Толстые линзы. Главные точки и плоскости

Материал из Википедии - свободной энциклопедии

Гла́вные пло́скости объекти́ва - пара условных сопряженных плоскостей, расположенных перпендикулярно оптической оси , для которых линейное увеличение равно единице . То есть линейный объект в этом случае равен по величине своему изображению и одинаково с ним направлен относительно оптической оси.

К действию этих условных плоскостей, содержащих в себе точки пересечения лучей, как бы входящих в систему и выходящих из неё, можно свести действие всех преломляющих поверхностей. Такое допущение позволяет заменять фактический ход световых лучей в реальных линзах условными линиями, что очень упрощает расчёты оптической системы .

Различают переднюю H и заднюю H" главные плоскости. В задней главной плоскости объектива сосредоточено действие оптической системы при прохождении света в прямом направлении (от объекта съёмки к фотоматериалу). Положение главных плоскостей зависит от формы линзы и типа фотообъектива : они могут лежать внутри оптической системы, впереди её и сзади.

См. также

Напишите отзыв о статье "Главные плоскости объектива"

Примечания

Литература

  • Е. А. Иофис . Фотокинотехника / И. Ю. Шебалин. - М.,: «Советская энциклопедия», 1981. - С. 63. - 447 с.
  • Д. С. Волосов. Фотографическая оптика. - 2-е изд. - М.,: «Искусство», 1978. - С. 123-131. - 543 с.
  • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съемка, формулы, термины, рецепты. Изд. 4-е, сокр. М., «Искусство», 1977.

Отрывок, характеризующий Главные плоскости объектива

Он выпустил, пожав ее, ее руку, она перешла к свече и опять села в прежнее положение. Два раза она оглянулась на него, глаза его светились ей навстречу. Она задала себе урок на чулке и сказала себе, что до тех пор она не оглянется, пока не кончит его.
Действительно, скоро после этого он закрыл глаза и заснул. Он спал недолго и вдруг в холодном поту тревожно проснулся.
Засыпая, он думал все о том же, о чем он думал все ото время, – о жизни и смерти. И больше о смерти. Он чувствовал себя ближе к ней.
«Любовь? Что такое любовь? – думал он. – Любовь мешает смерти. Любовь есть жизнь. Все, все, что я понимаю, я понимаю только потому, что люблю. Все есть, все существует только потому, что я люблю. Все связано одною ею. Любовь есть бог, и умереть – значит мне, частице любви, вернуться к общему и вечному источнику». Мысли эти показались ему утешительны. Но это были только мысли. Чего то недоставало в них, что то было односторонне личное, умственное – не было очевидности. И было то же беспокойство и неясность. Он заснул.
Он видел во сне, что он лежит в той же комнате, в которой он лежал в действительности, но что он не ранен, а здоров. Много разных лиц, ничтожных, равнодушных, являются перед князем Андреем. Он говорит с ними, спорит о чем то ненужном. Они сбираются ехать куда то. Князь Андрей смутно припоминает, что все это ничтожно и что у него есть другие, важнейшие заботы, но продолжает говорить, удивляя их, какие то пустые, остроумные слова. Понемногу, незаметно все эти лица начинают исчезать, и все заменяется одним вопросом о затворенной двери. Он встает и идет к двери, чтобы задвинуть задвижку и запереть ее. Оттого, что он успеет или не успеет запереть ее, зависит все. Он идет, спешит, ноги его не двигаются, и он знает, что не успеет запереть дверь, но все таки болезненно напрягает все свои силы. И мучительный страх охватывает его. И этот страх есть страх смерти: за дверью стоит оно. Но в то же время как он бессильно неловко подползает к двери, это что то ужасное, с другой стороны уже, надавливая, ломится в нее. Что то не человеческое – смерть – ломится в дверь, и надо удержать ее. Он ухватывается за дверь, напрягает последние усилия – запереть уже нельзя – хоть удержать ее; но силы его слабы, неловки, и, надавливаемая ужасным, дверь отворяется и опять затворяется.

Главные плоскости - это плоскости, перпендикулярные оптической оси и проходящие через точки H и H", называемые главными точками. Особенность главных плоскостей в том, что лучи между ними идут параллельно оптической оси, или как говорят - линейное увеличение в этих главных плоскостях равно +1. Иными словами, если совместить главные плоскости вместе, то они будут служить единственной условной преломляющей поверхностью.

Осуществим сложную оптическую систему, расположив несколько линз одну за другой так, чтобы их главные оптические оси совпадали (рис. 224). Эта общая главная ось всей системы проходит через центры всех поверхностей, ограничивающих отдельные линзы. Направим на систему пучок параллельных лучей, соблюдая, как и в § 88, условие, чтобы диаметр этого пучка был достаточно мал. Мы обнаружим, что по выходе из системы пучок собирается в одной точке F"", которую, так же как и в случае тонкой линзы, назовем задним фокусом системы. Направив параллельный пучок на систему с противоположной стороны, найдем передний фокус системы F. Однако при ответе на вопрос, каково фокусное расстояние рассматриваемой системы, мы встречаем затруднение, ибо неизвестно, до какого места системы надо отсчитывать это расстояние от точек F и F". Точки, аналогичной оптическому центру тонкой линзы, в оптической системе, вообще говоря, нет, и нет оснований отдать предпочтение какой-нибудь из многих поверхностей, составляющих систему; в частности, расстояния от F Рис. 224. Фокусы оптической системы и F" до соответствующих наружных поверхностей системы не являются одинаковыми. Эти затруднения разрешаются следующим образом. В случае тонкой линзы все построения можно сделать, не рассматривая хода лучей в линзе и ограничившись изображением линзы в виде главной плоскости (см. §97). Исследование свойств сложных оптических систем показывает, что и в этом случае мы можем не рассматривать действительного хода лучей в системе. Однако для замены сложной оптической системы приходится использовать не одну главную плоскость, а совокупность двух главных плоскостей, перпендикулярных к оптической оси системы и пересекающих ее в двух так называемых главных точках (H и H"). Отметив на оси положение главных фокусов, мы будем иметь полную характеристику оптической системы (рис. 225). При этом изображение очертаний наружных поверхностей, ограничивающих систему (в виде жирных дуг рис. 225), является излишним. Две главные плоскости системы заменяют единую главную плоскость тонкой линзы: переход от системы к тонкой линзе означает сближение двух главных плоскостей до слияния, так что главные точки H и H" сближаются и совпадают с оптическим центром линзы. Таким образом, главные плоскости системы представляют собою как бы расчленение главной плоскости тонкой линзы. Это обстоятельство находится в соответствии с их основным свойством: луч, входящий в систему, пересекает первую главную плоскость на той же высоте h, на какой выходящий из системы луч пересекает вторую главную плоскость (см, рис. 225). Мы не будем приводить доказательства того, что такая пара плоскостей действительно существует во всякой оптической системе, хотя доказательство это и не представляет особых трудностей; ограничимся лишь указанием метода использования этих характеристик системы для построения изображения. Главные плоскости и главные точки могут лежать и внутри и вне системы, совершенно несимметрично относительно поверхностей, ограничивающих систему, например даже по одну сторону от нее. С помощью главных плоскостей решается и вопрос о фокусных расстояниях системы. Фокусными расстояниями оптической системы называются расстояния от главных точек до соответствующих им фокусов. Таким образом, если мы обозначим F и Н - передний фокус и переднюю главную точку, F" и Н" - задний фокус и заднюю главную точку; то f"=H"F" есть заднее фокусное расстояние системы, f=HF - ее переднее фокусное расстояние. Если по обе стороны системы находится одна и та же среда (например, воздух), так что в ней расположены передний и задний фокусы, то (100.1) как и для тонкой линзы.

Построение изображения в толстой линзе. Тонкая линза - линза, толщина которой много меньше ее радиуса кривизны. Если линзу нельзя считать тонкой, то каждую из двух сферических поверхностей линзы можно рассматривать как отдельную тонкую линзу. Подход при построении изображений состоит в том, что вводится понятие главных плоскостей центрированной оптической системы, частным случаем которой может быть толстая линза. Центрированная оптическая система, которая может состоять и из большого числа линз, полностью характеризуется двумя фокальными и двумя главными плоскостями. Полностью характеризуется в том смысле, что знание положения этих четырех плоскостей достаточно для построения изображений. Все четыре плоскости перпендикулярны оптической оси, следовательно свойства оптической системы полностью определяются четырьмя точками пересечения четырех плоскостей с оптической осью. Эти точки называются кардинальными точками системы. Для тонкой линзы обе главные плоскости совпадают с положением самой линзы. Для более сложных оптических систем существуют формулы расчета положения кардинальных точек через радиусы кривизны поверхностей линз и показатели их преломления. Для построения изображения точечного источника достаточно рассмотреть прохождение через оптическую систему двух удобных нам лучей и найти точку их пересечения после оси. Две сопряженные плоскости Р1 И Р2, отражающие друг друга с поперечным увеличением V=+1, называются главными плоскостями, а точки H1 и H2 – главными точками системы. Расстояния от главных точек до фокусов называются фокусными расстояниями: f1 = H1F1; f2 = H2F2. Любой отрезок в передней главной плоскости изображается равным и одинаково расположенным отрезком в задней главной плоскости. Отсюда следует, что входящий в оптическую систему и выходящий из нее лучи,пересекают главные плоскости на равных высотах h = h. Таким образом действие всех преломляющих поверхностей оптической системы для лучей, идущих из бесконечности, можно свести к действию плоскости, перпендикулярной оптической оси, содержащей в себе точку пересечения лучей входящих в эту систему и выходящих из нее. Для лучей, идущих слева направо, это будет задняя главная плоскость, а для лучей, идущих справа налево - передняя главная плоскость. Положение фокусов и главных плоскостей определяют путем расчета или графического построения хода лучей, параллельных оптической оси, в прямом и обратном направлениях. При построениях изображений в оптический системе можно считать, что между главными плоскостями лучи идут параллельно оптической На этом рисунке показан ход лучей от объекта h к изображению h" через линзу. Точка F", расположенная на оси оптической системы (линзы), в которой сходятся лучи, бывшие до прохождения линзы параллельными оси, называется фокусом линзы. Расстояние от точки F" до главной точки P" называется фокусным расстоянием линзы. Для линзы, имеющей толщину CT, фокусное расстояние рассчитывается по формуле: где R1 и R2 - радиуса поверхностей линзы, n - коэффициент преломления материала линзы. У тонкой линзы толщина CT принимается равной нулю, главные плоскости P и P" совпадают. Формула тонкой линзы имеет вид: Задний фокальный отрезок, BFL - расстояние от вершины последней поверхности линзы до задней фокальной плоскости рассчитывается по формуле: Формула расчета линейного увеличения V имеет следующий вид: Стрелка прогиба поверхности линзы рассчитывается по формуле: Упражнение 1. Определение фокусного расстояния объектива. Для определения фокусного расстояния f воспользуемся выражением для линейного увеличения β = y′/y (рис. 1), где y′ – линейная величина изображения, y – линейная величина предмета. Рассматривая подобные Рис. 1. треугольники в левой и правой части чертежа, можно написать y ′ a′ f z′ β= = = = , y a z f′ z′ = a′ − f ′, a′ = s′ + d ′. Отсюда z′ s′+d′−f′ β= = . (1) f′ f′ В этой формуле все величины измеряемы, кроме d ′ . Эту величину можно определить следующим образом: 9 s′ + d β = a′ = ′ a s+d или: d ′ = sβ + βd − s′ . Произведением βd можно пренебречь ввиду малости обеих величин. Тогда: d ′ = sβ − s′ . Подставляя это выражение в (1), получим: βs = f′ β+1. (2)

ГЛАВНЫЕ ПЛОСКОСТИ ОПТИЧЕСКОЙ СИСТЕМЫ

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .


Смотреть что такое "ГЛАВНЫЕ ПЛОСКОСТИ ОПТИЧЕСКОЙ СИСТЕМЫ" в других словарях:

    Плоскости, перпендикулярные оптической оси глаза, характеризующиеся тем, что при положении объекта в передней главной плоскости в задней главной плоскости после преломления получается прямое изображение, равное по размерам объекту … Большой медицинский словарь

    Оптической системы плоскости, перпендикулярные гл. оптической оси системы, к рые являются сопряжёнными, т. е. изображениями друг друга в натур. величину. Одна (передняя) Г. п. находится в пространстве предметов (объектов), вторая (задняя) в… … Большой энциклопедический политехнический словарь

    Оптической системы, см. Кардинальные точки оптической системы …

    Положение главных плоскостей H и H для объективов различных типов. (1) для симметричного анастигмата (Dagor); (… Википедия

    Точки на оси ОО (рис.) центрированной оптич … Физическая энциклопедия

    Оптич. системы, две точки, лежащие на пересечении оптич. оси системы с её главными плоскостями. Соотв. различают переднюю и заднюю главные точки. Пространство предметов Главные плоскости оптической системы: С оптическая система; ОО оптическая… … Естествознание. Энциклопедический словарь

    Оптической системы, точки на оптической оси ОО (рис.) центрированной оптической системы, с помощью которых может быть построено изображение произвольной точки пространства объектов в параксиальной области. Параксиальной называется область … Большая советская энциклопедия

    ГЛАЗ - ГЛАЗ, самый важный из органов чувств, основной функцией которого является восприятие световых лучей и оценка их по количеству и качеству (через его посредство поступает около 80% всех ощущений внешнего мира). Эта способность принадлежит сетчатой… …

    МИКРОСКОП - (от греч. mikros малый и skopeo смотрю), оптический инструмент для изучения малых предметов, недоступных непосредственному рассмотрению невооруженным глазом. Различают простой М., или лупу, и сложный М., или микроскоп в собственном смысле. Лупа… … Большая медицинская энциклопедия

    система - 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации

Центрированная система задана, если заданы радиусы кривизны преломляющих поверхностей, расстояния между ними и коэффициенты преломления всех веществ, разграничиваемых поверх­ностями. Главные плоскости каждой преломляющей поверхности, по сказанному в предыдущем параграфе, совпадают с касательной

Рис. 255. Положение главных плоскостей и главных фокусов центрированной системы.

плоскостью, проведенной через вершину этой поверхности. Глав­ные фокусные расстояния отдельных преломляющих поверхностей могут быть вычислены по формулам (7) и (8) § 316. По этим дан­ным можно найти положение главных плоскостей и главных фоку­сов всей системы.

Пусть две центрированные системы I и II (рис. 255) заданы каждая своими главными плоскостями и своими главными фокусными расстояниями fu f[ и /2, fr Расположение этих двух систем друг относительно друга определим расстоянием А между вторым глав­ным фокусом F[ системы I и первым главным фокусом Fq системы II. Последовательно рассматривая прохождение луча через обе системы, можно найти главные фокусные расстояния / и fx образуемой ими системы и положение ее главных плоскостей (см. мелкий шрифт). Для главных фокусных расстояний получаем

Положение первой главной плоскости Н всей системы опреде­лится отрезком Хну отсчитанным от первой главной плоскости системы I (рис. 255):

Также положение второй главной плоскости всей системы опреде­лится отрезком

х№ =/;А+/г/8, (3)

отсчитанным от второй главной плоскости системы II.

Поскольку главные плоскости и главные фокусы отдель­ных преломляющих поверхностей известны, можно путем последо­вательного применения формул (1), (2) и (3) найти главные пло­скости и главные фокусы любой сложной центрированной системы. Рассмотрим ряд частных случаев.

1. Толстая линза. Пусть толстая линза ограничена двумя сферическими поверхностями АВ и NB" (рис. 256) с радиусами кри-

Рис. 256. Нахождение главных фокусов и главных поверхно­стей толстой линзы.

визны гх и гъ отстоящими друг от друга на расстоянии d. Коэффи­циент преломления вещества, заключенного между поверхностями АВ и АГВ\ обозначим через п. Пусть линза находится в воздухе, для которого коэффициент преломления будем считать равным еди­нице. Главные плоскости первой и второй преломляющих поверхно­стей совпадают с плоскостями, касательными к преломляющим по­верхностям в точках О и О" (отмечены на рис. 256 пунктиром).

Сравним между собою первое и второе главные фокусные рас­стояния линзы. Воспользовавшись формулой (9) § 316, получим для первой и второй сферической поверхности:

К _ п f\_ _ _ L

откуда следует

На основании этого равенства и формулы (1) заключаем, что первое и второе главные фокусные расстояния линзы (окруженной

однородной средой) равны по величине и отличаются знаком: 1

В соответствии с определением оптической силы преломляющей поверхности [формула (10) § 316] под оптической силой линзы (или центрированной системы линз), находящейся в однородном веществе

с показателем преломления л0, подразумевается величина:

В нашем случае п0 - п1=п"2-\ и

Найдем оптическую силу Ф линзы. По формуле (1): .Из рис. 256 имеем

откуда для оптической силы линзы находим

ф_±_ * _ rf-/;+/i

Подставляя это значение в выражение для Ф, получим

но уг = Фх и jr = Ф$» где Ф! и Ф2 - оптические силы первой и

второй преломляющих поверхностей линзы. Воспользовавшись этими соотношениями, окончательно получим для оптической силы толстой линзы Ф:

Ф = Ф1 + Ф2- ~ Ф,Ф2. (5)

1 Равенство / =-/", где / и /"-главные фокусные расстояния, имеет место не только для линзы, но и для любой центрированной системы линз, помещенной в однородную среду. В этом легко убедиться, использовав фор­мулы (6) и (6а) и учтя, что для линзы любого номера k имеет место равен­ство = - /V

Для определения положения первой главной плоскости толстой линзы воспользуемся формулой (2). Подставляя в нее вместо А его значение по (4), получим

что перепишем в виде

Величина /1/2/Д, по (1), равна первому главному фокусному рас­стоянию линзы, откуда получим

где Ф - оптическая сила линзы, и j- -

Замечая, что / Ф.

Получим для Хц следующее окончательное выражение:

Величина Хн представляет собою расстояние, отсчитанное от вер­шины линзы О до ее первой главной плоскости.

Рис. 257. Положение главных плоскостей двояковыпуклой толстой линзы.

Аналогично найдем положение второй главной плоскости линзы. Из (3) имеем:

Г d ипи у _f}