса сопрягают большие дуги овала. Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 95). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 97, а), а овала 2 (см. рис. 95) - на осях х и z (рис. 97, б).

Построение изометрической проекции детали с цилиндрическим отверстием.

Как применить рассмотренные построения на практике?

Дана изометрическая проекция детали (рис. 98, а). Нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 95.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 98, а).

2. Строят ромб, сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 98, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 98, в).

4. Проводят малые дуги (рис. 98, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 98, д).

Ответьте на вопросы


1. Какими фигурами изображаются во фронтальной диме-трической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х и у?

2. Искажается ли во фронтальной диметрической проекции окружность, если ее плоскость перпендикулярна оси у?

3. При изображении каких деталей удобно применять фронтальную диметрическую проекцию?

4. Какими фигурами изображаются в изометрической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х, у, z?

5. Какими фигурами в практике заменяют эллипсы, изображающие окружности в изометрической проекции?

6. Из каких элементов состоит овал?

7. Чему равны диаметры окружностей, изображенных овалами, вписанными в ромбы на рис. 95, если стороны этих ромбов равны 40 мм?

Задания к § 13 и 14

Упражнение 42


На рис. 99 проведены оси для построения трех ромбов, изображающих квадраты в изометрической проекции. Рассмотрите рис. 95 и запишите, на какой грани куба - верхней, правой боковой или левой боковой будет расположен каждый ромб, построенный на осях, данных на рис. 99. Какой оси (х, у или z) будет перпендикулярна плоскость каждого ромба?

Стандарт устанавливает следующие виды, получаемые на основных плоскостях проекций (рис.1.2): вид спереди (главный), вид сверху, вид слева, вид справа, вид снизу, вид сзади.

За главный вид принимают тот, который дает наиболее полное представление о форме и размерах предмета.

Количество изображений должно быть наименьшим, но обеспечивающим полное представление о форме и размерах предмета.

Если основные виды расположены в проекционной связи, то их названия не обозначают. Для наилучшего использования поля чертежа виды допускается располагать вне проекционной связи (рис.2.2). В этом случае изображение вида сопровождается обозначением по типу:

1)указывается направление взгляда

2) над изображением вида наносят обозначение А , как на рис. 2.1.

Виды обозначаются прописными буквами русского алфавита шрифтом, на 1...2 размера превышающим шрифт размерных чисел.

На рисунке 2.1 показана деталь, для которой необходимо выполнить четыре вида. Если эти виды расположить в проекционной связи, то на поле чертежа они займут много места. Можно расположить необходимые виды так, как показано на рис. 2.1. Формат чертежа уменьшается, но нарушена проекционная связь, поэтому нужно выполнить обозначение вида справа ().

2.2.Местные виды.

Местным видом называется изображение отдельного ограниченного места поверхности предмета.

Он может быть ограничен линией обрыва (рис.2.3 а) или не ограничен (рис.2.3б).

В общем случае местные виды оформляются так же, как и основные виды.

2.3. Дополнительные виды.

Если какую-либо часть предмета невозможно показать на основных видах без искажения формы и размеров, то применяют дополнительные виды.

Дополнительным видом называется изображение видимой части поверхности предмета, получаемой на плоскости, не параллельной ни одной из основных плоскостей проекций.


Если дополнительный вид выполняется в проекционной связи с соответствующим изображением (рис.2.4 а), то его не обозначают.

Если изображение дополнительного вида выносится на свободное место (рис.2.4 б), т.е. нарушается проекционная связь, то направление взгляда указывается стрелкой, расположенной перпендикулярно изображаемой части детали и обозначается буквой русского алфавита, причем буква остается параллельна основной надписи чертежа, а не поворачивается за стрелкой.

При необходимости изображение дополнительного вида можно поворачивать, тогда над изображением ставится буква и знак поворота (это окружность 5...6мм со стрелкой, между створками которой угол 90°) (рис.2.4 в).

Дополнительный вид чаще всего выполняют как местный.

3.Разрезы.

Разрезом называется изображение предмета, мысленно рассеченного одной или несколькими плоскостями. На разрезе показывается то, что лежит в секущей плоскости и что расположено за ней.

При этом часть предмета, расположенную между наблюдателем и секущей плоскостью, мысленно удаляют, в результате чего все закрытые этой частью поверхности становятся видимыми.

3.1. Построение разрезов.

На рис.3.1 даны три вида предмета (без разреза). На главном виде внутренние поверхности: прямоугольный паз и цилиндрическое ступенчатое отверстие показаны штриховыми линиями.

На рис. 3.2 вычерчен разрез, полученный следующим образом.

Секущей плоскостью, параллельной фронтальной плоскости проекций, предмет мысленно рассечен вдоль своей оси, проходящей через прямоугольный паз и цилиндрическое ступенчатое отверстие, расположенное в центре предмета.. Затем мысленно была удалена передняя половина предмета, находящаяся между наблюдателем и секущей плоскостью. Так, как предмет симметричен, то нет смысла давать полный разрез. Его выполняют справа, а слева оставляют вид.

Вид и разрез разделяют штрихпунктирной линией. На разрезе показано то, что получилось в секущей плоскости и то, что находится за ней.

При рассмотрении чертежа можно заметить следующее:

1) штриховые линии, которыми на главном виде обозначены прямоугольный паз и цилиндрическое ступенчатое отверстие, на разрезе обведены сплошными основными линиями, так как они стали в результате мысленного рассечения предмета видимыми;

2) на разрезе, проходившая вдоль главного вида сплошная основная линия, обозначающая срез, отпала вовсе, так как передняя половина предмета не изображается. Срез, находящийся на изображаемой половине предмета, не обозначен, так как на разрезах не рекомендуется показывать штриховыми линиями невидимые элементы предмета;

3) на разрезе штриховкой выделена плоская фигура, находящаяся в секущей плоскости, штриховка наносится только в том месте, где секущая плоскость рассекает материал предмета. По этой причине задняя поверхность цилиндрического ступенчатого отверстия не заштрихована, так же как и прямоугольный паз (при мысленном рассечении предмета секущая плоскость этих поверхностей не затронула);

4) при изображении цилиндрического ступенчатого отверстия проведена сплошная основная линия, изображающая на фронтальной плоскости проекций горизонтальную плоскость, образованную изменением диаметров;

5) разрез, помещенный на месте главного изображения, никак не изменяет изображений вида сверху и слева.

При выполнении разрезов на чертежах необходимо руководствоваться следующими правилами:

1) выполнять на чертеже только полезные разрезы ("полезными"называются разрезы, выбранные по соображениям необходимости и достаточности);

2) невидимые ранее внутренние очертания, изображаемые штриховыми линиями, обводить сплошными основными линиями;

3) фигуру сечения, входящую в разрез, штриховать;

4) мысленное рассечение предмета должно относиться только к данному разрезу и не влиять на изменение других изображений того же предмета;

5) на всех изображениях штриховые линии убираются, т. к. внутренний контур хорошо читается на разрезе.

3.2 Обозначение разрезов

Для того, чтобы знать, в каком месте предмет имеет форму, показанную на изображении разреза, место, где проходила секущая плоскость, и сам разрез обозначают. Линия, обозначающая секущую плоскость, называется линией сечения. Она изображается разомкнутой линией.

При этом выбирают начальные буквы алфавита (А, Б, В, Г, Д и т. д.). Над разрезом, полученным с помощью данной секущей плоскости, выполняют надпись по типу А-А , т.е. двумя парными буквами через тире (рис.3.3).

Буквы у линий сечения и буквы, обозначающие разрез, должны быть большего размера, чем цифры размерных чисел на том же чертеже (на один-два номера шрифта)

В случаях, когда секущая плоскость совпадает с плоскостью симметрии данного предмета и соответствующие изображения расположены на одном и том же листе в непосредственной проекционной связи и не разделены какими-либо другими изображениями, рекомендуется не отмечать положение секущей плоскости и изображение разреза не сопровождать надписью.

На рис.3.3 показан чертеж предмета, на котором выполнено два разреза.

1. На главном виде разрез выполнен плоскостью, расположение которой совпадает с плоскостью симметрии для данного предмета. Она проходит вдоль горизонтальной оси на виде сверху. Поэтому этот разрез не обозначен.

2. Секущая плоскость А-А не совпадает с плоскостью симметрии данной детали, поэтому соответствующий разрез обозначен.

Буквенное обозначение секущих плоскостей и разрезов располагают параллельно основной надписи независимо от угла наклона секущей плоскости.

3.3 Штриховка материалов в разрезах и сечениях.

В разрезах и сечениях фигуру, полученную в секущей плоскости, штрихуют.

ГОСТ 2.306-68 устанавливает графическое обозначение различных материалов (рис.3.4)

Штриховка для металлов наносится тонкими линиями под углом 45° к линиям контура изображения, или к его оси, или к линиям рамки чертежа, причем, расстояние между линиями должно быть одинаковым.

Штриховка на всех разрезах и сечениях для данного предмета одинакова по направлению и шагу (расстояние между штрихами).

3.4. Классификация разрезов.

Разрезы имеют несколько классификаций:

1. Классификация, в зависимости от количества секущих плоскостей;

2. Классификация, в зависимости от положения секущей плоскости относительно плоскостей проекций;

3. Классификация, в зависимости от положения секущих плоскостей относительно друг друга.

Рис. 3.5

3.4.1 Простые разрезы

Простым называют разрез, выполненный одной секущей плоскостью.

Положение секущей плоскости может быть различным: вертикальным, горизонтальным, наклонным. Его выбирают в зависимости от формы предмета, внутреннее устройство которого нужно показать.

В зависимости от положения секущей плоскости относительно горизонтальной плоскости проекций разрезы подразделяются на вертикальные, горизонтальные и наклонные.

Вертикальным называется разрез при секущей плоскости, перпендикулярной горизонтальной плоскости проекций.

Вертикально расположенная секущая плоскость может быть параллельна фронтальной плоскости проекций или профильной, образуя при этом соответственно фронтальный (рис.3.6) или профильный разрезы (рис.3.7).

Горизонтальным разрезом называется разрез при секущей плоскости, параллельной горизонтальной плоскости проекций (рис.3.8).

Наклонным разрезом называется разрез при секущей плоскости, составляющей с одной из основных плоскостей проекций угол, отличный от прямого (рис.3.9).

1. По аксонометрическому изображению детали и заданным размерам начертить три ее вида - главный, сверху и слева. Наглядное изображение не перечерчивать.

7.2. Задание 2

2. Выполнить необходимые разрезы.

3. Построить линии пересечения поверхностей.

4. Нанести размерные линии и проставить размерные числа.

5. Выполнить обводку чертежа и заполнить основную надпись.

7.3. Задание 3

1. По размерам перечертить заданные два вида предмета и построить третий вид.

2. Выполнить необходимые разрезы.

3. Построить линии пересечения поверхностей.

4. Нанести размерные линии и проставить размерные числа.

5. Выполнить обводку чертежа и заполнить основную надпись.

Для всех задач виды чертить только в проекционной связи.

7.1. Задача 1.

Рассмотрим примеры выполнения заданий.

Задача1 . По наглядному изображению построить три вида детали и выполнить необходимые разрезы.

7.2 Задача 2

Задача2 . По двум видам построить третий вид и выполнить необходимые разрезы.

Задача 2. III этап.

1. Выполнить необходимые разрезы. Количество разрезов должно быть минимальным, но достаточным, чтобы прочитать внутренний контур.

1. Секущая плоскость А открывает внутренние соосные поверхности. Эта плоскость параллельна фронтальной плоскости проекций, поэтому разрез А-А совмещается с главным видом.

2. На виде слева показан местный разрез, открывающий цилиндрическое отверстие Æ32.

3. Размеры наносятся на тех изображениях, где поверхность читается лучше, т.е. диаметр, длина и т.д., например, Æ52 и длина 114.

4. Выносные линии по возможности не пересекать. Если главный вид выбран правильно, то наибольшее количество размеров будет на главном виде.

Проверить:

  1. Чтобы каждый элемент детали имел достаточное количество размеров.
  2. Чтобы все выступы и отверстия были привязаны размерами к другим элементам детали (размер 55, 46, и 50).
  3. Габаритные размеры.
  4. Выполнить обводку чертежа, убрав все линии невидимого контура. Заполнить основную надпись.

7.3. Задача 3.

Построить три вида детали и выполнить необходимые разрезы.

8. Сведения о поверхностях.

Построение линий, принадлежащих поверхностям.

Поверхности.

Для того, чтобы построить линии пересечения поверхностей, нужно уметь строить не только поверхности, но и точки, расположенные на них. В этом разделе рассматриваются наиболее часто встречающиеся поверхности.

8.1. Призма.

Задана трехгранная призма (рис.8.1), усеченная фронтально-проецирующей плоскостью (2ГПЗ, 1 алгоритм, модуль №3). S Ç L= т (1234 )

Так как призма проецирующая относительно П 1 , то горизонтальная проекция линии пересечения уже есть на чертеже, она совпадает с главной проекцией заданной призмы.

Секущая плоскость проецирующая относительно П 2 , значит и фронтальная проекция линии пересечения есть на чертеже, она совпадает с фронтальной проекцией этой плоскости.

Профильная проекция линии пересечения строится по двум заданным проекциям.

8.2. Пирамида

Задана усеченная трехгранная пирамида Ф(S,АВС) (рис.8.2).

Данная пирамида F пересекается плоскостями S, D и Г .

2 ГПЗ, 2 алгоритм (Модуль №3).

Ф Ç S = 123

S ^ П 2 Þ S 2 = 1 2 2 2 3 2

1 1 2 1 3 1 и 1 3 2 3 3 3 Ф .

Ф Ç D = 345

D ^ П 2 Þ = 3 2 4 2 5 2

3 1 4 1 5 1 и 3 3 4 3 5 3 строятся по принадлежности к поверхности Ф .

Ф Ç Г = 456

Г ÇП 2 Þ Г 2 = 4 2 5 6

4 1 5 1 6 1 и 4 3 5 3 6 3 строятся по принадлежности к поверхности Ф .

8.3. Тела, ограниченные поверхностями вращения.

Телами вращения называют геометрические фигуры, ограниченные поверхностями вращения (шар, эллипсоид вращения, кольцо) или поверхностью вращения и одной или несколькими плоскостями (конус вращения, цилиндр вращения и т. д.). Изображения на плоскостях проекций, параллельных оси вращения, ограничены очерковыми линиями. Эти очерковые линии являются границей видимой и невидимой части геометрических тел. Поэтому при построении проекций линий, принадлежащих поверхностям вращения, необходимо строить точки, расположенные на очерках.

8.3.1. Цилиндр вращения.

П 1 , то на эту плоскость цилиндр будет проецироваться в виде окружности, а на две другие плоскости проекций в виде прямоугольников, ширина которых равна диаметру этой окружности. Такой цилиндр является проецирующим к П 1 .

Если ось вращения перпендикулярна П 2 , то на П 2 он будет проецироваться в виде окружности, а на П 1 и П 3 в виде прямоугольников.

Аналогичное рассуждение при положении оси вращения, перпендикулярном П 3 (рис.8.3).

Цилиндр Ф пересекается с плоскостями Р, S , L и Г (рис.8.3).

2 ГПЗ, 1 алгоритм (Модуль №3)

Ф ^ П 3

Р, S, L, Г ^ П 2

Ф Ç Р = а (6 5 и )

Ф ^ П 3 Þ Ф 3 = а 3 (6 3 =5 3 и = )

а 2 и а 1 строятся по принадлежности к поверхности Ф .

Ф Ç S = b (5 4 3 )

Ф Ç S = с (2 3 ) Рассуждения аналогичны предыдущему.

Ф Г = d (12 и

Задачи на рисунках 8.4, 8.5, 8.6 решаются аналогично задаче на рис.8.3, так как цилиндр

везде профильно-проецирующий, а отверстия - поверхности проецирующие относительно

П 1 - 2ГПЗ, 1 алгоритм (Модуль №3).

Если оба цилиндра имеют одинаковые диаметры (рис.8.7), то линиями пересечения их будут два эллипса (теорема Монжа, модуль №3). Если оси вращения этих цилиндров лежат в плоскости, параллельной одной из плоскостей проекций, то на эту плоскость эллипсы будут проецироваться в виде пересекающихся отрезков прямых.

8.3.2.Конус вращения

Задачи на рисунках 8.8, 8.9, 8.10, 8.11, 8.12 -2 ГПЗ (модуль №3) решаются по 2 алгоритму, так как поверхность конуса не может быть проецирующей, а секущие плоскости везде фронтально-проецирующие.

На рисунке 8.13 изображен конус вращения (тело), пересеченный двумя фронтально-проецирующими плоскостями Г и L . Линии пересечения строят по 2 алгоритму.

На рисунке 8.14 поверхность конуса вращения пересекается с поверхностью профильно-проецирующего цилиндра.

2 ГПЗ, 2 алгоритм решения (модуль №3), то есть профильная проекция линии пересечения есть на чертеже, она совпадает с профильной проекцией цилиндра. Две другие проекции линии пересечения строят по принадлежности конусу вращения.

Рис.8.14

8.3.3. Сфера.

Поверхность сферы пересекается с плоскостью и со всеми поверхностями вращения с ней, по окружностям. Если эти окружности параллельны плоскостям проекций, то проецируются на них в окружность натуральной величины, а если не параллельны, то в виде эллипса.

Если оси вращения поверхностей пересекаются и параллельны одной из плоскостей проекций, то на эту плоскость все линии пересечения - окружности проецируются в виде отрезков прямых.

На рис. 8.15 - сфера, Г - плоскость, L - цилиндр, Ф - усеченный конус.

S Ç Г = а - окружность;

S Ç L =b - окружность;

S Ç Ф =с - окружность.

Так как оси вращения всех пересекающихся поверхностей параллельны П 2 , то все линии пересечения - окружности на П 2 проецируются в отрезки прямых.

На П 1 : окружность "а" проецируется в истинную величину так как параллельна ей; окружность "b" проецируется в отрезок прямой, так как параллельна П 3 ; окружность"с" проецируется в виде эллипса, который строится по принадлежности сфере.

Сначала строятся точки 1, 7 и 4, которые определяют малую и большую оси эллипса. Затем строит точку 5 , как лежащую на экваторе сферы.

Для остальных точек (произвольных) проводят окружности (параллели) на поверхности сферы и по принадлежности им определяются горизонтальные проекции точек, лежащих на них.

9. Примеры выполнения заданий.

Задача 4 .Построить три вида детали с необходимыми разрезами и нанести размеры.

Задача 5. Построить три вида детали и выполнить необходимые разрезы.

10.Аксонометрия

10.1. Краткие теоретические сведения об аксонометрических проекциях

Комплексный чертеж, составленный из двух или трех проекций, обладая свойствами обратимости, простоты и др., вместе с тем имеет существенный недостаток: ему недостает наглядности. Поэтому, желая дать более наглядное представление о предмете, наряду с комплексным чертежом приводят аксонометрический, широко используемый при описании конструкций изделий, в руководствах по эксплуатации, в схемах сборки, для пояснений чертежей машин, механизмов и их деталей.

Сравните два изображения - ортогональный чертеж и аксонометрический одной и той же модели. На каком изображении легче прочитать форму? Конечно на аксонометрическом изображении. (рис.10.1)

Сущность аксонометрического проецирования состоит в том, что геометрическая фигура вместе с осями прямоугольных координат, к которым она отнесена в пространстве, параллельно проецируется на некоторую плоскость проекций, называемую аксонометрическая плоскость проекций, или картинная плоскость.

Если отложить на осях координат x,y и z отрезок l (lx,ly,lz ) и спроецировать на плоскость П ¢ , то получим аксонометрические оси и на них отрезки l"x, l"y, l"z (рис.10.2)

lx, ly, lz - натуральные масштабы.

l = lx = ly = lz

l"x, l"y, l"z - аксонометрические масштабы.

Полученную совокупность проекций на П¢ называют аксонометрией.

Отношение длины аксонометрических масштабных отрезков к длине натуральных масштабных отрезков называют показателем или коэффициентом искажения по осям, которые обозначаются Кx, Ky, Kz.

Виды аксонометрических изображений зависят:

1. От направления проецирующих лучей (они могут быть перпендикулярны П" - тогда аксонометрия будет называться ортогональной (прямоугольной) или расположены под углом не равным 90°- косоугольная аксонометрия).

2. От положения осей координат к аксонометрической плоскости.

Здесь возможны три случая: когда все три оси координат составляют с аксонометрической плоскостью проекций некоторые острые углы (равные и неравные) и когда одна или две оси ей параллельны.

В первом случае применяется только прямоугольное проецирование, (s ^ П") во втором и третьем - только косоугольное проецирование (s П") .

Если оси координат ОХ, ОY,OZ не параллельны аксонометрической плоскости проекций П" , то будут ли они проецироваться на нее в натуральную величину? Конечно, нет. Изображение прямых в общем случае всегда меньше натуральной величины.

Рассмотрим ортогональный чертеж точки А и ее аксонометрическое изображение.

Положение точки определяют три координаты – Х А, Y А, Z A , полученные путем измерения звеньев натуральной ломаной ОА Х - А Х А 1 – А 1 А (рис.10.3).

A" - главная аксонометрическая проекция точки А ;

А - вторичная проекция точки А (проекция проекции точки).

Коэффициентами искажения по осям Х", Y" и Z" будут:

k x = ; k y = ; k y =

В ортогональной аксонометрии эти показатели равны косинусам углов наклона осей координат к аксонометрической плоскости, а следовательно, они всегда меньше единицы.

Их связывает формула

k 2 x + k 2 y + k 2 z = 2 (I)

В косоугольной аксонометрии показатели искажения связаны формулой

k x + k y + k z = 2+ctg a (III)

т.е. любой из них может быть меньше, равен или больше единицы (здесь a- угол наклона проецирующих лучей к аксонометрической плоскости). Обе формулы - вывод из теоремы Польке.

Теорема Польке: аксонометрические оси на плоскости чертежа (П¢) и масштабы на них могут быть выбраны совершенно произвольно.

(Следовательно, аксонометрическая система (О" X" Y" Z" ) в общем случае определяется пятью независимыми параметрами: тремя аксонометрическими масштабами и двумя углами между аксонометрическими осями).

Углы наклона натуральных осей координат к аксонометрической плоскости проекций и направление проецирования могут быть выбраны произвольно, следовательно возможно множество видов ортогональных и косоугольных аксонометрий.

Их разделяют на три группы:

1. Все три показателя искажения равны (k x = k y = k z). Этот вид аксонометрии называют изометрией . 3k 2 =2; k= » 0,82 - теоретический коэффициент искажения. Согласно ГОСТ 2.317-70 можно пользоваться К=1 - приведенный коэффициент искажения.

2. Два каких-либо показателя равны (например, kx=ky kz). Этот вид аксонометрии называется диметрией . k x = k z ; k y = 1/2k x 2 ; k x 2 +k z 2 + k y 2 /4 = 2; k = » 0,94; k x = 0,94; ky = 0,47; kz = 0,94 - теоретические коэффициенты искажения. Согласно ГОСТ 2.317-70 коэффициенты искажения могут быть приведенными - k x =1; k y =0,5; k z =1.

3. 3. Все три показателя различны (k x ¹ k y ¹ k z). Этот вид аксонометрии называют триметрией .

На практике применяют несколько видов как прямоугольной, так и косоугольной аксонометрии с наиболее простыми соотношениями между показателями искажений.

Из ГОСТ2.317-70 и различных видов аксонометрических проекций рассмотрим ортогональные изометрию и диметрию, а также косоугольную диметрию, как наиболее часто применяющиеся.

10.2.1. Прямоугольная изометрия

В изометрии все оси наклонены к аксонометрической плоскости под одним и тем же углом, следовательно угол между осями (120°) и коэффициент искажения будет одинаков. Выбираем масштаб 1: 0,82=1,22; М 1,22: 1.

Для удобства построения пользуются приведенными коэффициентами и тогда на всех осях и линиях им параллельных откладываются натуральные размеры. Изображения таким образом становятся больше, но на наглядности это не отражается.

Выбор вида аксонометрии зависит от формы изображаемой детали. Проще всего строить прямоугольную изометрию, поэтому такие изображения встречаются чаще. Однако, при изображении деталей, включающих четырехугольные призмы и пирамиды, их наглядность уменьшается. В этих случаях лучше выполнять прямоугольную диметрию.

Косоугольную диметрию следует выбирать для деталей, имеющих большую длину при небольшой высоте и ширине (типа вала) или когда одна из сторон детали содержит наибольшее число важных особенностей.

В аксонометрических проекциях сохраняются все свойства параллельных проекций.

Рассмотрим построение плоской фигуры АВСDE .

Прежде всего построим оси в аксонометрии. На рис.10.4 представлено два способа построения аксонометрических осей в изометрии. На рис.10.4 а показано построение осей при помощи циркуля, а на рис.10.4б - построение при помощи равных отрезков.

Рис.10.5

Фигура АВСDЕ лежит в горизонтальной плоскости проекций, которая ограничена осями ОХ и ОY (рис.10.5а). Строим эту фигуру в аксонометрии (рис.10.5б).

Каждая точка, лежащая в плоскости проекций, сколько имеет координат? Две.

Точка, лежащая в горизонтальной плоскости - координаты Х и Y .

Рассмотрим построение т.А . С какой координаты начнем построение? С координаты Х А .

Для этого замеряем на ортогональном чертеже величину ОА Х и откладываем на оси Х" , получим точку А Х " . А Х А 1 какой оси параллельна? Оси Y . Значит из т. А Х " проводим прямую параллельную оси Y " и откладываем на ней координату Y A . Полученная точка А" и будет аксонометрической проекцией т.А .

Аналогично строятся все остальные точки. Точка С лежит на оси ОY , значит имеет одну координату.

На рисунке 10.6 задана пятигранная пирамида, у которой основанием является этот же пятиугольник АВСDЕ. Что нужно достроить, чтобы получилась пирамида? Надо достроить точку S , которая является ее вершиной.

Точка S - точка пространства, поэтому имеет три координаты Х S , Y S и Z S . Сначала строится вторичная проекция S (S 1), а затем все три размера переносятся с ортогонального чертежа. Соединив S" c A", B", C", D" и E ", получим аксонометрическое изображение объемной фигуры - пирамиды.

10.2.2. Изометрия окружности

Окружности проецируются на плоскость проекций в натуральную величину, когда они параллельны этой плоскости. А так как все плоскости наклонены к аксонометрической плоскости, то окружности, лежащие на них, будут проецироваться на эту плоскость в виде эллипсов. Во всех видах аксонометрий эллипсы заменяются овалами.

При изображении овалов надо, прежде всего, обратить внимание на построение большой и малой оси. Начинать надо с определения положения малой оси, а большая ось всегда ей перпендикулярна.

Существует правило: малая ось совпадает с перпендикуляром к этой плоскости, а большая ось ей перпендикулярна или направление малой оси совпадает с осью, не существующей в этой плоскости, а большая ей перпендикулярна (рис.10.7)

Большая ось эллипса перпендикулярна той координатной оси, которая отсутствует в плоскости окружности.

Большая ось эллипса равна 1,22 ´ d окр; малая ось эллипса равна 0,71 ´ d окр.

На рисунке 10.8 в плоскости окружности отсутствует ось Z Z ".

На рисунке 10.9 в плоскости окружности отсутствует ось Х , поэтому большая ось перпендикулярна оси Х ".

А теперь рассмотрим, как вычерчивается овал в одной из плоскостей, например, в горизонтальной плоскости XY . Существует множество способов построения овала, познакомимся с одним из них.

Последовательность построения овала следующая (рис.10.10):

1. Определяется положение малой и большой оси.

2.Через точку пересечения малой и большой оси проводим линии, параллельные осям X" и Y" .

3.На этих линиях, а также на малой оси, из центра радиусом, равным радиусу заданной окружности, откладываем точки 1 и 2, 3 и 4, 5 и 6 .

4. Соединяем точки 3 и 5, 4 и 6 и отмечаем точки пересечения их с большой осью эллипса (01 и 02 ). Из точки 5 , радиусом 5-3 , и из точки 6 , радиусом 6-4 , проводим дуги между точками 3 и 2 и точками 4 и 1 .

5. Радиусом 01-3 проводим дугу, соединяющую точки 3 и 1 и радиусом 02-4 - точки 2 и 4 . Аналогично строятся овалы в других плоскостях (рис.10.11).

Для простоты построения наглядного изображения поверхности ось Z может совпадать с высотой поверхности, а оси X и Y с осями горизонтальной проекции.

Чтобы построить точку А , принадлежащую поверхности надо построить ее три координаты X A , Y A и Z A . Точка на поверхности цилиндра и других поверхностях строится аналогично (рис.10.13).

Большая ось овала перпендикулярна оси Y ".

При построении аксонометрии детали, ограниченной несколькими поверхностями, следует придерживаться следующей последовательности:

Вариант 1.

1. Деталь мысленно разбивается на элементарные геометрические фигуры.

2. Вычерчивается аксонометрия каждой поверхности, линии построения сохраняются.

3. Строится вырез 1/4 детали, чтобы показать внутреннюю конфигурацию детали.

4. Наносится штриховка по ГОСТ 2.317-70.

Рассмотрим пример построения аксонометрии детали, внешний контур которой состоит из нескольких призм, а внутри детали цилиндрические отверстия разных диаметров.

Вариант 2. (Рис. 10.5)

1. Строится вторичная проекция детали на плоскости проекций П.

2. Откладываются высоты всех точек.

3. Строится вырез 1/4 части детали.

4. Наносится штриховка.

Для данной детали более удобным для построения будет вариант 1.

10.3. Этапы выполнения наглядного изображения детали.

1. Деталь вписывается в поверхность четырехугольной призмы, размеры которой равны габаритным размерам детали. Эта поверхность называется обертывающей.

Выполняется изометрическое изображение этой поверхности. Обертывающая поверхность строится по габаритным размерам (рис.10.15 а ).

Рис. 10.15 а

2. Из этой поверхности вырезаются выступы, расположенные на верхней части детали по оси Х и строится призма высотой 34мм, одним из оснований которой будет верхняя плоскость обертывающей поверхности (рис.10.15б ).

Рис. 10.15б

3. Из оставшейся призмы вырезается нижняя призма с основаниями 45 ´35 и высотой 11мм (рис.10.15в ).

Рис. 10.15в

4. Строятся два цилиндрических отверстия, оси которых лежат на оси Z . Верхнее основание большого цилиндра лежит на верхнем основании детали, второе ниже на 26 мм. Нижнее основание большого цилиндра и верхнее основание малого лежат в одной плоскости. Нижнее основание малого цилиндра строится на нижнем основании детали (рис.10.15г ).

Рис. 10.15г

5. Выполняется вырез 1/4 части детали, чтобы открыть внутренний контур ее. Разрез выполняется двумя взаимно перпендикулярными плоскостями, то есть по осям Х и Y (рис.10.15д ).

Рис.10.15д

6. Выполняется обводка сечений и всей оставшейся части детали, а вырезанная часть убирается. Невидимые линии стираются, а сечения заштриховываются. Плотность штриховки должна быть такой же, как на ортогональном чертеже. Направление штриховых линий показано на рис10.15е соответствии с ГОСТ 2.317-69.

Линиями штриховки будут линии, параллельные диагоналям квадратов, лежащих в каждой координатной плоскости, стороны которых параллельны аксонометрическим осям.

Рис.10.15е

7. Существует особенность штриховки ребра жесткости в аксонометрии. По правилам

ГОСТ 2.305-68 в продольном разрезе ребро жесткости на ортогональном чертеже не

заштриховывается, а в аксонометрии заштриховывается.На рис.10.16 показан пример

штриховки ребра жесткости.

10.4Прямоугольная диметрия.

Прямоугольную диметрическую проекцию можно получить путем поворота и наклона координатных осей относительно П ¢ так, чтобы показатели искажения по осям X" и Z" приняли равное значение, а по оси Y" - вдвое меньшее. Показатели искажения "k x " и "k z " будут равны 0,94, а "k y "- 0,47.

На практике пользуются приведенными показателями, т.е. по осям X " и Z" откладывают натуральные размеры, а по оси Y "- в 2 раза меньше натуральных.

Ось Z" обычно располагают вертикально, ось X" - под углом 7°10¢ к горизонтальной линии, а ось Y" -под углом 41°25¢ к этой же линии (рис.12.17).

1. Строится вторичная проекция усеченной пирамиды.

2. Строятся высоты точек 1,2,3 и 4.

Проще всего строить ось Х ¢ , отложив на горизонтальной линии 8 равных частей и вниз по вертикальной линии 1 такую же часть.

Чтобы построить ось Y" под углом 41°25¢ , надо на горизонтальной линии отложить 8 частей, а на вертикальной 7 таких же частей (рис.10.17).

На рисунке 10.18 изображена усеченная четырехугольная пирамида. Чтобы построение ее в аксонометрии было проще, ось Z должна совпадать с высотой, тогда вершины основания ABCD будут лежат на осях Х и Y (А и С Î х , В и D Î y ). Сколько координат имеют точки 1 и? Две. Какие? Х и Z .

Эти координаты откладываются в натуральную величину. Полученные точки 1¢ и 3¢ соединяются с точками А¢ и С¢ .

Точки 2 и 4 имеют две координаты Z и Y . Так как высота у них одинаковая, то координата Z откладывается на оси Z" . Через полученную точку 0 ¢ проводится линия, параллельная оси Y , на которой по обе стороны от точки откладываются расстояние 0 1 4 1 уменьшенное в два раза.

Полученные точки 2 ¢ и 4 ¢ соединяются с точками В ¢ и D" .

10.4.1. Построение окружностей в прямоугольной диметрии.

Окружности, лежащие на плоскостях координат в прямоугольной диметрии, также как и в изометрии, будут изображаться в виде эллипсов. Эллипсы, расположенные на плоскостях между осями Х" и Y",Y" и Z" в приведенной диметрии будут иметь большую ось, равную 1,06d, а малую - 0,35d, а в плоскости между осями X" и Z" - большую ось тоже 1,06d, а малую 0,95d (рис.10.19).

Эллипсы заменяются четырехцентовыми овалами, как в изометрии.

10.5.Косоугольная диметрическая проекция (фронтальная)

Если расположить координатные оси Х и Y параллельно плоскости П¢, то показатели искажения по этим осям станут равным единице (к = т =1). Показатель искажения по оси Y обычно принимают равным 0,5. Аксонометрические оси X " и Z" составят прямой угол, ось Y" обычно проводят как биссектрису этого угла. Ось Х может быть направлена как вправо от оси Z ", так и влево.

Предпочтительно пользоваться правой системой, так как удобнее изображать предметы в рассеченном виде. В этом виде аксонометрии хорошо чертить детали, имеющие форму цилиндра или конуса.

Для удобства изображения этой детали ось Y надо совместить с осью вращения поверхностей цилиндров. Тогда все окружности будут изображаться в натуральную величину, а длина каждой поверхности будет уменьшаться в два раза (рис.10.21).

11.Наклонные сечения.

При выполнении чертежей деталей машин приходится нередко применять наклонные сечения.

При решении таких задач необходимо прежде всего уяснить: как должна быть расположена секущая плоскость и какие поверхности участвуют в сечении для того, чтобы деталь читалась лучше. Рассмотрим примеры.

Дана четырехгранная пирамида, которая рассекается наклонной фронтально-проецирующей плоскостью А-А (рис.11.1). Сечением будет четырехугольник.

Сначала строим проекции его на П 1 и на П 2 . Фронтальная проекция совпадает с проекцией плоскости, а горизонтальную проекцию четырехугольника строим по принадлежности пирамиде.

Затем строим натуральную величину сечения. Для этого вводится дополнительная плоскость проекций П 4 , параллельная заданной секущей плоскости А-А , на нее проецируем четырехугольник, а затем совмещаем его с плоскостью чертежа.

Эта четвертая основная задача преобразования комплексного чертежа (модуль №4, стр.15 или задача №117 из рабочей тетради по начертательной геометрии).

Построения выполняются в следующей последовательности (рис.11.2):

1. 1.На свободном месте чертежа проводим осевую линию, параллельную плоскости А-А .

2. 2.Из точек пересечения ребер пирамиды с плоскостью проводим проецирующие лучи, перпендикулярно секущей плоскости. Точки 1 и 3 будут лежать на линии, расположенной перпендикулярно осевой.

3. 3.Расстояние между точками 2 и 4 переносится с горизонтальной проекции.

4. Аналогично строится истинная величина сечения поверхности вращения - эллипс.

Расстояние между точками 1 и 5 -большая ось эллипса. Малую ось эллипса надо строить путем деления большой оси пополам (3-3 ).

Расстояние между точками 2-2, 3-3, 4-4 переносятся с горизонтальной проекции.

Рассмотрим более сложный пример, включающий многогранные поверхности и поверхности вращения (рис.11.3)

Задана четырехгранная призма. В ней расположены два отверстия: призматическое, расположенное горизонтально и цилиндрическое, ось которого совпадает с высотой призмы.

Секущая плоскость фронтально-проецирующая, поэтому фронтальная проекция сечения совпадает с проекцией этой плоскости.

Четырехугольная призма проецирующая к горизонтальной плоскости проекций, а значит и горизонтальная проекция сечения тоже есть на чертеже, она совпадает с горизонтальной проекцией призмы.

Натуральная величина сечения, в которое попадают обе призмы и цилиндр, строим на плоскости, параллельной секущей плоскости А-А (рис.11.3).

Последовательность выполнения наклонного сечения:

1. Проводится ось сечения, параллельно секущей плоскости, на свободном поле чертежа.

2. Строится сечение наружной призмы: длина его переносится с фронтальной проекции, а расстояние между точками с горизонтальной.

3. Строится сечение цилиндра - часть эллипса. Сначала строятся характерные точки, определяющие длину малой и большой оси (5 4 , 2 4 -2 4 ) и точки, ограничивающие эллипс (1 4 -1 4 ) , затем дополнительные точки (4 4 -4 4 и 3 4 -3 4).

4. Строится сечение призматического отверстия.

5. Наносится штриховка под углом 45° к основной надписи, если она не совпадает с линиями контура, а если совпадает, то угол штриховки может быть 30° или 60°. Плотность штриховки на сечении такая же, как на ортогональном чертеже.

Наклонное сечение можно поворачивать. При этом обозначение сопровождается знаком . Также разрешается показать половину фигуры наклонного сечения, если она симметрична. Подобное расположение наклонного сечения показано на рис.13.4. Обозначения точек при построении наклонного сечения можно не ставить.

На рис.11.5 дано наглядное изображение заданной фигуры с сечением плоскостью А-А .

Контрольные вопросы

1. Что называют видом?

2. Как получают изображение предмета на плоскости?

3.Какие названия присвоены видам на основных плоскостях проекций?

4.Что называют главным видом?

5.Что называют дополнительным видом?

6. Что называют местным видом?

7.Что называют разрезом?

8. Какие обозначения и надписи установлены для разрезов?

9. В чем отличие простых разрезов от сложных?

10.Какая соблюдается условность при выполнении ломаных разрезов?

11. Какой разрез называется местным?

12. При каких условиях допускается совмещать половину вида и половину разреза?

13. Что называют сечением?

14. Как располагают сечения на чертежах?

15. Что называют выносным элементом?

16. Как упрощенно показывают на чертеже повторяющиеся элементы?

17. Как условно сокращают на чертеже изображение предметов большой длины?

18. Чем отличаются аксонометрические проекции от ортогональных?

19. Каков принцип образования аксонометрических проекций?

20. Какие установлены виды аксонометрических проекций?

21. Каковы особенности изометрии?

22. Каковы особенности диметрии?

Библиографический список

1. Суворов, С.Г.Машиностроительное черчение в вопросах и ответах: (справочник)/ С.Г.Суворов, Н.С.Суворова.-2-е изд. перераб. и доп. - М.: Машиностроение,1992.-366с.

2. Федоренко В.А. Справочник по машиностроительному черчению/ В.А.Федоренко, А.И.Шошин,- Изд.16-стер.;м Перепеч. с 14-го изд.1981г.-М.: Альянс,2007.-416с.

3.Боголюбов, С.К.Инженерная графика: Учебник для сред. спец. учеб. заведений по спец. техн. профиля/ С.К.Боголюбов.-3-е изд., испр. и доп.-М.: Машиностроение, 2000.-351с.

4.Вышнепольский, И.С.Техническое черчение е. Учеб. для нач. проф. образования/ И.С.Вышнепольский.-4-е изд., перераб. и доп.; Гриф МО.- М.: Высш. шк.: Академия, 2000.-219с.

5. Левицкий, В.С.Машиностроительное черчение и автоматизация выполнения чертежей: учеб. для втузов/В.С.Левицкий.-6-е изд., перераб. и доп.; Гриф МО.-М.: Высш. шк., 2004.-435с.

6. Павлова, А.А. Начертательная геометрия: учеб. для вузов/ А.А. Павлова-2-е изд., перераб. и доп.; Гриф МО.- М.: Владос, 2005.-301с.

7. ГОСТ 2.305-68*. Изображения: виды, разрезы, сечения/Единая система конструкторской документации. - М.: Изд-во стандартов, 1968.

8. ГОСТ 2.307-68. Нанесение размеров и предельных отклонений/Единая система

конструкторской документации. - М.: Изд-во стандартов,1968.