Критерий стьюдента предназначен для определения. «Х акасский государственный университет им

​ t-критерий Стьюдента – общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

1. История разработки t-критерия

Данный критерий был разработан Уильямом Госсетом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны, статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).

2. Для чего используется t-критерий Стьюдента?

t-критерий Стьюдента используется для определения статистической значимости различий средних величин. Может применяться как в случаях сравнения независимых выборок (например, группы больных сахарным диабетом и группы здоровых ), так и при сравнении связанных совокупностей (например, средняя частота пульса у одних и тех же пациентов до и после приема антиаритмического препарата ).

3. В каких случаях можно использовать t-критерий Стьюдента?

Для применения t-критерия Стьюдента необходимо, чтобы исходные данные имели нормальное распределение . В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства (гомоскедастичности) дисперсий .

При несоблюдении этих условий при сравнении выборочных средних должны использоваться аналогичные методы непараметрической статистики , среди которых наиболее известными являются U-критерий Манна - Уитни (в качестве двухвыборочного критерия для независимых выборок), а также критерий знаков и критерий Вилкоксона (используются в случаях зависимых выборок).

4. Как рассчитать t-критерий Стьюдента?

Для сравнения средних величин t-критерий Стьюдента рассчитывается по следующей формуле:

где М 1 - средняя арифметическая первой сравниваемой совокупности (группы), М 2 - средняя арифметическая второй сравниваемой совокупности (группы), m 1 - средняя ошибка первой средней арифметической, m 2 - средняя ошибка второй средней арифметической.

5. Как интерпретировать значение t-критерия Стьюдента?

Полученное значение t-критерия Стьюдента необходимо правильно интерпретировать. Для этого нам необходимо знать количество исследуемых в каждой группе (n 1 и n 2). Находим число степеней свободы f по следующей формуле:

f = (n 1 + n 2) - 2

После этого определяем критическое значение t-критерия Стьюдента для требуемого уровня значимости (например, p=0,05) и при данном числе степеней свободы f по таблице (см. ниже ).

Сравниваем критическое и рассчитанное значения критерия:

  • Если рассчитанное значение t-критерия Стьюдента равно или больше критического, найденного по таблице, делаем вывод о статистической значимости различий между сравниваемыми величинами.
  • Если значение рассчитанного t-критерия Стьюдента меньше табличного, значит различия сравниваемых величин статистически не значимы.

6. Пример расчета t-критерия Стьюдента

Для изучения эффективности нового препарата железа были выбраны две группы пациентов с анемией. В первой группе пациенты в течение двух недель получали новый препарат, а во второй группе - получали плацебо. После этого было проведено измерение уровня гемоглобина в периферической крови. В первой группе средний уровень гемоглобина составил 115,4±1,2 г/л, а во второй - 103,7±2,3 г/л (данные представлены в формате M±m ), сравниваемые совокупности имеют нормальное распределение. При этом численность первой группы составила 34, а второй - 40 пациентов. Необходимо сделать вывод о статистической значимости полученных различий и эффективности нового препарата железа.

Решение: Для оценки значимости различий используем t-критерий Стьюдента, рассчитываемый как разность средних значений, поделенная на сумму квадратов ошибок:

После выполнения расчетов, значение t-критерия оказалось равным 4,51. Находим число степеней свободы как (34 + 40) - 2 = 72. Сравниваем полученное значение t-критерия Стьюдента 4,51 с критическим при р=0,05 значением, указанным в таблице: 1,993. Так как рассчитанное значение критерия больше критического, делаем вывод о том, что наблюдаемые различия статистически значимы (уровень значимости р<0,05).

Проверка статистической гипотезы позволяет сделать строгий вывод о характеристиках генеральной совокупности на основе выборочных данных. Гипотезы бывают разные. Одна из них – это гипотеза о средней (математическом ожидании). Суть ее в том, чтобы на основе только имеющейся выборки сделать корректное заключение о том, где может или не может находится генеральная средняя (точную правду мы никогда не узнаем, но можем сузить круг поиска).

Общий подход в проверке гипотез описан , поэтому сразу к делу. Предположим для начала, что выборка извлечена из нормальной совокупности случайных величин X с генеральной средней μ и дисперсией σ 2 (знаю-знаю, что так не бывает, но не нужно меня перебивать!). Средняя арифметическая из этой выборки, очевидно, сама является случайной величиной. Если извлечь много таких выборок и посчитать по ним средние, то они также будут иметь с математическим ожиданием μ и

Тогда случайная величина

Возникает вопрос: будет ли генеральная средняя c вероятностью 95% находиться в пределах ±1,96s x̅ . Другими словами, являются ли распределения случайных величин

эквивалентными.

Впервые этот вопрос был поставлен (и решен) одним химиком, который трудился на пивной фабрике Гиннеса в г. Дублин (Ирландия). Химика звали Уильям Сили Госсет и он брал пробы пива для проведения химического анализа. В какой-то момент, видимо, Уильяма стали терзать смутные сомнения на счет распределения средних. Оно получалось немного более размазанным, чем должно быть у нормального распределения.

Собрав математическое обоснование и рассчитав значения функции обнаруженного им распределения, химик из Дублина Уильям Госсет написал заметку, которая была опубликована в мартовском выпуске 1908 года журнала «Биометрика» (главред – Карл Пирсон). Т.к. Гиннесс строго-настрого запретил выдавать секреты пивоварения, Госсет подписался псевдонимом Стьюдент.

Несмотря на то что, К. Пирсон уже изобрел распределение , все-таки всеобщее представление о нормальности еще доминировало. Никто не собирался думать, что распределение выборочных оценок может быть не нормальным. Поэтому статья У. Госсета осталась практически не замеченной и забытой. И только Рональд Фишер по достоинству оценил открытие Госсета. Фишер использовал новое распределение в своих работах и дал ему название t-распределение Стьюдента . Критерий для проверки гипотез, соответственно, стал t-критерием Стьюдента . Так произошла «революция» в статистике, которая шагнула в эру анализа выборочных данных. Это был краткий экскурс в историю.

Посмотрим, что же мог увидеть У. Госсет. Сгенерируем 20 тысяч нормальных выборок из 6-ти наблюдений со средней () 50 и среднеквадратичным отклонением (σ ) 10. Затем нормируем выборочные средние, используя генеральную дисперсию :

Получившиеся 20 тысяч средних сгруппируем в интервалы длинной 0,1 и подсчитаем частоты. Изобразим на диаграмме фактическое (Norm) и теоретическое (ENorm) распределение частот выборочных средних.

Точки (наблюдаемые частоты) практически совпадают с линией (теоретическими частотами). Оно и понятно, ведь данные взяты из одной и то же генеральной совокупности, а отличия – это лишь ошибки выборки.

Проведем новый эксперимент. Нормируем средние, используя выборочную дисперсию .

Снова подсчитаем частоты и нанесем их на диаграмму в виде точек, оставив для сравнения линию стандартного нормального распределения. Обозначим эмпирическое частоты средних, скажем, через букву t .

Видно, что распределения на этот раз не очень-то и совпадают. Близки, да, но не одинаковы. Хвосты стали более «тяжелыми».

У Госсета-Стьюдента не было последней версии MS Excel, но именно этот эффект он и заметил. Почему так получается? Объяснение заключается в том, что случайная величина

зависит не только от ошибки выборки (числителя), но и от стандартной ошибки средней (знаменателя), которая также является случайной величиной.

Давайте немного разберемся, какое распределение должно быть у такой случайной величины. Вначале придется кое-что вспомнить (или узнать) из математической статистики. Есть такая теорема Фишера, которая гласит, что в выборке из нормального распределения:

1. средняя и выборочная дисперсия s 2 являются независимыми величинами;

2. соотношение выборочной и генеральной дисперсии, умноженное на количество степеней свободы, имеет распределение χ 2 (хи-квадрат) с таким же количеством степеней свободы, т.е.

где k – количество степеней свободы (на английском degrees of freedom (d.f.))

На этом законе основывается множество других результатов в статистике нормальных моделей.

Вернемся к распределению средней. Разделим числитель и знаменатель выражения

на σ X̅ . Получим

Числитель – это стандартная нормальная случайная величина (обозначим ξ (кси)). Знаменатель выразим из теоремы Фишера.

Тогда исходное выражение примет вид

Это и есть в общем виде (стьюдентово отношение). Вывести функцию его распределения можно уже непосредственно, т.к. распределения обеих случайных величин в данном выражении известны. Оставим это удовольствие математикам.

Функция t-распределения Стьюдента имеет довольно сложную для понимания формулу, поэтому не имеет смысла ее разбирать. Все равно ей никто не пользуется, т.к. вероятности приведены в специальных таблицах распределения Стьюдента (иногда называют таблицами коэффициентов Стьюдента), либо забиты в формулы ПЭВМ.

Итак, вооружившись новыми знаниями, вы сможете понять официальное определение распределения Стьюдента.
Случайной величиной, подчиняющейся распределению Стьюдента с k степенями свободы, называется отношение независимых случайных величин

где ξ распределена по стандартному нормальному закону, а χ 2 k подчиняется распределению χ 2 c k степенями свободы.

Таким образом, формула критерия Стьюдента для средней арифметической

Есть частный случай стьюдентова отношения

Из формулы и определения следует, что распределение т-критерия Стьюдента зависит лишь от количества степеней свободы.

При k > 30 t-критерий практически не отличается от стандартного нормального распределения.

В отличие от хи-квадрат, t-критерий может быть одно- и двухсторонним. Обычно пользуются двухсторонним, предполагая, что отклонение может происходить в обе стороны от средней. Но если условие задачи допускает отклонение только в одну сторону, то разумно применять односторонний критерий. От этого немного увеличивается мощность, т.к. при фиксированном уровне значимости критическое значение немного приближается к нулю.

Условия применения t-критерия Стьюдента

Несмотря на то, что открытие Стьюдента в свое время совершило переворот в статистике, t-критерий все же довольно сильно ограничен в возможностях применения, т.к. сам по себе происходит из предположения о нормальном распределении исходных данных. Если данные не являются нормальными (что обычно и бывает), то и t-критерий уже не будет иметь распределения Стьюдента. Однако в силу действия центральной предельной теоремы средняя даже у ненормальных данных быстро приобретает колоколообразную форму распределения.

Рассмотрим, для примера, данные, имеющие выраженный скос вправо, как у распределения хи-квадрат с 5-ю степенями свободы.

Теперь создадим 20 тысяч выборок и будет наблюдать, как меняется распределение средних в зависимости от их объема.

Отличие довольно заметно в малых выборках до 15-20-ти наблюдений. Но дальше оно стремительно исчезает. Таким образом, ненормальность распределения – это, конечно, нехорошо, но некритично.

Больше всего t-критерий «боится» выбросов, т.е. аномальных отклонений. Возьмем 20 тыс. нормальных выборок по 15 наблюдений и в часть из них добавим по одному случайном выбросу.

Картина получается нерадостная. Фактические частоты средних сильно отличаются от теоретических. Использование t-распределения в такой ситуации становится весьма рискованной затеей.

Итак, в не очень малых выборках (от 15-ти наблюдений) t-критерий относительно устойчив к ненормальному распределению исходных данных. А вот выбросы в данных сильно искажают распределение t-критерия, что, в свою очередь, может привести к ошибкам статистического вывода, поэтому от аномальных наблюдений следует избавиться. Часто из выборки удаляют все значения, выходящие за пределы ±2 стандартных отклонения от средней.

Пример проверки гипотезы о математическом ожидании с помощью t- критерия Стьюдента в MS Excel

В Excel есть несколько функций, связанных с t-распределением. Рассмотрим их.

СТЬЮДЕНТ.РАСП – «классическое» левостороннее t-распределение Стьюдента. На вход подается значение t-критерия, количество степеней свободы и опция (0 или 1), определяющая, что нужно рассчитать: плотность или значение функции. На выходе получаем, соответственно, плотность или вероятность того, что случайная величина окажется меньше указанного в аргументе t-критерия.

СТЬЮДЕНТ.РАСП.2Х – двухсторонне распределение. В качестве аргумента подается абсолютное значение (по модулю) t-критерия и количество степеней свободы. На выходе получаем вероятность получить такое или еще больше значение t-критерия, т.е. фактический уровень значимости (p-level).

СТЬЮДЕНТ.РАСП.ПХ – правостороннее t-распределение. Так, 1-СТЬЮДЕНТ.РАСП(2;5;1) = СТЬЮДЕНТ.РАСП.ПХ(2;5) = 0,05097. Если t-критерий положительный, то полученная вероятность – это p-level.

СТЬЮДЕНТ.ОБР – используется для расчета левостороннего обратного значения t-распределения. В качестве аргумента подается вероятность и количество степеней свободы. На выходе получаем соответствующее этой вероятности значение t-критерия. Отсчет вероятности идет слева. Поэтому для левого хвоста нужен сам уровень значимости α , а для правого 1 — α .

СТЬЮДЕНТ.ОБР.2Х – обратное значение для двухстороннего распределения Стьюдента, т.е. значение t-критерия (по модулю). Также на вход подается уровень значимости α . Только на этот раз отсчет ведется с двух сторон одновременно, поэтому вероятность распределяется на два хвоста. Так, СТЬЮДЕНТ.ОБР(1-0,025;5) = СТЬЮДЕНТ.ОБР.2Х(0,05;5) = 2,57058

СТЬЮДЕНТ.ТЕСТ – функция для проверки гипотезы о равенстве математических ожиданий в двух выборках. Заменяет кучу расчетов, т.к. достаточно указать лишь два диапазона с данными и еще пару параметров. На выходе получим p-level.

ДОВЕРИТ.СТЬЮДЕНТ – расчет доверительного интервала средней с учетом t-распределения.

Рассмотрим такой учебный пример. На предприятии фасуют цемент в мешки по 50кг. В силу случайности в отдельно взятом мешке допускается некоторое отклонение от ожидаемой массы, но генеральная средняя должна оставаться 50кг. В отделе контроля качества случайным образом взвесили 9 мешков и получили следующие результаты: средняя масса () составила 50,3кг, среднеквадратичное отклонение (s ) – 0,5кг.

Согласуется ли полученный результат с нулевой гипотезой о том, что генеральная средняя равна 50кг? Другими словами, можно ли получить такой результат по чистой случайности, если оборудование работает исправно и выдает среднее наполнение 50 кг? Если гипотеза не будет отклонена, то полученное различие вписывается в диапазон случайных колебаний, если же гипотеза будет отклонена, то, скорее всего, в настройках аппарата, заполняющего мешки, произошел сбой. Требуется его проверка и настройка.

Краткое условие в обще принятых обозначениях выглядит так.

H 0: μ = 50 кг

H 1: μ ≠ 50 кг

Есть основания предположить, что распределение заполняемости мешков подчиняются нормальному распределению (или не сильно от него отличается). Значит, для проверки гипотезы о математическом ожидании можно использовать t-критерий Стьюдента. Случайные отклонения могут происходить в любую сторону, значит нужен двухсторонний t-критерий.

Вначале применим допотопные средства: ручной расчет t-критерия и сравнение его с критическим табличным значением. Расчетный t-критерий:

Теперь определим, выходит ли полученное число за критический уровень при уровне значимости α = 0,05. Воспользуемся таблицей t-распределения Стьюдента (есть в любом учебнике по статистике).

По столбцам идет вероятность правой части распределения, по строкам – число степеней свободы. Нас интересует двухсторонний t-критерий с уровнем значимости 0,05, что равносильно t-значению для половины уровня значимости справа: 1 — 0,05/2 = 0,975. Количество степеней свободы – это объем выборки минус 1, т.е. 9 — 1 = 8. На пересечении находим табличное значение t-критерия – 2,306. Если бы мы использовали стандартное нормальное распределение, то критической точкой было бы значение 1,96, а тут она больше, т.к. t-распределение на небольших выборках имеет более приплюснутый вид.

Сравниваем фактическое (1,8) и табличное значение (2.306). Расчетный критерий оказался меньше табличного. Следовательно, имеющиеся данные не противоречат гипотезе H 0 о том, что генеральная средняя равна 50 кг (но и не доказывают ее). Это все, что мы можем узнать, используя таблицы. Можно, конечно, еще p-level попробовать найти, но он будет приближенным. А, как правило, именно p-level используется для проверки гипотез. Поэтому далее переходим в Excel.

Готовой функции для расчета t-критерия в Excel нет. Но это и не страшно, ведь формула t-критерия Стьюдента довольно проста и ее можно легко соорудить прямо в ячейке Excel.

Получили те же 1,8. Найдем вначале критическое значение. Альфа берем 0,05, критерий двухсторонний. Нужна функция обратного значения t-распределения для двухсторонней гипотезы СТЬЮДЕНТ.ОБР.2Х.

Полученное значение отсекает критическую область. Наблюдаемый t-критерий в нее не попадает, поэтому гипотеза не отклоняется.

Однако это тот же способ проверки гипотезы с помощью табличного значения. Более информативно будет рассчитать p-level, т.е. вероятность получить наблюдаемое или еще большее отклонение от средней 50кг, если эта гипотеза верна. Потребуется функция распределения Стьюдента для двухсторонней гипотезы СТЬЮДЕНТ.РАСП.2Х.

P-level равен 0,1096, что больше допустимого уровня значимости 0,05 – гипотезу не отклоняем. Но теперь можно судить о степени доказательства. P-level оказался довольно близок к тому уровню, когда гипотеза отклоняется, а это наводит на разные мысли. Например, что выборка оказалась слишком мала для обнаружения значимого отклонения.

Пусть через некоторое время отдел контроля снова решил проверить, как выдерживается стандарт заполняемости мешков. На этот раз для большей надежности было отобрано не 9, а 25 мешков. Интуитивно понятно, что разброс средней уменьшится, а, значит, и шансов найти сбой в системе становится больше.

Допустим, были получены те же значения средней и стандартного отклонения по выборке, что и в первый раз (50,3 и 0,5 соответственно). Рассчитаем t-критерий.


Критическое значение для 24-х степеней свободы и α = 0,05 составляет 2,064. На картинке ниже видно, что t-критерий попадает в область отклонения гипотезы.

Можно сделать вывод о том, что с доверительной вероятностью более 95% генеральная средняя отличается от 50кг. Для большей убедительности посмотрим на p-level (последняя строка в таблице). Вероятность получить среднюю с таким или еще большим отклонением от 50, если гипотеза верна, составляет 0,0062, или 0,62%, что при однократном измерении практически невозможно. В общем, гипотезу отклоняем, как маловероятную.

Расчет доверительного интервала с помощью t-распределения Стьюдента

С проверкой гипотез тесно связан еще один статистический метод – расчет доверительных интервалов . Если в полученный интервал попадает значение, соответствующее нулевой гипотезе, то это равносильно тому, что нулевая гипотеза не отклоняется. В противном случае, гипотеза отклоняется с соответствующей доверительной вероятностью. В некоторых случаях аналитики вообще не проверяют гипотез в классическом виде, а рассчитывают только доверительные интервалы. Такой подход позволяет извлечь еще больше полезной информации.

Рассчитаем доверительные интервалы для средней при 9 и 25 наблюдениях. Для этого воспользуемся функцией Excel ДОВЕРИТ.СТЬЮДЕНТ. Здесь, как ни странно, все довольно просто. В аргументах функции нужно указать только уровень значимости α , стандартное отклонение по выборке и размер выборки. На выходе получим полуширину доверительного интервала, то есть значение которое нужно отложить по обе стороны от средней. Проведя расчеты и нарисовав наглядную диаграмму, получим следующее.

Как видно, при выборке в 9 наблюдений значение 50 попадает в доверительный интервал (гипотеза не отклоняется), а при 25-ти наблюдениях не попадает (гипотеза отклоняется). При этом в эксперименте с 25-ю мешками можно утверждать, что с вероятностью 97,5% генеральная средняя превышает 50,1 кг (нижняя граница доверительного интервала равна 50,094кг). А это довольно ценная информация.

Таким образом, мы решили одну и ту же задачу тремя способами:

1. Древним подходом, сравнивая расчетное и табличное значение t-критерия
2. Более современным, рассчитав p-level, добавив степень уверенности при отклонении гипотезы.
3. Еще более информативным, рассчитав доверительный интервал и получив минимальное значение генеральной средней.

Важно помнить, что t-критерий относится к параметрическим методам, т.к. основан на нормальном распределении (у него два параметра: среднее и дисперсия). Поэтому для его успешного применения важна хотя бы приблизительная нормальность исходных данных и отсутствие выбросов.

Напоследок предлагаю посмотреть видеоролик о том, как проводить расчеты, связанные с t-критерием Стьюдента в Excel.

Одним из наиболее известных статистических инструментов является критерий Стьюдента. Он используется для измерения статистической значимости различных парных величин. Microsoft Excel обладает специальной функцией для расчета данного показателя. Давайте узнаем, как рассчитать критерий Стьюдента в Экселе.

Но, для начала давайте все-таки выясним, что представляет собой критерий Стьюдента в общем. Данный показатель применяется для проверки равенства средних значений двух выборок. То есть, он определяет достоверность различий между двумя группами данных. При этом, для определения этого критерия используется целый набор методов. Показатель можно рассчитывать с учетом одностороннего или двухстороннего распределения.

Расчет показателя в Excel

Теперь перейдем непосредственно к вопросу, как рассчитать данный показатель в Экселе. Его можно произвести через функцию СТЬЮДЕНТ.ТЕСТ . В версиях Excel 2007 года и ранее она называлась ТТЕСТ . Впрочем, она была оставлена и в позднейших версиях в целях совместимости, но в них все-таки рекомендуется использовать более современную — СТЬЮДЕНТ.ТЕСТ . Данную функцию можно использовать тремя способами, о которых подробно пойдет речь ниже.

Способ 1: Мастер функций

Проще всего производить вычисления данного показателя через Мастер функций.


Выполняется расчет, а результат выводится на экран в заранее выделенную ячейку.

Способ 2: работа со вкладкой «Формулы»

Функцию СТЬЮДЕНТ.ТЕСТ можно вызвать также путем перехода во вкладку «Формулы» с помощью специальной кнопки на ленте.


Способ 3: ручной ввод

Формулу СТЬЮДЕНТ.ТЕСТ также можно ввести вручную в любую ячейку на листе или в строку функций. Её синтаксический вид выглядит следующим образом:

СТЬЮДЕНТ.ТЕСТ(Массив1;Массив2;Хвосты;Тип)

Что означает каждый из аргументов, было рассмотрено при разборе первого способа. Эти значения и следует подставлять в данную функцию.

После того, как данные введены, жмем кнопку Enter для вывода результата на экран.

Как видим, вычисляется критерий Стьюдента в Excel очень просто и быстро. Главное, пользователь, который проводит вычисления, должен понимать, что он собой представляет и какие вводимые данные за что отвечают. Непосредственный расчет программа выполняет сама.

Наступила осень, а значит, настало время для запуска нового тематического проекта "Статистический анализ с R". В нем мы рассмотрим статистические методы с точки зрения их применения на практике: узнаем какие методы существуют, в каких случаях и каким образом их проводить в . На мой взгляд, Критерий Стьюдента или t-тест (от англ. t-test) идеально подходит в качестве введения в мир статистического анализа. Тест Стьюдента достаточно прост и показателен, а также требует минимум базовых знаний в статистике, с которыми читатель может ознакомиться в ходе прочтения этой статьи.

Примечание_1: здесь и в других статьях Вы не увидите формул и математических объяснений, т.к. информация рассчитана на студентов естественных и гуманитарных специальностей, которые делают лишь первые шаги в стат. анализе.

Что такое t-тест и в каких случаях его стоит применять

В начале следует сказать, что в статистике зачастую действует принцип бритвы Оккамы , который гласит, что нет смысла проводить сложный статистический анализ, если можно применить более простой (не стоит резать хлеб бензопилой, если есть нож). Именно поэтому, несмотря на свою простоту, t-тест является серьезным инструментом, если знать что он из себя представляет и в каких случаях его стоит применять.

Любопытно, что создал этот метод Уильямом Госсет - химик, приглашенный работать на фабрику Guinness. Разработанный им тест служил изначально для оценки качества пива. Однако, химикам фабрики запрещалось независимо публиковать научные работы под своим именем. Поэтому в 1908 году Уильям опубликовал свою статью в журнале "Biometrika" под псевдонимом "Стьюдент". Позже, выдающийся математик и статистик Рональд Фишер доработал метод, который затем получил массовое распространение под названием Student"s t-test.

Критерий Стьюдента (t-тест) - это статистический метод, который позволяет сравнивать средние значения двух выборок и на основе результатов теста делать заключение о том, различаются ли они друг от друга статистически или нет. Если Вы хотите узнать, отличается ли средний уровень продолжительности жизни в Вашем регионе от среднего уровня по стране; сравнить урожайность картофеля в разных районах; или изменяется ли кровяное давление до и после употребления нового лекарства, то t-тест может быть Вам полезен. Почему может быть? Потому что для его проведения, необходимо, чтобы данные выборок имели распределение близкое к нормальному. Для этого существуют методы оценки, которые позволяют сказать, допустимо ли в данном случае полагать, что данные распределены нормально или нет. Поговорим об этом подробнее.

Нормальное распределение данных и методы его оценки qqplot и shapiro.test

Нормальное распределение данных характерно для количественных данных, на распределение которых влияет множество факторов, либо оно случайно. Нормальное распределение характеризуется несколькими особенностями:

  • Оно всегда симметрично и имеет форму колокола.
  • Значения среднего и медианы совпадают.
  • В пределах одного стандартного отклонения в обе стороны лежат 68.2% всех данных, в пределах двух - 95,5%, в пределах трех - 99,7%

Давайте создадим случайную выборку с нормальным распределением на , где общее количество измерений = 100, среднее арифметическое = 5, а стандартное отклонение = 1. Затем отобразим его на графике в виде гистограммы:

mydata <- rnorm(100, mean = 5, sd = 1) hist(mydata, col = "light green")

Ваш график может слегка отличаться от моего, так как числа сгенерированы случайным образом. Как Вы видите, данные не идеально симметричны, но кажется сохраняют форму нормального распределения. Однако, мы воспользуемся более объективными методами определения нормальности данных.

Одним из наиболее простых тестов нормальности является график квантилей (qqplot) . Суть теста проста: если данные имеют нормальное распределение, то они не должны сильно отклоняться от линии теоретических квантилей и выходить за пределы доверительных интервалов. Давайте проделаем этот тест в R.

пакета "car" в среду R qqPlot(mydata) #запустим тест

Как видно из графика, наши данные не имеют серьезных отклонений от теоретического нормального распределения. Но порой при помощи qqplot невозможно дать однозначный ответ. В этом случае следует использовать тест Шапиро-Уилка , который основан на нулевой гипотезе, что наши данные распределены нормально. Если же P-значение менее 0.05 (p-value < 0.05), то мы вынуждены отклонить нулевую гипотезу. P-значение в этом случае будет говорить о том, что вероятность ошибки при отклонении нулевой гипотезы будет равна менее 5%.

Провести тест Шапиро-Уилка в R не составит труда. Для этого нужно всего лишь вызвать функцию shapiro.test, и в скобках вставить имя ваших данных. В нашем случае p-value должен быть значительно больше 0.05, что не позволяет отвергнуть нулевую гипотезу о том, что наши данные распределены нормально.

Запускаем t-тест Стьюдента в среде R

Итак, если данные из выборок имеют нормальное распределение, можно смело приступать к сравнению средних этих выборок. Существует три основных типа t-теста, которые применяются в различных ситуациях. Рассмотрим каждый из них с использованием наглядных примеров.

Одновыборочный критерий Стьюдента (one-sample t-test)

Одновыборочный t-тест следует выбирать, если Вы сравниваете выборку с общеизвестным средним. Например, отличается ли средний возраст жителей Северо-Кавказского Федерального округа от общего по России. Существует мнение, что климат Кавказа и культурные особенности населяющих его народов способствуют продлению жизни. Для того, чтобы проверить эту гипотезу, мы возьмем данные РосСтата (таблицы среднего ожидаемого продолжительности жизни по регионам России) и применим одновыборочный критерий Стьюдента. Так как критерий Стьюдента основан на проверке статистических гипотез, то за нулевую гипотезу будем принимать то, что различий между средним ожидаемым уровнем продолжительности по России и республикам Северного Кавказа нет. Если различия существуют, то для того, чтобы считать их статистически значимыми p-value должно быть менее 0.05 (логика та же, что и в вышеописанном тесте Шапиро-Уилка).

Загрузим данные в R. Для этого, создадим вектор со средними значениями по республикам Кавказа (включая Адыгею). Затем, запустим одновыборочный t-тест, указав в параметре mu среднее значение ожидаемого возраста жизни по России равное 70.93.

rosstat <-c(79.42, 75.83, 74.16, 73.91, 73.82, 73.06, 72.01) qqPlot(rosstat) shapiro.test(rosstat) t.test(rosstat, mu = 70.93)

Несмотря на то, что у нас всего 7 точек в выборке, в целом они проходят тесты нормальности и мы можем на них полагаться, так как эти данные уже были усреднены по региону.

Результаты t-теста говорят о том, что средняя ожидаемая продолжительность жизни у жителей Северного Кавказа (74.6 лет) действительно выше, чем в среднем по России (70.93 лет), а результаты теста являются статистически значимыми (p < 0.05).

Двувыборочный для независимых выборок (independent two-sample t-test)

Двувыборочный t-тест используется, когда Вы сравниваете две независимые выборки . Допустим, мы хотим узнать, отличается ли урожайность картофеля на севере и на юге какого-либо региона. Для этого, мы собрали данные с 40 фермерских хозяйств: 20 из которых располагались на севере и сформировали выборку "North", а остальные 20 - на юге, сформировав выборку "South".

Загрузим данные в среду R. Кроме проверки нормальности данных, будет полезно построить "график с усами", на котором можно видеть медианы и разброс данных для обеих выборок.

North <- c(122, 150, 136, 129, 169, 158, 132, 162, 143, 179, 139, 193, 155, 160, 165, 149, 173, 173, 141, 166) qqPlot(North) shapiro.test(North) South <- c(170, 163, 178, 150, 166, 142, 157, 149, 151, 164, 163, 161, 159, 139, 180, 155, 144, 139, 151, 160) qqPlot(North) shapiro.test(North) boxplot(North, South)

Как видно из графика, медианы выборок не сильно отличаются друг от друга, однако разброс данных гораздо сильнее на севере. Проверим отличаются ли статистически средние значения при помощи функции t.test. Однако в этот раз на место параметра mu мы ставим имя второй выборки. Результаты теста, которые Вы видите на рисунке снизу, говорят о том, что средняя урожайность картофеля на севере статистически не отличается от урожайности на юге (p = 0.6339).

Двувыборочный для зависимых выборок (dependent two-sample t -test )

Третий вид t-теста используется в том случае, если элементы выборок зависят друг от друга . Он идеально подходит для проверки повторяемости результатов эксперимента: если данные повтора статистически не отличаются от оригинала, то повторяемость данных высокая. Также двувыборочный критерий Стьюдента для зависимых выборок широко применяется в медицинских исследованиях при изучении эффекта лекарства на организм до и после приема.

Для того, чтобы запустить его в R, следует ввести все ту же функцию t.test . Однако, в скобках, после таблиц данных, следует ввести дополнительный аргумент paired = TRUE . Этот аргумент говорит о том, что Ваши данные зависят друг от друга. Например:

t.test(experiment, povtor.experimenta, paired = TRUE) t.test(davlenie.do.priema, davlenie.posle.priema, paired = TRUE)

Также в функции t.test существует два дополнительных аргумента, которые могут улучшить качество результатов теста: var.equal и alternative . Если вы знаете, что вариация между выборками равна, вставьте аргумент var.equal = TRUE . Если же вы хотите проверить гипотезу о том, что разница между средними в выборках значительно меньше или больше 0, то введите аргумент alternative="less" или alternative="greater" (по умолчанию альтернативная гипотеза говорит о том, что выборки просто отличаются друг от друга: alternative="two.sided" ).

Заключение

Статья получилась довольно длинной, зато теперь Вы знаете: что такое критерий Стьюдента и нормальное распределение; как при помощи функций qqplot и shapiro.test проверять нормальность данных в R; а также разобрали три типа t-тестов и провели их в среде R.

Тема для тех, кто только начинает знакомиться со статистическим анализом - непростая. Поэтому не стесняйтесь, задавайте вопросы, я с удовольствием на них отвечу. Гуру статистики, пожалуйста поправьте меня, если где-нибудь допустил ошибку. В общем, пишите Ваши комментарии, друзья!

История

Данный критерий был разработан Уильямом Госсеттом для оценки качества пива в компании Гиннесс . В связи с обязательствами перед компанией по неразглашению коммерческой тайны (руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).

Требования к данным

Для применения данного критерия необходимо, чтобы исходные данные имели нормальное распределение . В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства дисперсий . Существуют, однако, альтернативы критерию Стьюдента для ситуации с неравными дисперсиями.

Двухвыборочный t-критерий для независимых выборок

В случае с незначительно отличающимся размером выборки применяется упрощённая формула приближенных расчётов:

В случае, если размер выборки отличается значительно, применяется более сложная и точная формула:

Где M 1 ,M 2 - средние арифметические, σ 1 ,σ 2 - стандартные отклонения, а N 1 ,N 2 - размеры выборок.

Двухвыборочный t-критерий для зависимых выборок

Для вычисления эмпирического значения t-критерия в ситуации проверки гипотезы о различиях между двумя зависимыми выборками (например, двумя пробами одного и того же теста с временным интервалом) применяется следующая формула:

где M d - средняя разность значений, а σ d - стандартное отклонение разностей.

Количество степеней свободы рассчитывается как

Одновыборочный t-критерий

Применяется для проверки гипотезы об отличии среднего значения от некоторого известного значения :

Количество степеней свободы рассчитывается как

Непараметрические аналоги

Аналогом двухвыборочного критерия для независимых выборок является U-критерий Манна-Уитни . Для ситуации с зависимыми выборками аналогами являются критерий знаков и T-критерий Вилкоксона

Автоматический расчет t-критерия Стьюдента


Wikimedia Foundation . 2010 .

Смотреть что такое "T-критерий Стьюдента" в других словарях:

    Критерий Стьюдента t-к - Критерий Стьюдента, t к. * крытэрый Ст’юдэнта, t к. * Student’s criterion or t c. or S. t test статистический критерий существенности разности между сравниваемыми средними. Определяется отношением этой разности к ошибке разности: При значениях t… … Генетика. Энциклопедический словарь

    T критерий Стьюдента общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на сравнении с распределением Стьюдента. Наиболее частые случаи применения t критерия связаны с проверкой равенства… … Википедия

    критерий Стьюдента - Stjūdento kriterijus statusas T sritis augalininkystė apibrėžtis Skirtumo tarp dviejų vidurkių patikimumo rodiklis, išreiškiamas skirtumo ir jo paklaidos santykiu. atitikmenys: angl. Student’s test rus. критерий Стьюдента … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

    критерий Стьюдента - Статистический критерий, в котором, в предположении нулевой гипотезы, используемая статистика соответствует t распределению (распределению Стьюдента). Примечание. Вот примеры применения этого критерия: 1. проверка равенства среднего из… … Словарь социологической статистики

    КРИТЕРИЙ СТЬЮДЕНТА - Биометрический показатель достоверности разницы (td) между средними значениями двух сравниваемых между собой групп животных (M1 и М2) по какому либо признаку. Достоверность разницы определяется по формуле: Полученное значение td сравнивается с… … Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

    КРИТЕРИЙ СТЬЮДЕНТА - оценивает близость двух средних значений с точки зрения отнесения или не отнесения ее к случайной (при заданном уровне значимости), отвечая на вопрос о том, отличаются ли средние значения статистически достоверно друг от друга }