Положительные и отрицательные углы в тригонометрии. Отсчёт углов на тригонометрическом круге

Тригонометрия, как наука, зародилась на Древнем Востоке. Первые тригонометрические соотношения были выведены астрономами для создания точного календаря и ориентированию по звездам. Данные вычисления относились к сферической тригонометрии, в то время как в школьном курсе изучают соотношения сторон и угла плоского треугольника.

Тригонометрия – это раздел математики, занимающийся свойствами тригонометрических функций и зависимостью между сторонами и углами треугольников.

В период расцвета культуры и науки I тысячелетия нашей эры знания распространились с Древнего Востока в Грецию. Но основные открытия тригонометрии – это заслуга мужей арабского халифата. В частности, туркменский ученый аль-Маразви ввел такие функции, как тангенс и котангенс, составил первые таблицы значений для синусов, тангенсов и котангенсов. Понятие синуса и косинуса введены индийскими учеными. Тригонометрии посвящено немало внимания в трудах таких великих деятелей древности, как Евклида, Архимеда и Эратосфена.

Основные величины тригонометрии

Основные тригонометрические функции числового аргумента – это синус, косинус, тангенс и котангенс. Каждая из них имеет свой график: синусоида, косинусоида, тангенсоида и котангенсоида.

В основе формул для расчета значений указанных величин лежит теорема Пифагора. Школьникам она больше известна в формулировке: «Пифагоровы штаны, во все стороны равны», так как доказательство приводится на примере равнобедренного прямоугольного треугольника.

Синус, косинус и другие зависимости устанавливают связь между острыми углами и сторонами любого прямоугольного треугольника. Приведем формулы для расчета этих величин для угла A и проследим взаимосвязи тригонометрических функций:

Как видно, tg и ctg являются обратными функциями. Если представить катет a как произведение sin A и гипотенузы с, а катет b в виде cos A * c, то получим следующие формулы для тангенса и котангенса:

Тригонометрический круг

Графически соотношение упомянутых величин можно представить следующим образом:

Окружность, в данном случае, представляет собой все возможные значения угла α — от 0° до 360°. Как видно из рисунка, каждая функция принимает отрицательное или положительное значение в зависимости от величины угла. Например, sin α будет со знаком «+», если α принадлежит I и II четверти окружности, то есть, находится в промежутке от 0° до 180°. При α от 180° до 360° (III и IV четверти) sin α может быть только отрицательным значением.

Попробуем построить тригонометрические таблицы для конкретных углов и узнать значение величин.

Значения α равные 30°, 45°, 60°, 90°, 180° и так далее – называют частными случаями. Значения тригонометрических функций для них просчитаны и представлены в виде специальных таблиц.

Данные углы выбраны отнюдь не случайно. Обозначение π в таблицах стоит для радиан. Рад — это угол, при котором длина дуги окружности соответствует ее радиусу. Данная величина была введена для того, чтобы установить универсальную зависимость, при расчетах в радианах не имеет значение действительная длина радиуса в см.

Углы в таблицах для тригонометрических функций соответствуют значениям радиан:

Итак, не трудно догадаться, что 2π – это полная окружность или 360°.

Свойства тригонометрических функций: синус и косинус

Для того, чтобы рассмотреть и сравнить основные свойства синуса и косинуса, тангенса и котангенса, необходимо начертить их функции. Сделать это можно в виде кривой, расположенной в двумерной системе координат.

Рассмотри сравнительную таблицу свойств для синусоиды и косинусоиды:

Синусоида Косинусоида
y = sin x y = cos x
ОДЗ [-1; 1] ОДЗ [-1; 1]
sin x = 0, при x = πk, где k ϵ Z cos x = 0, при x = π/2 + πk, где k ϵ Z
sin x = 1, при x = π/2 + 2πk, где k ϵ Z cos x = 1, при x = 2πk, где k ϵ Z
sin x = - 1, при x = 3π/2 + 2πk, где k ϵ Z cos x = - 1, при x = π + 2πk, где k ϵ Z
sin (-x) = - sin x, т. е. функция нечетная cos (-x) = cos x, т. е. функция четная
функция периодическая, наименьший период - 2π
sin x › 0, при x принадлежащем I и II четвертям или от 0° до 180° (2πk, π + 2πk) cos x › 0, при x принадлежащем I и IV четвертям или от 270° до 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, при x принадлежащем III и IV четвертям или от 180° до 360° (π + 2πk, 2π + 2πk) cos x ‹ 0, при x принадлежащем II и III четвертям или от 90° до 270° (π/2 + 2πk, 3π/2 + 2πk)
возрастает на промежутке [- π/2 + 2πk, π/2 + 2πk] возрастает на промежутке [-π + 2πk, 2πk]
убывает на промежутках [ π/2 + 2πk, 3π/2 + 2πk] убывает на промежутках
производная (sin x)’ = cos x производная (cos x)’ = - sin x

Определить является ли функция четной или нет очень просто. Достаточно представить тригонометрический круг со знаками тригонометрических величин и мысленно «сложить» график относительно оси OX. Если знаки совпадают, функция четная, в противном случае — нечетная.

Введение радиан и перечисление основных свойств синусоиды и косинусоиды позволяют привести следующую закономерность:

Убедиться в верности формулы очень просто. Например, для x = π/2 синус равен 1, как и косинус x = 0. Проверку можно осуществить обративших к таблицам или проследив кривые функций для заданных значений.

Свойства тангенсоиды и котангенсоиды

Графики функций тангенса и котангенса значительно отличаются от синусоиды и косинусоиды. Величины tg и ctg являются обратными друг другу.

  1. Y = tg x.
  2. Тангенсоида стремится к значениям y при x = π/2 + πk, но никогда не достигает их.
  3. Наименьший положительный период тангенсоиды равен π.
  4. Tg (- x) = — tg x, т. е. функция нечетная.
  5. Tg x = 0, при x = πk.
  6. Функция является возрастающей.
  7. Tg x › 0, при x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, при x ϵ (— π/2 + πk, πk).
  9. Производная (tg x)’ = 1/cos 2 ⁡x .

Рассмотрим графическое изображение котангенсоиды ниже по тексту.

Основные свойства котангенсоиды:

  1. Y = ctg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Котангенсоида стремится к значениям y при x = πk, но никогда не достигает их.
  4. Наименьший положительный период котангенсоиды равен π.
  5. Ctg (- x) = — ctg x, т. е. функция нечетная.
  6. Ctg x = 0, при x = π/2 + πk.
  7. Функция является убывающей.
  8. Ctg x › 0, при x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, при x ϵ (π/2 + πk, πk).
  10. Производная (ctg x)’ = — 1/sin 2 ⁡x Исправить

Малый угол атаки — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы малый угол атаки EN negative incidencelow incidence …

отрицательный угол резания - — Тематики нефтегазовая промышленность EN negative cutting anglenegative cutting anglenegative rake … Справочник технического переводчика

отрицательный угол скоса верхней поверхности щетки - [ГОСТ 21888 82 (МЭК 276 68, МЭК 560 77)] Тематики машины электрические вращающиеся в целом … Справочник технического переводчика

угол установки крыла Энциклопедия «Авиация»

угол установки крыла - Угол установки крыла. угол установки крыла — угол φ0 между центральной хордой крыла и базовой осью самолёта (см. рис.). В зависимости от аэродинамической компоновки самолёта этот угол может быть как положительным, так и отрицательным. Обычно … Энциклопедия «Авиация»

Угол установки крыла - угол (φ)0 между центральной хордой крыла и базовой осью самолёта. В зависимости от аэродинамической компоновки самолёта этот угол может быть как положительным, так и отрицательным. Обычно он находится в пределах от ―2(°) до +3(°). Угол (φ)0… … Энциклопедия техники

УГОЛ СНИЖЕНИЯ - (Depressed angle) угол, образованный линией возвышения (см.) с горизонтом, когда первая проходит ниже горизонта, т. е. отрицательный угол возвышения. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза… … Морской словарь

УГОЛ ОПТИЧЕСКИХ ОСЕЙ - острый угол между опт. осями в двухосных к лах. У. о. о. называют положительным, когда острой биссектрисой является Ng и отрицательным, когда острой биссектрисой является Np (см. Кристалл оптически двухосный). Истинный У. о. о. обозначается… … Геологическая энциклопедия

Кастор (угол) - У этого термина существуют и другие значения, см. Кастор. θ кастор, красная линия ось поворота колеса. На рисунке кастор положительный (угол отсчитывается по часовой стрелке, перед автомобиля находится слева) … Википедия

Кастор (Угол наклона оси поворота) - θ кастор, красная линия ось поворота колеса. На рисунке кастор положительный (угол отсчитывается по часовой стрелке, перед автомобиля находится слева) Кастор (англ. caster) угол продольного наклона оси поворота колеса автомобиля. Кастор… … Википедия

передний угол - 3.2.9 передний угол: Угол между передней поверхностью и основной плоскостью (см. рисунок 5). 1 отрицательный передний угол; 2 положительный передний угол Рисунок 5 Передние углы

Если вы уже знакомы с тригонометрическим кругом , и хотите лишь освежить в памяти отдельные элементы, или вы совсем нетерпеливы, – то вот он, :

Мы же здесь будем все подробно разбирать шаг за шагом.

Тригонометрический круг – не роскошь, а необходимость

Тригонометрия у многих ассоциируется с непроходимой чащей. Вдруг наваливается столько значений тригонометрических функций, столько формул… А оно ведь, как, – незаладилось вначале, и… пошло-поехало… сплошное непонимание…

Очень важно не махать рукой на значения тригонометрических функций , – мол, всегда можно посмотреть в шпору с таблицей значений.

Если вы постоянно смотрите в таблицу со значениями тригонометрических формул, давайте избавляться от этой привычки!

Нас выручит ! Вы несколько раз поработаете с ним, и далее он у вас сам будет всплывать в голове. Чем он лучше таблицы? Да в таблице-то вы найдете ограниченное число значений, а на круге – ВСЕ!

К примеру, скажите, глядя в стандартную таблицу значений тригонометрических формул , чему равен синус, скажем, 300 градусов, или -45.


Никак?.. можно, конечно, подключить формулы приведения … А глядя на тригонометрический круг, легко можно ответить на такие вопросы. И вы скоро будете знать как!

А при решении тригонометрических уравнений и неравенств без тригонометрического круга – вообще никуда.

Знакомство с тригонометрическим кругом

Давайте по порядку.

Сначала выпишем вот такой ряд чисел:

А теперь такой:

И, наконец, такой:

Конечно, понятно, что, на самом-то деле, на первом месте стоит , на втором месте стоит , а на последнем – . То есть нас будет больше интересовать цепочка .

Но как красиво она получилась! В случае чего – восстановим эту «лесенку-чудесенку».

И зачем оно нам?

Эта цепочка – и есть основные значения синуса и косинуса в первой четверти.

Начертим в прямоугольной системе координат круг единичного радиуса (то есть радиус-то по длине берем любой, а его длину объявляем единичной).

От луча «0-Старт» откладываем в направлении стрелки (см. рис.) углы .

Получаем соответствующие точки на круге. Так вот если спроецировать точки на каждую из осей, то мы выйдем как раз на значения из указанной выше цепочки.

Это почему же, спросите вы?

Не будем разбирать все. Рассмотрим принцип , который позволит справиться и с другими, аналогичными ситуациями.

Треугольник АОВ – прямоугольный, в нем . А мы знаем, что против угла в лежит катет вдвое меньший гипотенузы (гипотенуза у нас = радиусу круга, то есть 1).

Значит, АВ= (а следовательно, и ОМ=). А по теореме Пифагора

Надеюсь, уже что-то становится понятно?

Так вот точка В и будет соответствовать значению , а точка М – значению

Аналогично с остальными значениями первой четверти.

Как вы понимаете, привычная нам ось (ox) будет осью косинусов , а ось (oy) – осью синусов . позже.

Слева от нуля по оси косинусов (ниже нуля по оси синусов) будут, конечно, отрицательные значения.

Итак, вот он, ВСЕМОГУЩИЙ , без которого никуда в тригонометрии.

А вот как пользоваться тригонометрическим кругом, мы поговорим в .

Пара различных лучей Оа и Оb, выходящих из одной точки О, называется углом и обозначается символом (а, b). Точка О называется вершиной угла, а лучи Оа u Оb -- сторонами угла. Если А и В -- две точки лучей Оа и Оb, то (а, b) обозначается также символом АОВ (рис. 1.1).

Угол (а, Ь) называют развернутым, если лучи Оа и Ob, выходящие из одной точки, лежат на одной прямой и не совпадают (т. е. противоположно направлены).

Рис.1.1

Два угла считаются равными, если один угол можно наложить на другой так, чтобы стороны углов совпадали. Биссектрисой угла называется луч с началом в вершине угла, делящий угол на два равных угла.

Говорят, что луч ОС, исходящий из вершины угла АОВ, лежит между его сторонами, если он пересекает отрезок АВ (рис. 1.2). Говорят, что точка С лежит между сторонами угла, если через эту точку можно провести луч с началом в вершине угла, лежащий между сторонами угла. Множество всех точек плоскости, лежащих между сторонами угла, образует внутреннюю область угла (рис. 1.3). Множество точек плоскости, не принадлежащих внутренней области и сторонам угла, образует внешнюю область угла.

Угол (а, b) считают больше угла (c, d), если угол (с, d) можно наложить на угол (а, b) так, что после совмещения одной пары сторон вторая сторона угла (с, d) будет лежать между сторонами угла (а, b). На рис. 1.4 АОВ больше АОС.

Пусть луч с лежит между сторонами угла (а, b) (рис. 1.5). Пары лучей а, с и с, b образуют два угла. Об угле (а, b) говорят, что он является суммой двух углов (а, с) и (с, b), и пишут: (а, b) = (а, с) + (с, b).

Рис.1.3

Обычно в геометрии имеют дело с углами, меньшими развернутого. Однако в результате сложения двух углов может получиться угол, больший развернутого. В этом случае ту часть плоскости, которая считается внутренней областью угла, отмечают дугой. На рис. 1.6 внутренняя часть угла АОВ, полученного в результате сложения углов АОС и СОВ и большего развернутого, отмечена дугой.

Рис.1.5

Существуют также углы большие 360°. Такие углы образуются, например, вращением пропеллера самолета, вращением барабана, на который наматывается канат, и т. д.

В дальнейшем при рассмотрении каждого угла условимся считать одну из сторон этого угла его начальной стороной, а другую -- конечной стороной.

Любой угол, например угол АОВ (рис. 1.7), можно получить в результате вращения подвижного луча вокруг вершины О от начальной стороны угла (ОА) до его конечной стороны (ОВ). Мы будем измерять этот угол, учитывая полное количество оборотов, сделанных при этом вокруг точки О, а также и направление, в котором происходило вращение.

Положительные и отрицательные углы.

Пусть мы имеем угол, образованный лучами ОА и ОВ (рис.1.8). Подвижный луч, вращаясь вокруг точки О от своего начального положения (ОА), может занять конечное положение (ОВ) при двух различных направлениях вращения. Эти направления показаны на рисунке 1.8 соответствующими стрелками.

Рис.1.7

Подобно тому, как на числовой оси одно из двух направлений считается положительным, а другое отрицательным, различают и два различных направления вращения подвижного луча. Условились считать положительным направлением вращения то направление, которое противоположно направлению вращения часовой стрелки. Направление вращения, совпадающее с направлением вращения часовой стрелки, считается отрицательным.

В соответствии с этими определениями углы также подразделяются на положительные и отрицательные.

Положительным углом называется угол, образованный вращением подвижного луча вокруг начальной точки в положительном направлении.

На рисунке 1.9 даны некоторые положительные углы. (Направление вращения подвижного луча показано на чертежах стрелками.)

Отрицательным углом называется угол, образованный вращением подвижного луча вокруг начальной точки в отрицательном направлении.

На рисунке 1.10 изображены некоторые отрицательные углы. (Направление вращения подвижного луча показано на чертежах стрелками.)

Но два совпадающих луча могут также образовать и углы +360°п и -360°п (п = 0,1,2,3,...). Обозначим через б наименьший возможный неотрицательный угол поворота, переводящий луч ОА в положение ОВ. Если теперь луч ОВ совершит дополнительно полный оборот вокруг точки О, то получим другую величину угла, а именно: АВО = б + 360°.

Измерение углов дугами окружности. Единицы измерения дуг и углов

В ряде случаев оказывается удобным измерять углы при помощи дуг окружности. Возможность такого измерения основа на известном предложении планиметрии о том, что в одном круге (или в равных кругах) центральные углы и соответствующие им дуги находятся в прямой пропорциональной зависимости.

Пусть некоторая дуга данной окружности принята за единицу измерения дуг. Соответствующий этой дуге центральный угол примем за единицу измерения углов. При таком условии любая дуга окружности и соответствующий этой дуге центральный угол будут содержать одно и то же число единиц измерения. Поэтому, измеряя дуги окружности, можно определять и величину соответствующих этим дугам центральных углов.

Рассмотрим две наиболее распространенные системы измерения дуг и углов.

Градусная мера измерения углов

При градусном измерении углов в качестве основной единицы измерения углов (эталонного угла, с которым сравниваются различные углы) берется угол в один градус (обозначается 1?). Угол в один градус -- это угол, равный 1/180 части развернутого угла. Угол, равный 1/60 части угла в 1°, -- это угол в одну минуту (обозначается 1"). Угол, равный 1/60 части угла в одну минуту,-- это угол в одну секунду (обозначается 1").

Радианная мера измерения углов

Наряду с градусной мерой измерения углов в геометрии и тригонометрии употребляется и другая мера измерения углов, называемая радианной. Рассмотрим окружность радиуса R с центром О. Проведем два радиуса О А и ОВ так, чтобы длина дуги АВ была равна радиусу окружности (рис. 1.12). Получившийся при этом центральный угол АОВ будет углом в один радиан. Угол в 1 радиан принимается за единицу измерения радианной меры измерения углов. При радианном измерении углов развернутый угол равен р радиан.

Градусная и радианная единицы измерения углов связаны равенствами:

1 радиан =180?/р57° 17" 45"; 1?=р/180 радиана0,017453радиана;

1"=р/180*60 радиана0,000291 радиана;

1""=р/180*60*60 радиана0,000005 радиана.

Градусную (или радианную) меру угла также называют величиной угла. Величину угла АОВ иногда обозначают /

Классификация углов

Угол, равный 90°, или в радианной мере р/2, называется прямым углом; его часто обозначают буквой d. Угол, меньший 90°, называется острым; угол, больший 90°, но меньший 180°, называется тупым.

Два угла, имеющие одну общую сторону и в сумме составляющие 180°, называются смежными углами. Два угла, имеющие одну общую сторону и в сумме составляющие 90°, называются дополнительными углами.

Альфа обозначает действительное число. Знак равенства в приведенных выражениях свидетельствует о том, что если к бесконечности прибавить число или бесконечность, ничего не изменится, в результате получится такая же бесконечность. Если в качестве примера взять бесконечное множество натуральных чисел, то рассмотренные примеры можно представить в таком виде:

Для наглядного доказательства своей правоты математики придумали много разных методов . Лично я смотрю на все эти методы, как на пляски шаманов с бубнами. По существу, все они сводятся к тому, что либо часть номеров не занята и в них заселяются новые гости, либо к тому, что часть посетителей вышвыривают в коридор, чтобы освободить место для гостей (очень даже по-человечески). Свой взгляд на подобные решения я изложил в форме фантастического рассказа о Блондинке. На чем основываются мои рассуждения? Переселение бесконечного количества посетителей требует бесконечно много времени. После того, как мы освободили первую комнату для гостя, один из посетителей всегда будет идти по коридору из своего номера в соседний до скончания века. Конечно, фактор времени можно тупо игнорировать, но это уже будет из разряда "дуракам закон не писан". Всё зависит от того, чем мы занимаемся: подгоняем реальность под математические теории или наоборот.

Что же такое "бесконечная гостиница"? Бесконечная гостиница - это гостиница, в которой всегда есть любое количество свободных мест, независимо от того, сколько номеров занято. Если все номера в бесконечном коридоре "для посетителей" заняты, есть другой бесконечный коридор с номерами "для гостей". Таких коридоров будет бесконечное множество. При этом у "бесконечной гостиницы" бесконечное количество этажей в бесконечном количестве корпусов на бесконечном количестве планет в бесконечном количестве вселенных, созданных бесконечным количеством Богов. Математики же не способны отстраниться от банальных бытовых проблем: Бог-Аллах-Будда - всегда только один, гостиница - она одна, коридор - только один. Вот математики и пытаются подтасовывать порядковые номера гостиничных номеров, убеждая нас в том, что можно "впихнуть невпихуемое".

Логику своих рассуждений я вам продемонстрирую на примере бесконечного множества натуральных чисел. Для начала нужно ответить на очень простой вопрос: сколько множеств натуральных чисел существует - одно или много? Правильного ответа на это вопрос не существует, поскольку числа придумали мы сами, в Природе чисел не существует. Да, Природа отлично умеет считать, но для этого она использует другие математические инструменты, не привычные для нас. Как Природа считает, я вам расскажу в другой раз. Поскольку числа придумали мы, то мы сами будем решать, сколько множеств натуральных чисел существует. Рассмотрим оба варианта, как и подобает настоящим ученым.

Вариант первый. "Пусть нам дано" одно-единственное множество натуральных чисел, которое безмятежно лежит на полочке. Берем с полочки это множество. Всё, других натуральных чисел на полочке не осталось и взять их негде. Мы не можем к этому множеству прибавить единицу, поскольку она у нас уже есть. А если очень хочется? Без проблем. Мы можем взять единицу из уже взятого нами множества и вернуть её на полочку. После этого мы можем взять с полочки единицу и прибавить её к тому, что у нас осталось. В результате мы снова получим бесконечное множество натуральных чисел. Записать все наши манипуляции можно так:

Я записал действия в алгебраической системе обозначений и в системе обозначений, принятой в теории множеств, с детальным перечислением элементов множества. Нижний индекс указывает на то, что множество натуральных чисел у нас одно и единственное. Получается, что множество натуральных чисел останется неизменным только в том случае, если из него вычесть единицу и прибавить эту же единицу.

Вариант второй. У нас на полочке лежит много разных бесконечных множеств натуральных чисел. Подчеркиваю - РАЗНЫХ, не смотря на то, что они практически не отличимы. Берем одно из этих множеств. Потом из другого множества натуральных чисел берем единицу и прибавляем к уже взятому нами множеству. Мы можем даже сложить два множества натуральных чисел. Вот что у нас получится:

Нижние индексы "один" и "два" указывают на то, что эти элементы принадлежали разным множествам. Да, если к бесконечному множеству прибавить единицу, в результате получится тоже бесконечное множество, но оно не будет таким же, как первоначальное множество. Если к одному бесконечному множеству прибавить другое бесконечное множество, в результате получится новое бесконечное множество, состоящее из элементов первых двух множеств.

Множество натуральных чисел используется для счета так же, как линейка для измерений. Теперь представьте, что к линейке вы добавили один сантиметр. Это уже будет другая линейка, не равная первоначальной.

Вы можете принимать или не принимать мои рассуждения - это ваше личное дело. Но если когда-то вы столкнетесь с математическими проблемами, задумайтесь, не идете ли вы по тропе ложных рассуждений, протоптанной поколениями математиков. Ведь занятия математикой, прежде всего, формируют у нас устойчивый стереотип мышления, а уже потом добавляют нам умственных способностей (или наоборот, лишают нас свободомыслия).

воскресенье, 4 августа 2019 г.

Дописывал постскриптум к статье о и увидел в Википедии этот замечательный текст:

Читаем: "... богатая теоретическая основа математики Вавилона не имела целостного характера и сводилась к набору разрозненных приемов, лишенных общей системы и доказательной базы."

Вау! Какие мы умные и как хорошо можем видеть недостатки других. А слабо нам посмотреть на современную математику в таком же разрезе? Слегка перефразируя приведенный текст, лично у меня получилось следующее:

Богатая теоретическая основа современной математики не имеет целостного характера и сводится к набору разрозненных разделов, лишенных общей системы и доказательной базы.

За подтверждением своих слов я далеко ходить не буду - имеет язык и условные обозначения, отличные от языка и условных обозначений многих других разделов математики. Одни и те же названия в разных разделах математики могут иметь разный смысл. Наиболее очевидным ляпам современной математики я хочу посвятить целый цикл публикаций. До скорой встречи.

суббота, 3 августа 2019 г.

Как разделить множество на подмножества? Для этого необходимо ввести новую единицу измерения, присутствующую у части элементов выбранного множества. Рассмотрим пример.

Пусть у нас есть множество А , состоящее из четырех человек. Сформировано это множество по признаку "люди" Обозначим элементы этого множества через букву а , нижний индекс с цифрой будет указывать на порядковый номер каждого человека в этом множестве. Введем новую единицу измерения "половой признак" и обозначим её буквой b . Поскольку половые признаки присущи всем людям, умножаем каждый элемент множества А на половой признак b . Обратите внимание, что теперь наше множество "люди" превратилось в множество "люди с половыми признаками". После этого мы можем разделить половые признаки на мужские bm и женские bw половые признаки. Вот теперь мы можем применить математический фильтр: выбираем один из этих половых признаков, безразлично какой - мужской или женский. Если он присутствует у человека, тогда умножаем его на единицу, если такого признака нет - умножаем его на ноль. А дальше применяем обычную школьную математику. Смотрите, что получилось.

После умножения, сокращений и перегруппировок, мы получили два подмножества: подмножество мужчин Bm и подмножество женщин Bw . Приблизительно так же рассуждают математики, когда применяют теорию множеств на практике. Но в детали они нас не посвящают, а выдают готовый результат - "множество людей состоит из подмножества мужчин и подмножества женщин". Естественно, у вас может возникнуть вопрос, насколько правильно применена математика в изложенных выше преобразованиях? Смею вас заверить, по сути преобразований сделано всё правильно, достаточно знать математическое обоснование арифметики, булевой алгебры и других разделов математики. Что это такое? Как-нибудь в другой раз я вам об этом расскажу.

Что касается надмножеств, то объединить два множества в одно надмножество можно, подобрав единицу измерения, присутствующую у элементов этих двух множеств.

Как видите, единицы измерения и обычная математика превращают теорию множеств в пережиток прошлого. Признаком того, что с теорией множеств не всё в порядке, является то, что для теории множеств математики придумали собственный язык и собственные обозначения. Математики поступили так, как когда-то поступали шаманы. Только шаманы знают, как "правильно" применять их "знания". Этим "знаниям" они обучают нас.

В заключение, я хочу показать вам, как математики манипулируют с .

понедельник, 7 января 2019 г.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Я вам уже рассказывал, что , при помощи которой шаманы пытаются сортировать " " реальности. Как же они это делают? Как фактически происходит формирование множества?

Давайте внимательно разберемся с определением множества: "совокупность различных элементов, мыслимая как единое целое". А теперь почувствуйте разницу между двумя фразами: "мыслимое как единое целое" и "мыслимое как целое". Первая фраза - это конечный результат, множество. Вторая фраза - это предварительная подготовка к формированию множества. На этом этапе реальность разбивается на отдельные элементы ("целое") из которых потом будет сформировано множество ("единое целое"). При этом фактор, позволяющий объединить "целое" в "единое целое", внимательно отслеживается, иначе у шаманов ничего не получится. Ведь шаманы заранее знают, какое именно множество они хотят нам продемонстрировать.

Покажу процесс на примере. Отбираем "красное твердое в пупырышку" - это наше "целое". При этом мы видим, что эти штучки есть с бантиком, а есть без бантика. После этого мы отбираем часть "целого" и формируем множество "с бантиком". Вот так шаманы добывают себе корм, привязывая свою теорию множеств к реальности.

А теперь сделаем маленькую пакость. Возьмем "твердое в пупырышку с бантиком" и объединим эти "целые" по цветовому признаку, отобрав красные элементы. Мы получили множество "красное". Теперь вопрос на засыпку: полученные множества "с бантиком" и "красное" - это одно и то же множество или два разных множества? Ответ знают только шаманы. Точнее, сами они ничего не знают, но как скажут, так и будет.

Этот простой пример показывает, что теория множеств совершенно бесполезна, когда речь заходит о реальности. В чем секрет? Мы сформировали множество "красное твердое в пупырышку с бантиком". Формирование происходило по четырем разным единицам измерения: цвет (красное), прочность (твердое), шероховатость (в пупырышку), украшения (с бантиком). Только совокупность единиц измерения позволяет адекватно описывать реальные объекты на языке математики . Вот как это выглядит.

Буква "а" с разными индексами обозначает разные единицы измерения. В скобках выделены единицы измерения, по которым выделяется "целое" на предварительном этапе. За скобки вынесена единица измерения, по которой формируется множество. Последняя строчка показывает окончательный результат - элемент множества. Как видите, если применять единицы измерения для формирования множества, тогда результат не зависит от порядка наших действий. А это уже математика, а не пляски шаманов с бубнами. Шаманы могут "интуитивно" придти к такому же результату, аргументируя его "очевидностью", ведь единицы измерения не входят в их "научный" арсенал.

При помощи единиц измерения очень легко разбить одно или объединить несколько множеств в одно надмножество. Давайте более внимательно рассмотрим алгебру этого процесса.

суббота, 30 июня 2018 г.

Если математики не могут свести понятие к другим понятиям, значит они ничего не понимают в математике. Отвечаю на : чем элементы одного множества отличаются от элементов другого множества? Ответ очень простой: числами и единицами измерения.

Это сегодня всё, что мы не возьмем, принадлежит какому-либо множеству (как нас уверяют математики). Кстати, вы в зеркале видели у себя на лбу список тех множеств, к которым принадлежите именно вы? И я такого списка не видел. Скажу больше - ни одна вещь в реальности не имеет бирочки со списком множеств, к которым эта вещь принадлежит. Множества - это всё выдумки шаманов. Как они это делают? Давайте заглянем немного в глубь истории и посмотрим, как выглядели элементы множества до того, как математики-шаманы растащили их по своим множествам.

Давним-давно, когда о математике ещё никто и не слышал, а кольца были только у деревьев и у Сатурна, огромные стада диких элементов множеств бродили по физическим полям (ведь математических полей шаманы ещё не придумали). Выглядели они приблизительно так.

Да, не удивляйтесь, с точки зрения математики все элементы множеств больше всего похожи на морских ежей - из одной точки, как иголки, во все стороны торчат единицы измерений. Для тех, кто , напоминаю, что любую единицу измерения геометрически можно представить как отрезок произвольной длины, а число - как точку. Геометрически любую величину можно представить как пучок отрезков, торчащих в разные стороны из одной точки. Эта точка - точка ноль. Рисовать это произведение геометрического искусства я не буду (нет вдохновения), но вы легко это можете представить.

Какие же единицы измерения образуют элемент множества? Всякие, описывающие данный элемент с разных точек зрения. Это и древние единицы измерения, которыми пользовались наши предки и о которых все давно забыли. Это и современные единицы измерения, которыми мы пользуемся сейчас. Это и неизвестные нам единицы измерения, которые придумают наши потомки и которыми будут пользоваться они для описания реальности.

С геометрией мы разобрались - предлагаемая модель элементов множества имеет четкое геометрическое представление. А как с физикой? Единицы измерения - это и есть прямая связь математики с физикой. Если шаманы не признают единицы измерения как полноправный элемент математических теорий - это их проблемы. Настоящую науку математику без единиц измерения лично я уже не представляю. Вот почему в самом начале рассказа о теории множеств я говорил о ней как о каменном веке.

Но перейдем к самому интересному - к алгебре элементов множеств. Алгебраически любой элемент множества представляет из себя произведение (результат умножения) разных величин.Выглядит это так.

Я умышленно не применял условные обозначения, принятые в теории множеств, поскольку мы рассматриваем элемент множества в естественной среде обитания до возникновения теории множеств. Каждая пара буковок в скобках обозначает отдельную величину, состоящую из числа, обозначенного буквой "n " и единицы измерения, обозначенной буквой "a ". Индексы возле буковок указывают на то, что числа и единицы измерения - разные. Один элемент множества может состоять из бесконечного числа величин (на сколько у нас и наших потомков хватит фантазии). Каждая скобка геометрически изображается отдельным отрезком. В примере с морским ежом одна скобка - это одна иголка.

Как шаманы формируют множества из разных элементов? Фактически, по единицам измерения или по числам. Ничего не понимая в математике, они берут разных морских ежей и внимательно их рассматривают в поисках той единственной иголки, по которой они формируют множество. Если такая иголка есть, значит этот элемент принадлежит множеству, если такой иголки нет - это элемент не из этого множества. Нам же шаманы рассказывают басни о мыслительных процессах и едином целом.

Как вы уже догадались, один и тот же элемент может принадлежать к самым разным множествам. Дальше я вам покажу, как формируются множества, подмножества и прочая шаманская галиматья. Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".