Рассчитать коэффициент корреляции спирмена онлайн. Коэффициент корреляции Спирмена

Калькулятор ниже вычисляет коэффициент ранговой корреляции Спирмена между двумя случайными величинами. Теоретическая часть, чтобы не отвлекаться от калькулятора, традиционно размещается под ним.

add import_export mode_edit delete

Изменения случайных величин

arrow_upward arrow_downward X arrow_upward arrow_downward Y
Размер страницы: 5 10 20 50 100 chevron_left chevron_right

Изменения случайных величин

Импортировать данные Ошибка импорта

Для разделения полей можно использовать один из этих символов: Tab, ";" или "," Пример: -50.5;-50.5

Импортировать Назад Отменить

Метод расчета коэффициента ранговой корреляции Спирмена на самом деле описывается очень просто. Это тот же самый Коэффициент корреляции Пирсона , только рассчитанный не для самих результатов измерений случайных величин, а для их ранговых значений .

То есть,

Осталось только разобраться, что такое ранговые значения и для чего все это нужно.

Если элементы вариационного ряда расположить в порядке возрастания или убывания, то рангом элемента будет являться его номер в этом упорядоченном ряду.

Например, пусть у нас есть вариационный ряд {17,26,5,14,21}. Отсортируем его элементы в порядке убывания {26,21,17,14,5}. 26 имеет ранг 1, 21 - ранг 2 и т.д. Вариационный ряд ранговых значений будет выглядеть следующим образом {3,1,5,4,2}.

То есть, при расчете коэффициента Спирмена исходные вариационные ряды преобразуются в вариационные ряды ранговых значений, после чего к ним применяется формула Пирсона.

Есть одна тонкость - ранг повторяющихся значений берется как среднее из рангов. То есть для ряда {17, 15, 14, 15} ряд ранговых значений будет выглядеть как {1, 2.5, 4, 2.5}, так как первый элемент равный 15 имеет ранг 2, а второй - ранг 3, и .

Если же повторяющихся значений нет, то есть все значения ранговых рядов - числа из диапазона от 1 до n, формулу Пирсона можно упростить до

Ну и кстати, эта формула чаще всего и приводится как формула расчета коэффицента Спирмена.

В чем же суть перехода от самих значений к их ранговым значениям?
А суть в том, что исследуя корреляцию ранговых значений можно установить насколько хорошо зависимость двух переменных описывается монотонной функцией.

Знак коэффициента указывает на направление связи между переменными. Если знак положительный, то значения Y имеют тенденцию увеличиваться при увеличении значений X; если знак отрицательный, то значения Y имеют тенденцию уменьшаться при увеличении значений X. Если коэффициент равен 0, то никакой тенденции нет. Если же коэффициент равен 1 или -1, то зависимость между X и Y имеет вид монотонной функции - то есть, при увеличении X, Y также увеличивается, либо наоборот, при увеличении X, Y уменьшается.

То есть, в отличие от коэффициента корреляции Пирсона, который может выявить только линейную зависимость одной переменной от другой, коэффициент корреляции Спирмена может выявить монотонную зависимость, там, где непосредственная линейная связь не выявляется.

Поясню на примере. Предположим, что мы исследуем функцию y=10/x.
У нас есть следующие результаты измерений X и Y
{{1,10}, {5,2}, {10,1}, {20,0.5}, {100,0.1}}
Для этих данных коэффициент корреляции Пирсона равен -0.4686, то есть связь слабая либо отсутствует. А вот коэффициент корреляции Спирмена строго равен -1, что как бы намекает исследователю, что Y имеет строгую отрицательную монотонную зависимость от X.

Ранговая корреляция Спирмена (корреляция рангов). Ранговая корреляция Спирмена - самый простой способ определения степени связи между факторами. Название метода свидетельствует о том, что связь определяют между рангами, то есть рядами полученных количественных значений, ранжированных в порядке убывания или возрастания. Надо иметь в виду, что, во-первых, ранговое корреляцию Не рекомендуется проводить, если связь пар меньше четырех и больше двадцати; во-вторых, ранговая корреляция позволяет определять связь и в другом случае, если значение имеют полуколичественный характер, то есть не имеют числового выражения, отражают четкий порядок следования этих величин; в-третьих, ранговое корреляцию целесообразно применять в тех случаях, когда достаточно получить приблизительные данные. Пример расчета коэффициента ранговой корреляции для определения вопрос: замеряют вопросник X и Y подобные личностные качества испытуемых. С помощью двух вопросников (X и Y), которые требуют альтернативных ответов "да" или "нет", получили первичные результаты - ответы 15 испытуемых (N = 10). Результаты подали в виде суммы утвердительных ответов отдельно для вопросника X и для вопросника В. Эти результаты сведены в табл. 5.19.

Таблица 5.19. Табулирование первичных результатов для расчета коэффициента ранговой корреляции по Спирмену (р) *

Анализ сводной корреляционной матрицы. Метод корреляционных плеяд.

Пример. В табл. 6.18 приведены интерпретации одиннадцати переменных, которые тестируют по методике Векслера. Данные получили на однородной выборке в возрасте от 18 до 25 лет (n = 800).

Перед расслаиванием корреляционную матрицу целесообразно ранжировать. Для этого в исходной матрицы вычисляют средние значения коэффициентов корреляции каждой переменной со всеми остальными.

Затем по табл. 5.20 определяют допустимые уровни расслоение корреляционной матрицы при заданных доверительной вероятности 0,95 и n - количества

Таблица 6.20. Восходящая корреляционная матрица

Переменные 1 2 3 4 бы 0 7 8 0 10 11 M (rij) Ранг
1 1 0,637 0,488 0,623 0,282 0,647 0,371 0,485 0,371 0,365 0,336 0,454 1
2 1 0,810 0,557 0,291 0,508 0,173 0,486 0,371 0,273 0,273 0,363 4
3 1 0,346 0,291 0,406 0,360 0,818 0,346 0,291 0,282 0,336 7
4 1 0,273 0,572 0,318 0,442 0,310 0,318 0,291 0,414 3
5 1 0,354 0,254 0,216 0,236 0,207 0,149 0,264 11
6 1 0,365 0,405 0,336 0,345 0,282 0,430 2
7 1 0,310 0,388 0,264 0,266 0,310 9
8 1 0,897 0,363 0,388 0,363 5
9 1 0,388 0,430 0,846 6
10 1 0,336 0,310 8
11 1 0,300 10

Обозначения: 1 - общая осведомленность; 2 - понятийнисть; 3 - внимательность; 4 - вдатнисть К обобщения; б - непосредственное запоминание (на цифрах) 6 - уровень освоения родном языке; 7 - скорость овладения сенсомоторном навыками (кодирование символами) 8 - наблюдательность; 9 - комбинаторные способности (к анализу и синтезу) 10 - способность к организации частей в осмысленное целое; 11 - способность к эвристического синтеза; M (rij) - среднее значение коэффициентов корреляции переменной с остальными переменных наблюдений (в нашем случае n = 800): r (0) - значение нулевой "Рассекая" плоскости - минимальная значимая абсолютная величина коэффициента корреляции (n - 120, r (0) = 0,236; n = 40, r (0) = 0,407) | Δr | - допустимый шаг расслоения (n = 40, | Δr | = 0,558) в - допустимое количество уровней расслоения (n = 40, s = 1 ; n = 120, s = 2); r (1), r (2), ..., r (9) - абсолютное значение секущей плоскости (n = 40, r (1) = 0,965).

Для n = 800 находим значение гтип и границ ги после чего Расслаивающая ранжированы корреляционную матрицу, выделяя корреляционные плеяды внутри слоев, или отделяем части корреляционной матрицы, вырисовывая объединения корреляционных плеяд для вышележащих слоев (рис. 5.5).

Содержательный анализ полученных плеяд выходит за пределы математической статистики. Надо отметить два формальные показатели, которые помогают при содержательной интерпретации плеяд. Одним существенным показателем служит степень вершины, то есть количество ребер, примыкающих к вершине. Переменная с наибольшим количеством ребер является "ядром" плеяды и ее можно рассматривать как индикатор остальных переменных этой плеяды. Другой существенный показатель - плотность связи. Переменная может иметь меньше связей в одной плеяде, но теснее, и больше связей в другой плеяде, однако менее тесных.

Предсказания и оценки. Уравнение у = b1x + b0 называется общим уравнением прямой. Оно свидетельствует о том, что пары точек (x, y), которые

Рис. 5.5. Корреляционные плеяды, полученные расслоением матрицы

лежат на некоторой прямой, связанные так, что для любого значения х величину в в находящегося с ним в паре, можно найти, умножив х на некоторое число b1 добавив вторых, число b0 к этому произведению.

Коэффициент регрессии позволяет определить степень изменения следственной фактора при изменении причинного фактора на одну единицу. Абсолютные величины характеризуют зависимость между переменными факторами по их абсолютными значениями. Коэффициент регрессии вычисляют по формуле:

Планирование и анализ экспериментов. Планирование и анализ экспериментов - это третья важная отрасль статистических методов, разработанных для нахождения и проверки причинных связей между переменными.

Для исследования многофакторных зависимостей в последнее время все чаще используют методы математического планирования эксперимента.

Возможность одновременного варьирования всеми факторами позволяет: а) уменьшить количество опытов;

б) свести ошибку эксперимента к минимуму;

в) упростить обработку полученных данных;

г) обеспечить наглядность и легкость по сравнению результатов.

Каждый фактор может приобретать некоторую соответствующее количество различных значений, которые называются уровнями и обозначают -1, 0 и 1. Фиксированный набор уровней факторов определяет условия одного из возможных опытов.

Совокупность всех возможных сочетаний вычисляют по формуле:

Полным факторным экспериментом называется эксперимент, в котором реализуются все возможные сочетания уровней факторов. Полные факторные эксперименты могут обладать свойством ортогональности. При ортогональном планировании факторы в эксперименте является некоррелированными, коэффициенты регрессии, которые высчитывают в итоге, определяют независимо друг от друга.

Важным преимуществом метода математического планирования эксперимента является его универсальность, пригодность во многих областях исследований.

Рассмотрим пример сравнения влияния некоторых факторов на формирование уровня психического напряжения в регулировщиков цветных телевизоров.

В основу эксперимента положен ортогональный План 2 три (три фактора изменяются на двух уровнях).

Эксперимент проводили с полным части 2 +3 с трехкратным повторением.

Ортогональное планирование базируется на построении уравнения регрессии. Для трех факторов оно выглядит так:

Обработка результатов в этом примере включает:

а) построение ортогонального плана 2 +3 таблице для расчета;

б) вычисления коэффициентов регрессии;

в) проверку их значимости;

г) интерпретацию полученных данных.

Для коэффициентов регрессии упомянутого уравнения надо было поставить N = 2 3 = 8 вариантов, чтобы иметь возможность оценить значимость коэффициентов, где количество повторений К равнялось 3.

Составлена матрица планирования эксперимента выглядела.

Коэффициент корреляции Пирсона

Коэффициентr- Пирсона применяется для изучения взаимосвязи двух метрических переменных, измеренных на одной и той же выборке. Существует множество ситуаций, в которых уместно его применение. Влияет ли интеллект на успеваемость на старших курсах университета? Связан ли размер заработной платы работника с его доброжелательностью к коллегам? Влияет ли настроение школьника на успешность решения сложной арифметической задачи? Для ответа на подобные вопросы исследователь должен измерить два интересующих его показателя у каждого члена выборки.

На величину коэффициента корреляции не влияет то, в каких единицах измерения представлены признаки. Следовательно, любые линейные преобразования признаков (умножение на константу, прибавление константы) не меняют значения коэффициента корреляции. Исключением является умножение одного из признаков на отрицательную константу: коэффициент корреляции меняет свой знак на противоположный.

Применение корреляции Спирмена и Пирсона.

Корреляция Пирсона есть мера линейной связи между двумя переменными. Она позволяет определить, насколько пропорциональна изменчивость двух переменных. Если переменные пропорциональны друг другу, то графически связь между ними можно представить в виде прямой линии с положительным (прямая пропорция) или отрицательным (обратная пропорция) наклоном.

На практике связь между двумя переменными, если она есть, является вероятностной и графически выглядит как облако рассеивания эллипсоидной формы. Этот эллипсоид, однако, можно представить (аппроксимировать) в виде прямой линии, или линии регрессии. Линия регрессии - это прямая, построенная методом наименьших квадратов: сумма квадратов расстояний (вычисленных по оси Y) от каждой точки графика рассеивания до прямой является минимальной.

Особое значение для оценки точности предсказания имеет дисперсия оценок зависимой переменной. По сути, дисперсия оценок зависимой переменной Y - это та часть ее полной дисперсии, которая обусловлена влиянием независимой переменной X. Иначе говоря, отношение дисперсии оценок зависимой переменной к ее истинной дисперсии равно квадрату коэффициента корреляции.

Квадрат коэффициента корреляции зависимой и независимой переменных представляет долю дисперсии зависимой переменной, обусловленной влиянием независимой переменной, и называется коэффициентом детерминации. Коэффициент детерминации, таким образом, показывает, в какой степени изменчивость одной переменной обусловлена (детерминирована) влиянием другой переменной.

Коэффициент детерминации обладает важным преимуществом по сравнению с коэффициентом корреляции. Корреляция не является линейной функцией связи между двумя переменными. Поэтому, среднее арифметическое коэффициентов корреляции для нескольких выборок не совпадает с корреляцией, вычисленной сразу для всех испытуемых из этих выборок (т.е. коэффициент корреляции не аддитивен). Напротив, коэффициент детерминации отражает связь линейно и поэтому является аддитивным: допускается его усреднение для нескольких выборок.

Дополнительную информацию о силе связи дает значение коэффициента корреляции в квадрате - коэффициент детерминации: это часть дисперсии одной переменной, которая может быть объяснена влиянием другой переменной. В отличие от коэффициента корреляции коэффициент детерминации линейно возрастает с увеличением силы связи.

Коэффициенты корреляции Спирмена и τ- Кендалла (ранговые корреляции)

Если обе переменные, между которыми изучается связь, представлены в порядковой шкале, или одна из них - в порядковой, а другая - в метрической, то применяются ранговые коэффициенты корреляции: Спирмена или τ- Кенделла. И тот, и другой коэффициент требует для своего применения предварительного ранжирования обеих переменных.

Коэффициент ранговой корреляции Спирмена - это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.

Если члены группы численностью были ранжированы сначала по переменной x, затем - по переменной y, то корреляцию между переменными x и y можно получить, просто вычислив коэффициент Пирсона для двух рядов рангов. При условии отсутствия связей в рангах (т.е. отсутствия повторяющихся рангов) по той и другой переменной, формула для Пирсона может быть существенно упрощена в вычислительном отношении и преобразована в формулу, известную как Спирмена.

Мощность коэффициента ранговой корреляции Спирмена несколько уступает мощности параметрического коэффициента корреляции.

Коэффицент ранговой корреляции целесообразно применять при наличии небольшого количества наблюдений. Данный метод может быть использован не только для количественно выраженных данных, но также и в случаях, когда регистрируемые значения определяются описательными признаками различной интенсивности.

Коэффициент ранговой корреляции Спирмена при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений

Альтернативу корреляции Спирмена для рангов представляет корреляция τ- Кендалла. В основе корреляции, предложенной М.Кендаллом, лежит идея о том, что о направлении связи можно судить, попарно сравнивая между собой испытуемых: если у пары испытуемых изменение по x совпадает по направлению с изменением по y, то это свидетельствует о положительной связи, если не совпадает - то об отрицательной связи.

Коэффициенты корреляции были специально разработаны для численного определения силы и направления связи между двумя свойствами, измеренными в числовых шкалах (метрических или ранговых). Как уже упоминалось, максимальной силе связи соответствуют значения корреляции +1 (строгая прямая или прямо пропорциональная связь) и -1 (строгая обратная или обратно пропорциональная связь), отсутствию связи соответствует корреляция, равная нулю. Дополнительную информацию о силе связи дает значение коэффициента детерминации: это часть дисперсии одной переменной, которая может быть объяснена влиянием другой переменной.

9. Параметрические методы сравнения данных


Параметрические методы сравнения применяются в том случае, если ваши переменные были измерены в метрической шкале.

Сравнение дисперсий 2- х выборок по критерию Фишера.


Данный метод позволяет проверить гипотезу о том, что дисперсии 2-х генеральных совокупностей, из которых извлечены сравниваемые выборки, отличаются друг от друга. Ограничения метода - распределения признака в обеих выборках не должны отличаться от нормального.

Альтернативой сравнения дисперсий является критерий Ливена, для которого нет необходимости в проверке на нормальность распределения. Данный метод может применяться для проверки предположения о равенстве (гомогенности) дисперсий перед проверкой достоверности различия средних по критерию Стьюдента для независимых выборок разной численности.

Назначение рангового коэффициента корреляции

Метод ранговой корреляции Спирмена позволяет определить тес­ноту (силу) и направление корреляционной связи между двумя призна­ками или двумя профилями {иерархиями) признаков.

Описание метода

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений, которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испы­туемых по одному и тому же набору признаков (например, личност­ные профили по 16-факторному опроснику Р. Б. Кеттелла, иерархии ценностей по методике Р. Рокича, последовательности предпочтений в выборе из нескольких альтернатив и др.);

3) две групповые иерархии признаков;

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков. Как правило, меньшему значению признака начисляется меньший ранг.

Рассмотрим случай 1 (два признака). Здесь ранжируются ин­дивидуальные значения по первому признаку, полученные разными ис­пытуемыми, а затем индивидуальные значения по второму признаку.

Если два признака связаны положительно, то испытуемые, имею­щие низкие ранги по одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по одному из призна­ков, будут иметь по другому признаку также высокие ранги. Для под­счета r s необходимо определить разности (d) между рангами, получен­ными данным испытуемым по обоим признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем меньше разности между рангами, тем больше будет r s , тем ближе он будет к +1.

Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет никакого соответствия. Формула составлена так, что вэтом случае r s , окажется близким к 0.

В случае отрицательной корреляции низким рангам испытуемых по одному признаку будут соответствовать высокие ранги по другому признаку, и наоборот.

Чем больше несовпадение между рангами испытуемых по двумя переменным, тем ближе r s к -1.

Рассмотрим случай 2 (два индивидуальных профиля). Здесь ранжируются индивидуальные значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг - признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно проранжировать показатели по личностному опроснику Кеттелла (16PF ), если они вы­ражены в "сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до 20 и от 0 до 26. Мы не мо­жем сказать, какой из факторов будет занимать первое место по выра­женности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).

Если индивидуальные иерархии двух испытуемых связаны поло­жительно, то признаки, имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот. Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то иу другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С (эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по этому фактору высокий ранг и т.д.

Рассмотрим случай 3 (два групповых профиля). Здесь ранжи­руются среднегрупповые значения, полученные в 2-х группах испытуе­мых по определенному, одинаковому для двух групп, набору признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.

Рассмотрим случай 4 (индивидуальный и групповой профили). Здесь ранжируются отдельно индивидуальные значения испытуемого исреднегрупповые значения по тому же набору признаков, которые полу­чены, как правило, при исключении этого отдельного испытуемого - он не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и групповой профили.

Во всех четырех случаях значимость полученного коэффициента корреляции определяется по количеству ранжированных значений N. В первом случае это количество будет совпадать с объемом выборки п. Во втором случае количеством наблюдений будет количество признаков, составляющих иерархию. В третьем и четвертом случае N - это также количество сопоставляемых признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах.

Если абсолютная величина r s достигает критического значения или превышает его, корреляция достоверна.

Гипотезы

Возможны два варианта гипотез. Первый относится к случаю 1, второй - к трем остальным случаям.

Первый вариант гипотез

H 0: Корреляция между переменными А и Б не отличается от нуля.

H 1: Корреляция между переменными А и Б достоверно отличается от нуля.

Второй вариант гипотез

H 0: Корреляция между иерархиями А и Б не отличается от нуля.

H 1: Корреляция между иерархиями А и Б достоверно отличается от нуля.

Графическое представление метода ранговой корреляции

Чаще всего корреляционную связь представляют графически в виде облака точек или в виде линий, отражающих общую тенденцию размещения точек в пространстве двух осей: оси признака А и призна­ка Б (см. Рис. 6.2).

Попробуем изобразить ранговую корреляцию в виде двух рядов ранжированных значений, которые попарно соединены линиями (Рис. 6.3). Если ранги по признаку А и по признаку Б совпадают, то между ними оказывается горизонтальная линия, если ранги не совпадают, то линия становится наклонной. Чем больше несовпадение рангов, тем бо­лее наклонной становится линия. Слева на Рис. 6.3 отображена макси­мально высокая положительная корреляция (r в =+1,0) - практически это "лестница". В центре отображена нулевая корреляция - плетенка с неправильными переплетениями. Все ранги здесь перепутаны. Справа отображена максимально высокая отрицательная корреляция (r s =-1,0) -паутина с правильным переплетением линий.

Рис. 6.3. Графическое представление ранговой корреляции:

а) высокая положительная корреляция;

б) нулевая корреляция;

в) высокая отрицательная корреляция

Ограничения коэффициента ранговой корреляции

1. По каждой переменной должно быть представлено не менее 5 на­блюдений. Верхняя граница выборки определяется имеющимися таб­лицами критических значений (Табл.XVI Приложения 1), а именно N 40.

2. Коэффициент ранговой корреляции Спирмена r s при большом коли­честве одинаковых рангов по одной или обеим сопоставляемым пе­ременным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпа­дающих значений. В случае, если это условие не соблюдается, необ­ходимо вносить поправку на одинаковые ранги. Соответствующая формула дана в примере 4.

Пример 1 - корреляция между двумя признаками

Висследовании, моделирующем деятельность авиадиспетчера (Одерышев Б.С., Шамова Е.П., Сидоренко Е.В., Ларченко Н.Н., 1978), группа испытуемых, студентов физического факультета ЛГУ проходила подготовку перед началом работы на тренажере. Испытуе­мые должны были решать задачи по выбору оптимального типа взлет­но-посадочной полосы для заданного типа самолета. Связано ли коли­чество ошибок, допущенных испытуемыми в тренировочной сессии, с показателями вербального и невербального интеллекта, измеренными по методике Д. Векслера?

Таблица 6.1

Показатели количества ошибок в тренировочной сессии и показатели уровня вербального и невербального интеллекта у студентов-физиков (N=10)

Испытуемый

Количество ошибок

Показатель вербального интеллекта

Показатель невербального интеллекта

Сначала попробуем ответить на вопрос, связаны ли между собой показатели количества ошибок и вербального интеллекта.

Сформулируем гипотезы.

H 0: Корреляция между показателем количества ошибок в тренировочной сессии и уровнем вербального интеллекта не отличается от нуля.

H 1 : Корреляция между показателем количества ошибок в тренировочной сессии и уровнем вербального интеллекта статистически значимо отличается от нуля.

Далее нам необходимо проранжировать оба показателя, Приписы­вая меньшему значению меньший ранг, затем подсчитать разности меж­ду рангами, которые получил каждый испытуемый по двум переменным (признакам), и возвести эти разности в квадрат. Произведем все необ­ходимые расчеты в таблице.

В Табл. 6.2 в первой колонке слева представлены значения по показателю количества ошибок; в следующей колонке - их ранги. В третьей колонке слева представлены значения по показателю вербаль­ного интеллекта; в следующем столбце - их ранги. В пятом слева пред­ставлены разности d между рангом по переменной А (количество оши­бок) и переменной Б (вербальный интеллект). В последнем столбце представлены квадраты разностей - d 2 .

Таблица 6.2

Расчет d 2 для рангового коэффициента корреляции Спирмена r s при сопоставлении показателей количества ошибок и вербального интеллекта у студентов-физиков (N=10)

Испытуемый

Переменная А

количество ошибок

Переменная Б

вербальный интеллект.

d (ранг А -

J 2

Индивидуальные

значения

Индивидуальные

значения

Коэффициент ранговой корреляции Спирмена подсчитывается по формуле:

где d - разность между рангами по двум переменным для каж­дого испытуемого;

N - количество ранжируемых значений, в. данном случае ко­личество испытуемых.

Рассчитаем эмпирическое значение r s:

Полученное эмпирическое значение г s близко к 0. И все же определим критические значения r s при N=10 по Табл. XVI Приложения 1:

Ответ: H 0 принимается. Корреляция между показателем коли­чества ошибок в тренировочной сессии и уровнем вербального интел­лекта не отличается от нуля.

Теперь попробуем ответить на вопрос, связаны ли между собой показатели количества ошибок и невербального интеллекта.

Сформулируем гипотезы.

H 0: Корреляция между показателем количества ошибок в тренировочной сессии и уровнем невербального интеллекта не отличается от 0.

H 1: Корреляция между показателем количества ошибок в тренировочной сессии и уровнем невербального интеллекта статистически значимо отличается от 0.

Результаты ранжирования и сопоставления рангов представлены в Табл. 6.3.

Таблица 6.3

Расчет d 2 для рангового коэффициента корреляции Спирмена r s при сопоставлении показателей количества ошибок и невербального интеллекта у студентов-физиков (N=10)

Испытуемый

Переменная А

количество ошибок

Переменная Е

невербальный интеллект

d (ранг А -

d 2

Индивидуальные

Индивидуальные

значения

значения

Мы помним, что для определения значимости r s неважно, являет­ся ли он положительным или отрицательным, важна лишь его абсолют­ная величина. В данном случае:

r s эмп

Ответ: H 0 принимается. Корреляция между показателем коли­чества ошибок в тренировочной сессии и уровнем невербального интел­лекта случайна, r s не отличается от 0.

Вместе с тем, мы можем обратить внимание на определенную тенденцию отрицательной связи между этими двумя переменными. Возможно, мы смогли бы ее подтвердить на статистически значимом уровне, если бы увеличили объем выборки.

Пример 2 - корреляция между индивидуальными профилями

В исследовании, посвященном проблемам ценностной реориента-ции, выявлялись иерархии терминальных ценностей по методике М. Рокича у родителей и их взрослых детей (Сидоренко Е.В., 1996). Ранги терминальных ценностей, полученные при обследовании пары мать-дочь (матери - 66 лет, дочери - 42 года) представлены в Табл. 6.4. Попытаемся определить, как эти ценностные иерархии коррелиру­ют друг с другом.

Таблица 6.4

Ранги терминальных ценностей по списку М.Рокича в индивидуальных иерархиях матери и дочери

Терминальные ценности

Ранг ценностей в

Ранг ценностей в

d 2

иерархии матери

иерархии дочери

1 Активная деятельная жизнь

2 Жизненная мудрость

3 Здоровье

4 Интересная работа

5 Красота природы и искусство

7 Материально обеспеченная жизнь

8 Наличие хороших и верных друзей

9 Общественное признание

10 Познание

11 Продуктивная жнзнь

12 Развитие

13 Развлечения

14 Свобода

15 Счастливая семейная жизнь

16 Счастье других

17 Творчество

18 Уверенность в себе

Сформулируем гипотезы.

H 0: Корреляция между иерархиями терминальных ценностей матери и дочери не отличается от нуля.

H 1: Корреляция между иерархиями терминальных ценностей матери и дочери статистически значимо отличается от нуля.

Поскольку ранжирование ценностей предполагается самой проце­дурой исследования, нам остается лишь подсчитать разности между рангами 18 ценностей в двух иерархиях. В 3-м и 4-м столбцах Табл. 6.4 представлены разности d и квадраты этих разностей d 2 .

Определяем эмпирическое значение r s по формуле:

где d - разности между рангами по каждой из переменных, в данном случае по каждой из терминальных ценностей;

N - количество переменных, образующих иерархию, в дан­ном случае количество ценностей.

Для данного примера:

По Табл. XVI Приложения 1 определяем критические значения:

Ответ: H 0 отвергается. Принимается H 1 . Корреляция между иерархиями терминальных ценностей матери и дочери статистически значима (р<0,01) и является положительной.

По данным Табл. 6.4 мы можем определить, что основные рас­хождения приходятся на ценности "Счастливая семейная жизнь", "Общественное признание" и "Здоровье", ранги остальных ценностей достаточно близки.

Пример 3 - корреляция между двумя групповыми иерархиями

Джозеф Вольпе в книге, написанной совместно с сыном (Wolpe J., Wolpe D., 1981) приводит упорядоченный перечень из наиболее час­то встречающихся у современного человека "бесполезных", по его обо­значению, страхов, которые не несут сигнального значения и лишь ме­шают полноценно жить и действовать. В отечественном исследовании, проведенном М.Э. Раховой (1994) 32 испытуемых должны были по 10-балльной шкале оценить, насколько актуальным для них является тот или иной вид страха из перечня Вольпе 3 . Обследованная выборка состояла из студентов Гидрометеорологического и Педагогического ин­ститутов Санкт-Петербурга: 15 юношей и 17 девушек в возрасте от 17 до 28 лет, средний возраст 23 года.

Данные, полученные по 10-балльной шкале, были усреднены по 32 испытуемым, и средние проранжированы. В Табл. 6.5 представлены ранговые показатели, полученные Дж. Вольпе и М. Э. Раховой. Сов­падают ли ранговые последовательности 20 видов страха?

Сформулируем гипотезы.

H 0: Корреляция между упорядоченными перечнями видов страха в аме­риканской и отечественных выборках не отличается от нуля.

H 1: Корреляция между упорядоченными перечнями видов страха в аме­риканской и отечественной выборках статистически значимо отли­чается от нуля.

Все расчеты, связанные с вычислением и возведением в квадрат разностей между рангами разных видов страха в двух выборках, пред­ставлены в Табл. 6.5.

Таблица 6.5

Расчет d для рангового коэффициента корреляции Спирмена при со­поставлении упорядоченных перечней видов страха в американской и отечественной выборках

Виды страха

Ранг в американской выборке

Ранг в российской

Страх публичного выступления

Страх полета

Страх совершить ошибку

Страх неудачи

Страх неодобрения

Страх отвержения

Страх злых люден

Страх одиночества

Страх крови

Страх открытых ран

Страх дантиста

Страх уколов

Страх прохождения тестов

Страх полиции ^милиции)

Страх высоты

Страх собак

Страх пауков

Страх искалеченных людей

Страх больниц

Страх темноты

Определяем эмпирическое значение r s:

По Табл. XVI Приложения 1 определяем критические значения г s при N=20:

Ответ: H 0 принимается. Корреляция между упорядоченными перечнями видов страха в американской и отечественной выборках не достигает уровня статистической значимости, т. е. значимо не отличает­ся от нуля.

Пример 4 - корреляция между индивидуальным и среднегрупповым профилями

Выборке петербуржцев в возрасте от 20 до 78 лет (31 мужчина, 46 женщин), уравновешенной по возрасту таким образом, что лица в возрасте старше 55 лет составляли в ней 50% 4 , предлагалось ответить на вопрос: "Какой уровень развития каждого из перечисленных ниже качеств необходим для депутата Городского собрания Санкт-Петербурга?" (Сидоренко Е.В., Дерманова И.Б., Анисимова О.М., Витенберг Е.В., Шульга А.П., 1994). Оценка производилась по 10-балльной шкале. Параллельно с этим обследовалась выборка из депута­тов и кандидатов в депутаты в Городское собрание Санкт-Петербурга (n=14). Индивидуальная диагностика политических деятелей и претен­дентов производилась с помощью Оксфордской системы экспресс-видеодиагностики по тому же набору личностных качеств, который предъявлялся выборке избирателей.

В Табл. 6.6 представлены средние значения, полученные для ка­ждого из качеств в выборке избирателей ("эталонный ряд") и индиви­дуальные значения одного из депутатов Городского собрания.

Попытаемся определить, насколько индивидуальный профиль де­путата К-ва коррелирует с эталонным профилем.

Таблица 6.6

Усредненные эталонные оценки избирателей (п=77) и индивидуальные показатели депутата К-ва по 18 личностным качествам экспресс-видеодиагностики

Наименование качества

Усредненные эталонные оценки избирателей

Индивидуальные показатели депутата К-ва

1. Общий уровень культуры

2. Обучаемость

4. Способность к творчеству нового

5.. Самокритичность

6. Ответственность

7. Самостоятельность

8. Энергия, активность

9. Целеустремленность

10. Выдержка, самообладание

И. Стойкость

12. Личностная зрелость

13. Порядочность

14. Гуманизм

15. Умение общаться с людьми

16. Терпимость к чужому мнению

17. Гибкость поведения

18. Способность производить благоприятное впечатление

Таблица 6.7

Расчет d 2 для рангового коэффициента корреляции Спирмена между эталонным и индивидуальным профилями личностных качеств депутата

Наименование качества

ранг качества в эталонном профиле

Ряд 2: ранг качества в индивидуальном профиле

d 2

1 Ответственность

2 Порядочность

3 Умение общаться с людьми

4 Выдержка, самообладание

5 Общий уровень культуры

6 Энергия, активность

8 Самокритичность

9 Самостоятельность

10 Личностная зрелость

И Целеустремленность

12 Обучаемость

13 Гуманизм

14 Терпимость к чужому мнению

15 Стойкость

16 Гибкость поведения

17 Способность производить благоприятное впечатление

18 Способность к творчеству нового

Как видно из Табл. 6.6, оценки избирателей и индивидуальные показатели депутата варьируют в разных диапазонах. Действительно оценки избирателей были получены по 10-балльной шкале, а индивидуальные показатели по экспресс-видеодиагностике измеряются по 20-ти балльной шкале. Ранжирование позволяет нам перевести обе шкалы измерения в единую шкалу, где единицей измерения будет 1 ранг, а максимальное значение составит 18 рангов.

Ранжирование, как мы помним, необходимо произвести отдельно по каждому ряду значений. В данном случае целесообразно начислять большему значению меньший ранг, чтобы сразу можно было увидеть, на каком месте по значимости (для избирателей) или по выраженности (у депутата) находится то или иное качество.

Результаты ранжирования представлены в Табл. 6.7. Качества перечислены в последовательности, отражающей эталонный профиль.

Сформулируем гипотезы.

H 0: Корреляция между индивидуальным профилем депутата К-ва и эталонным профилем, построенным по оценкам избирателей, не от­личается от нуля.

H 1: Корреляция между индивидуальным профилем депутата К-ва и эталонным профилем, построенным по оценкам избирателей, стати­стически значимо отличается от нуля. Поскольку в обоих сопоставляемых ранговых рядах присутствуют

группы одинаковых рангов, перед подсчетом коэффициента ранговой

корреляции необходимо внести поправки на одинаковые ранги Т а и Т b :

где а - объем каждой группы одинаковых рангов в ранговом ряду А,

b - объем каждой группы одинаковых рангов в ранговом ряду В.

В данном случае, в ряду А (эталонный профиль) присутствует одна группа одинаковых рангов - качества "обучаемость" и "гуманизм" имеют один и тот же ранг 12,5; следовательно, а =2.

T а =(2 3 -2)/12=0,50.

В ряду В (индивидуальный профиль) присутствует две группы одинаковых рангов, при этом b 1 =2 и b 2 =2.

T a =[(2 3 -2)+(2 3 -2)]/12=1,00

Для подсчета эмпирического значения r s используем формулу

В данном случае:

Заметим, что если бы поправка на одинаковые ранги нами не вносилась, то величина r s была бы лишь на (на 0,0002) выше:

При больших количествах одинаковых рангов изменения г 5 могут оказаться гораздо более существенными. Наличие одинаковых рангов означает меньшую степень дифференцированное™ упорядоченных переменных и, следовательно, меньшую возможность оценить степень связи между ними (Суходольский Г.В., 1972, с.76).

По Табл. XVI Приложения 1 определяем критические значения г, при N=18:

Ответ: Hq отвергается. Корреляция между индивидуальным профилем депутата К-ва и эталонным профилем, отвечающим требова­ниям избирателей, статистически значима (р<0,05) и является положи­тельной.

Из Табл. 6.7 видно, что депутат К-в имеет более низкий ранг по шкалам Умения общаться с людьми и более высокие ранги по шкалам Целеустремленности и Стойкости, чем это предписывается избиратель­ским эталоном. Этими расхождениями, главным образом, и объясняется некоторое снижение полученного r s .

Сформулируем общий алгоритм подсчета r s .

Краткая теория

Ранговая корреляция – это метод корреляционного анализа, отражающий отношения переменных, упорядоченных по возрастанию их значения.

Ранги - это порядковые номера единиц совокупности в ранжированном ряду. Если проранжировать совокупность по двум признакам, связь между которыми изучается, то полное совпадение рангов означает максимально тесную прямую связь, а полная противоположность рангов - максимально тесную обратную связь. Ранжировать оба признака необходимо в одном и том же порядке: либо от меньших значений признака к большим, либо наоборот.

Для практических целей использование ранговой корреляции весьма полезно. Например, если установлена высокая ранговая корреляция между двумя качественными признаками изделий, то достаточно контролировать изделия только по одному из признаков, что удешевляет и ускоряет контроль.

Коэффициент корреляции рангов, предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин.

Величина коэффициента корреляции Спирмена лежит в интервале +1 и -1. Он может быть положительным и отрицательным, характеризуя направленность связи между двумя признаками, измеренными в ранговой шкале.

Ранговый коэффициент корреляции Спирмена подсчитывается по формуле:

Разность между рангами по двум переменным

число сопоставляемых пар

Первым этапом расчета коэффициента ранговой корреляции является ранжирование рядов переменных. Процедура ранжирования начинается с расположения переменных по возрастанию их значений. Разным значениям присваиваются ранги, обозначаемые натуральными числами. Если встречается несколько равных по значению переменных, им присваивается усредненный ранг.

Преимущество коэффициента корреляции рангов Спирмена состоит в том, что ранжировать можно и по таким признакам, которые нельзя выразить численно: можно проранжировать кандидатов на занятие определенной должности по профессиональному уровню, по умению руководить коллективом, по личному обаянию и т. п. При экспертных оценках можно ранжировать оценки разных экспертов и найти их корреляции друг с другом, чтобы затем исключить из рассмотрения оценки эксперта, слабо коррелированные с оценками других экспертов. Коэффициент корреляции рангов Спирмена применяется для оценки устойчивости тенденции динамики. Недостатком коэффициента корреляции рангов является то, что одинаковым разностям рангов могут соответствовать совершенно отличные разности значений признаков (в случае количественных признаков). Поэтому для последних следует считать корреляцию рангов приближенной мерой тесноты связи, обладающей меньшей информативностью, чем коэффициент корреляции числовых значений признаков.

Пример решения задачи

Условие задачи

Опрос случайно выбранных 10 студентов, проживающих в общежитии университета, позволяет выявить зависимость между средним баллом по результатам предыдущей сессии и числом часов в неделю, затраченных студентом на самостоятельную подготовку.

Определите тесноту связи при помощи коэффициента ранговой корреляции Спирмена.

Если возникли сложности с решением задач, то сайт сайт оказывает онлайн помощь студентам по статистике с домашними контрольными или экзаменами.

Решение задачи

Рассчитаем коэффициент корреляции рангов.

Ранжирование Сравнение рангов Разность рангов 1 26 4.7 8 1 3.1 1 8 10 -2 4 2 22 4.4 10 2 3.6 2 7 9 -2 4 3 8 3.8 12 3 3.7 3 1 4 -3 9 4 12 3.7 15 4 3.8 4 3 3 0 0 5 15 4.2 17 5 3.9 5 4 7 -3 9 6 30 4.3 20 6 4 6 9 8 1 1 7 20 3.6 22 7 4.2 7 6 2 4 16 8 31 4 26 8 4.3 8 10 6 4 16 9 10 3.1 30 9 4.4 9 2 1 1 1 10 17 3.9 31 10 4.7 10 5 5 0 0 Сумма 60

Коэффициент ранговой корреляции Спирмена:

Подставляя числовые значения, получаем:

Вывод к задаче

Связь между средним баллом по результатам предыдущей сессии и числом часов в неделю, затраченных студентом на самостоятельную подготовку, умеренной тесноты.

Если сроки со сдачей контрольной работы поджимают, на сайте всегда можно заказать cрочное решение задач по статистике .

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Все вопросы по стоимости можете задать прямо в чат, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Примеры близких по теме задач

Коэффициент Фехнера
Приведена краткая теория и рассмотрен пример решения задачи на расчет коэффициента корреляции знаков Фехнера.

Коэффициенты взаимной сопряженности Чупрова и Пирсона
Страница содержит сведения по методам изучения взаимосвязей между качественными признаками с помощью коэффициентов взаимной сопряженности Чупрова и Пирсона.