Теорема сложения дисперсий. Пример нахождения дисперсии

Вычислим в MS EXCEL дисперсию и стандартное отклонение выборки. Также вычислим дисперсию случайной величины, если известно ее распределение.

Сначала рассмотрим дисперсию , затем стандартное отклонение .

Дисперсия выборки

Дисперсия выборки (выборочная дисперсия, sample variance ) характеризует разброс значений в массиве относительно .

Все 3 формулы математически эквивалентны.

Из первой формулы видно, что дисперсия выборки это сумма квадратов отклонений каждого значения в массиве от среднего , деленная на размер выборки минус 1.

дисперсии выборки используется функция ДИСП() , англ. название VAR, т.е. VARiance. С версии MS EXCEL 2010 рекомендуется использовать ее аналог ДИСП.В() , англ. название VARS, т.е. Sample VARiance. Кроме того, начиная с версии MS EXCEL 2010 присутствует функция ДИСП.Г(), англ. название VARP, т.е. Population VARiance, которая вычисляет дисперсию для генеральной совокупности . Все отличие сводится к знаменателю: вместо n-1 как у ДИСП.В() , у ДИСП.Г() в знаменателе просто n. До MS EXCEL 2010 для вычисления дисперсии генеральной совокупности использовалась функция ДИСПР() .

Дисперсию выборки
=КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1)
=(СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/ (СЧЁТ(Выборка)-1) – обычная формула
=СУММ((Выборка -СРЗНАЧ(Выборка))^2)/ (СЧЁТ(Выборка)-1 ) –

Дисперсия выборки равна 0, только в том случае, если все значения равны между собой и, соответственно, равны среднему значению . Обычно, чем больше величина дисперсии , тем больше разброс значений в массиве.

Дисперсия выборки является точечной оценкой дисперсии распределения случайной величины, из которой была сделана выборка . О построении доверительных интервалов при оценке дисперсии можно прочитать в статье .

Дисперсия случайной величины

Чтобы вычислить дисперсию случайной величины, необходимо знать ее .

Для дисперсии случайной величины Х часто используют обозначение Var(Х). Дисперсия равна квадрата отклонения от среднего E(X): Var(Х)=E[(X-E(X)) 2 ]

дисперсия вычисляется по формуле:

где x i – значение, которое может принимать случайная величина, а μ – среднее значение (), р(x) – вероятность, что случайная величина примет значение х.

Если случайная величина имеет , то дисперсия вычисляется по формуле:

Размерность дисперсии соответствует квадрату единицы измерения исходных значений. Например, если значения в выборке представляют собой измерения веса детали (в кг), то размерность дисперсии будет кг 2 . Это бывает сложно интерпретировать, поэтому для характеристики разброса значений чаще используют величину равную квадратному корню из дисперсии стандартное отклонение .

Некоторые свойства дисперсии :

Var(Х+a)=Var(Х), где Х - случайная величина, а - константа.

Var(aХ)=a 2 Var(X)

Var(Х)=E[(X-E(X)) 2 ]=E=E(X 2)-E(2*X*E(X))+(E(X)) 2 =E(X 2)-2*E(X)*E(X)+(E(X)) 2 =E(X 2)-(E(X)) 2

Это свойство дисперсии используется в статье про линейную регрессию .

Var(Х+Y)=Var(Х) + Var(Y) + 2*Cov(Х;Y), где Х и Y - случайные величины, Cov(Х;Y) - ковариация этих случайных величин.

Если случайные величины независимы (independent), то их ковариация равна 0, и, следовательно, Var(Х+Y)=Var(Х)+Var(Y). Это свойство дисперсии используется при выводе .

Покажем, что для независимых величин Var(Х-Y)=Var(Х+Y). Действительно, Var(Х-Y)= Var(Х-Y)= Var(Х+(-Y))= Var(Х)+Var(-Y)= Var(Х)+Var(-Y)= Var(Х)+(-1) 2 Var(Y)= Var(Х)+Var(Y)= Var(Х+Y). Это свойство дисперсии используется для построения .

Стандартное отклонение выборки

Стандартное отклонение выборки - это мера того, насколько широко разбросаны значения в выборке относительно их .

По определению, стандартное отклонение равно квадратному корню из дисперсии :

Стандартное отклонение не учитывает величину значений в выборке , а только степень рассеивания значений вокруг их среднего . Чтобы проиллюстрировать это приведем пример.

Вычислим стандартное отклонение для 2-х выборок: (1; 5; 9) и (1001; 1005; 1009). В обоих случаях, s=4. Очевидно, что отношение величины стандартного отклонения к значениям массива у выборок существенно отличается. Для таких случаев используется Коэффициент вариации (Coefficient of Variation, CV) - отношение Стандартного отклонения к среднему арифметическому , выраженного в процентах.

В MS EXCEL 2007 и более ранних версиях для вычисления Стандартного отклонения выборки используется функция =СТАНДОТКЛОН() , англ. название STDEV, т.е. STandard DEViation. С версии MS EXCEL 2010 рекомендуется использовать ее аналог =СТАНДОТКЛОН.В() , англ. название STDEV.S, т.е. Sample STandard DEViation.

Кроме того, начиная с версии MS EXCEL 2010 присутствует функция СТАНДОТКЛОН.Г() , англ. название STDEV.P, т.е. Population STandard DEViation, которая вычисляет стандартное отклонение для генеральной совокупности . Все отличие сводится к знаменателю: вместо n-1 как у СТАНДОТКЛОН.В() , у СТАНДОТКЛОН.Г() в знаменателе просто n.

Стандартное отклонение можно также вычислить непосредственно по нижеуказанным формулам (см. файл примера )
=КОРЕНЬ(КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1))
=КОРЕНЬ((СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/(СЧЁТ(Выборка)-1))

Другие меры разброса

Функция КВАДРОТКЛ() вычисляет сумму квадратов отклонений значений от их среднего . Эта функция вернет тот же результат, что и формула =ДИСП.Г(Выборка )*СЧЁТ(Выборка ) , где Выборка - ссылка на диапазон, содержащий массив значений выборки (). Вычисления в функции КВАДРОТКЛ() производятся по формуле:

Функция СРОТКЛ() является также мерой разброса множества данных. Функция СРОТКЛ() вычисляет среднее абсолютных значений отклонений значений от среднего . Эта функция вернет тот же результат, что и формула =СУММПРОИЗВ(ABS(Выборка-СРЗНАЧ(Выборка)))/СЧЁТ(Выборка) , где Выборка - ссылка на диапазон, содержащий массив значений выборки.

Вычисления в функции СРОТКЛ () производятся по формуле:

По данным выборочного обследования произведена группировка вкладчиков по размеру вклада в Сбербанке города:

Определите:

1) размах вариации;

2) средний размер вклада;

3) среднее линейное отклонение;

4) дисперсию;

5) среднее квадратическое отклонение;

6) коэффициент вариации вкладов.

Решение:

Данный ряд распределения содержит открытые интервалы. В таких рядах условно принимается величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей.

Величина интервала второй группы равна 200, следовательно, и величина первой группы также равна 200. Величина интервала предпоследней группы равна 200, значит и последний интервал будет иметь величину, равную 200.

1) Определим размах вариации как разность между наибольшим и наименьшим значением признака:

Размах вариации размера вклада равен 1000 рублей.

2) Средний размер вклада определим по формуле средней арифметической взвешенной.

Предварительно определим дискретную величину признака в каждом интервале. Для этого по формуле средней арифметической простой найдём середины интервалов.

Среднее значение первого интервала будет равно:

второго - 500 и т. д.

Занесём результаты вычислений в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х xf
200-400 32 300 9600
400-600 56 500 28000
600-800 120 700 84000
800-1000 104 900 93600
1000-1200 88 1100 96800
Итого 400 - 312000

Средний размер вклада в Сбербанке города будет равен 780 рублей:

3) Среднее линейное отклонение есть средняя арифметическая из абсолютных отклонений отдельных значений признака от общей средней:

Порядок расчёта среднего линейонго отклонения в интервальном ряду распределения следующий:

1. Вычисляется средняя арифметическая взвешенная, как показано в п. 2).

2. Определяются абсолютные отклонения вариант от средней:

3. Полученные отклонения умножаются на частоты:

4. Находится сумма взвешенных отклонений без учёта знака:

5. Сумма взвешенных отклонений делится на сумму частот:

Удобно пользоваться таблицей расчётных данных:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 480 15360
400-600 56 500 -280 280 15680
600-800 120 700 -80 80 9600
800-1000 104 900 120 120 12480
1000-1200 88 1100 320 320 28160
Итого 400 - - - 81280

Среднее линейное отклонение размера вклада клиентов Сбербанка составляет 203,2 рубля.

4) Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в интервальных рядах распределения производится по формуле:

Порядок расчёта дисперсии в этом случае следующий:

1. Определяют среднюю арифметическую взвешенную, как показано в п. 2).

2. Находят отклонения вариант от средней:

3. Возводят в квадрат отклонения каждой варианты от средней:

4. Умножают квадраты отклонений на веса (частоты):

5. Суммируют полученные произведения:

6. Полученная сумма делится на сумму весов (частот):

Расчёты оформим в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 230400 7372800
400-600 56 500 -280 78400 4390400
600-800 120 700 -80 6400 768000
800-1000 104 900 120 14400 1497600
1000-1200 88 1100 320 102400 9011200
Итого 400 - - - 23040000

Вариационный размах (или размах вариации) - это разница между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки рабочих составляет: в первой бригаде R=105-95=10 дет., во второй бригаде R=125-75=50 дет. (в 5 раз больше). Это говорит о том, что выработка 1-й бригады более «устойчива», но резервов роста выработки больше у второй бригады, т.к. в случае достижения всеми рабочими максимальной для этой бригады выработки, ею может быть изготовлено 3*125=375 деталей, а в 1-й бригаде только 105*3=315 деталей.
Если крайние значения признака не типичны для совокупности, то используют квартильный или децильный размахи. Квартильный размах RQ= Q3-Q1 охватывает 50% объема совокупности, децильный размах первый RD1 = D9-D1охватывает 80% данных, второй децильный размах RD2= D8-D2 – 60 %.
Недостатком показателя вариационного размаха является, но что его величина не отражает все колебания признака.
Простейшим обобщающим показателем, отражающим все колебания признака, является среднее линейное отклонение , представляющее собой среднюю арифметическую абсолютных отклонений отдельных вариант от их средней величины:

,
для сгруппированных данных
,
где хi – значение признака в дискретном ряду или середина интервала в интервальном распределении.
В вышеприведенных формулах разности в числителе взяты по модулю, иначе, согласно свойству средней арифметической, числитель всегда будет равен нулю. Поэтому среднее линейное отклонение в статистической практике применяют редко, только в тех случаях, когда суммирование показателей без учета знака имеет экономический смысл. С его помощью, например, анализируется состав работающих, рентабельность производства, оборот внешней торговли.
Дисперсия признака – это средний квадрат отклонений вариант от их средней величины:
простая дисперсия
,
взвешенная дисперсия
.
Формулу для расчета дисперсии можно упростить:

Таким образом, дисперсия равна разности средней из квадратов вариант и квадрата средней из вариант совокупности:
.
Однако, вследствие суммирования квадратов отклонений дисперсия дает искаженное представление об отклонениях, поэтому ее на основе рассчитывают среднее квадратическое отклонение , которое показывает, на сколько в среднем отклоняются конкретные варианты признака от их среднего значения. Вычисляется путем извлечения квадратного корня из дисперсии:
для несгруппированных данных
,
для вариационного ряда

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность, тем более надежной (типичной) будет средняя величина.
Среднее линейное и среднее квадратичное отклонение - именованные числа, т. е. выражаются в единицах измерения признака, идентичны по содержанию и близки по значению.
Рассчитывать абсолютные показатели вариации рекомендуется с помощью таблиц.
Таблица 3 – Расчет характеристик вариации (на примере срока данных о сменной выработке рабочих бригады)


Число рабочих,

Середина интервала,

Расчетные значения

Итого:

Среднесменная выработка рабочих:

Среднее линейное отклонение:

Дисперсия выработки:

Среднее квадратическое отклонение выработки отдельных рабочих от средней выработки:
.

1 Расчет дисперсии способом моментов

Вычисление дисперсий связано с громоздкими расчетами (особенно если средняя величина выражена большим числом с несколькими десятичными знаками). Расчеты можно упростить, если использовать упрощенную формулу и свойства дисперсии.
Дисперсия обладает следующими свойствами:

  1. если все значения признака уменьшить или увеличить на одну и ту же величину А, то дисперсия от этого не уменьшится:

,

, то или
Используя свойства дисперсии и сначала уменьшив все варианты совокупности на величину А, а затем разделив на величину интервала h, получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:
,
где – дисперсия, исчисленная по способу моментов;
h – величина интервала вариационного ряда;
– новые (преобразованные) значения вариант;
А– постоянная величина, в качестве которой используют середину интервала, обладающего наибольшей частотой; либо вариант, имеющий наибольшую частоту;
– квадрат момента первого порядка;
– момент второго порядка.
Выполним расчет дисперсии способом моментов на основе данных о сменной выработке рабочих бригады.
Таблица 4 – Расчет дисперсии по способу моментов


Группы рабочих по выработке, шт.

Число рабочих,

Середина интервала,

Расчетные значения

Порядок расчета:


  1. рассчитываем дисперсию:

2 Расчет дисперсии альтернативного признака

Среди признаков, изучаемых статистикой, есть и такие, которым свойственны лишь два взаимно исключающих значения. Это альтернативные признаки. Им придается соответственно два количественных значения: варианты 1 и 0. Частостью варианты 1, которая обозначается p, является доля единиц, обладающих данным признаком. Разность 1-р=q является частостью варианты 0. Таким образом,


хi

Средняя арифметическая альтернативного признака
, т. к. p+q=1.

Дисперсия альтернативного признака
, т.к. 1-р=q
Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.
Если значения 1 и 0 встречаются одинаково часто, т. е. p=q, дисперсия достигает своего максимума pq=0,25.
Дисперсия альтернативного признака используется в выборочных обследованиях, например, качества продукции.

3 Межгрупповая дисперсия. Правило сложения дисперсий

Дисперсия, в отличие от других характеристик вариации, является аддитивной величиной. То есть в совокупности, которая разделена на группы по факторному признаку х, дисперсия результативного признака y может быть разложена на дисперсию в каждой группе (внутригрупповую) и дисперсию между группами (межгрупповую). Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучение вариации в каждой группе, а также между этими группами.

Общая дисперсия измеряет вариацию признака у по всей совокупности под влиянием всех факторов, вызвавших эту вариацию (отклонения). Она равна среднему квадрату отклонений отдельных значений признака у от общей средней и может быть вычислена как простая или взвешенная дисперсия.
Межгрупповая дисперсия характеризует вариацию результативного признака у , вызванную влиянием признака-фактора х , положенного в основу группировки. Она характеризует вариацию групповых средних и равна среднему квадрату отклонений групповых средних от общей средней :
,
где – средняя арифметическая i-той группы;
– численность единиц в i-той группе (частота i-той группы);
– общая средняя совокупности.
Внутригрупповая дисперсия отражает случайную вариацию, т. е. ту часть вариации, которая вызвана влиянием неучтенных факторов и не зависит от признака-фактора, положенного в основу группировки. Она характеризует вариацию индивидуальных значений относительно групповых средних, равна среднему квадрату отклонений отдельных значений признака у внутри группы от средней арифметической этой группы (групповой средней) и вычисляется как простая или взвешенная дисперсия для каждой группы:
или ,
где – число единиц в группе.
На основании внутригрупповых дисперсий по каждой группе можно определить общую среднюю из внутригрупповых дисперсий :
.
Взаимосвязь между тремя дисперсиями получила название правила сложения дисперсий , согласно которому общая дисперсия равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий:

Пример . При изучении влияния тарифного разряда (квалификации) рабочих на уровень производительности их труда получены следующие данные.
Таблица 5 – Распределение рабочих по среднечасовой выработке.



п/п

Рабочие 4-го разряда

Рабочие 5-го разряда

Выработка
рабочего, шт.,

Выработка
рабочего, шт.,

1
2
3
4
5
6

7
9
9
10
12
13

7-10=-3
9-10=-1
-1
0
2
3

9
1
1
0
4
9

1
2
3
4

14
14
15
17

14-15=-1
-1
0
2

1
1
0
4

В данном примере рабочие разделены на две группы по факторному признаку х – квалификации, которая характеризуется их разрядом. Результативный признак – выработка – варьируется как под его влиянием (межгрупповая вариация), так и за счет других случайных факторов (внутригрупповая вариация). Задача заключается в измерении этих вариаций с помощью трех дисперсий: общей, межгрупповой и внутригрупповой. Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х . Остальная часть общей вариации у вызвана изменением прочих факторов.
В примере эмпирический коэффициент детерминации равен:
или 66,7 %,
Это означает, что на 66,7% вариация производительности труда рабочих обусловлена различиями в квалификации, а на 33,3% – влиянием прочих факторов.
Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:

Эмпирическое корреляционное отношение , как и , может принимать значения от 0 до 1.
Если связь отсутствует, то =0. В этом случае =0, то есть групповые средние равны между собой и межгрупповой вариации нет. Значит группировочный признак – фактор не влияет на образование общей вариации.
Если связь функциональная, то =1. В этом случае дисперсия групповых средних равна общей дисперсии (), то есть внутригрупповой вариации нет. Это означает, что группировочный признак полностью определяет вариацию изучаемого результативного признака.
Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.

В примере , что свидетельствует о тесной связи между производительностью труда рабочих и их квалификацией.

Математическое ожидание и дисперсия - чаще всего применяемые числовые характеристики случайной величины. Они характеризуют самые важные черты распределения: его положение и степень разбросанности. Во многих задачах практики полная, исчерпывающая характеристика случайной величины - закон распределения - или вообще не может быть получена, или вообще не нужна. В этих случаях ограничиваются приблизительным описанием случайной величины с помощью числовых характеристик.

Математическое ожидание часто называют просто средним значением случайной величины. Дисперсия случайной величины - характеристика рассеивания, разбросанности случайной величины около её математического ожидания.

Математическое ожидание дискретной случайной величины

Подойдём к понятию математического ожидания, сначала исходя из механической интерпретации распределения дискретной случайной величины. Пусть единичная масса распределена между точками оси абсцисс x 1 , x 2 , ..., x n , причём каждая материальная точка имеет соответствующую ей массу из p 1 , p 2 , ..., p n . Требуется выбрать одну точку на оси абсцисс, характеризующую положение всей системы материальных точек, с учётом их масс. Естественно в качестве такой точки взять центр массы системы материальных точек. Это есть среднее взвешенное значение случайной величины X , в которое абсцисса каждой точки x i входит с "весом", равным соответствующей вероятности. Полученное таким образом среднее значение случайной величины X называется её математическим ожиданием.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных её значений на вероятности этих значений:

Пример 1. Организована беспроигрышная лотерея. Имеется 1000 выигрышей, из них 400 по 10 руб. 300 - по 20 руб. 200 - по 100 руб. и 100 - по 200 руб. Каков средний размер выигрыша для купившего один билет?

Решение. Средний выигрыш мы найдём, если общую сумму выигрышей, которая равна 10*400 + 20*300 + 100*200 + 200*100 = 50000 руб, разделим на 1000 (общая сумма выигрышей). Тогда получим 50000/1000 = 50 руб. Но выражение для подсчёта среднего выигрыша можно представить и в следующем виде:

С другой стороны, в данных условиях размер выигрыша является случайной величиной, которая может принимать значения 10, 20, 100 и 200 руб. с вероятностями, равными соответственно 0,4; 0,3; 0,2; 0,1. Следовательно, ожидаемый средний выигрыш равен сумме произведений размеров выигрышей на вероятности их получения.

Пример 2. Издатель решил издать новую книгу. Продавать книгу он собирается за 280 руб., из которых 200 получит он сам, 50 - книжный магазин и 30 - автор. В таблице дана информация о затратах на издание книги и вероятности продажи определённого числа экземпляров книги.

Найти ожидаемую прибыль издателя.

Решение. Случайная величина "прибыль" равна разности доходов от продажи и стоимости затрат. Например, если будет продано 500 экземпляров книги, то доходы от продажи равны 200*500=100000, а затраты на издание 225000 руб. Таким образом, издателю грозит убыток размером в 125000 руб. В следующей таблице обобщены ожидаемые значения случайной величины - прибыли:

Число Прибыль x i Вероятность p i x i p i
500 -125000 0,20 -25000
1000 -50000 0,40 -20000
2000 100000 0,25 25000
3000 250000 0,10 25000
4000 400000 0,05 20000
Всего: 1,00 25000

Таким образом, получаем математическое ожидание прибыли издателя:

.

Пример 3. Вероятность попадания при одном выстреле p = 0,2 . Определить расход снарядов, обеспечивающих математическое ожидание числа попаданий, равное 5.

Решение. Из всё той же формулы математического ожидания, которую мы использовали до сих пор, выражаем x - расход снарядов:

.

Пример 4. Определить математическое ожидание случайной величины x числа попаданий при трёх выстрелах, если вероятность попадания при каждом выстреле p = 0,4 .

Подсказка: вероятность значений случайной величины найти по формуле Бернулли .

Свойства математического ожидания

Рассмотрим свойства математического ожидания.

Свойство 1. Математическое ожидание постоянной величины равно этой постоянной:

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания:

Свойство 3. Математическое ожидание суммы (разности) случайных величин равно сумме (разности) их математических ожиданий:

Свойство 4. Математическое ожидание произведения случайных величин равно произведению их математических ожиданий:

Свойство 5. Если все значения случайной величины X уменьшить (увеличить) на одно и то же число С , то её математическое ожидание уменьшится (увеличится) на то же число:

Когда нельзя ограничиваться только математическим ожиданием

В большинстве случаев только математическое ожидание не может в достаточной степени характеризовать случайную величину.

Пусть случайные величины X и Y заданы следующими законами распределения:

Значение X Вероятность
-0,1 0,1
-0,01 0,2
0 0,4
0,01 0,2
0,1 0,1
Значение Y Вероятность
-20 0,3
-10 0,1
0 0,2
10 0,1
20 0,3

Математические ожидания этих величин одинаковы - равны нулю:

Однако характер распределения их различный. Случайная величина X может принимать только значения, мало отличающиеся от математического ожидания, а случайная величина Y может принимать значения, значительно отклоняющиеся от математического ожидания. Аналогичный пример: средняя заработная плата не даёт возможности судить об удельном весе высоко- и низкооплачиваемых рабочих. Иными словами, по математическому ожиданию нельзя судить о том, какие отклонения от него, хотя бы в среднем, возможны. Для этого нужно найти дисперсию случайной величины.

Дисперсия дискретной случайной величины

Дисперсией дискретной случайной величины X называется математическое ожидание квадрата отклонения её от математического ожидания:

Средним квадратическим отклонением случайной величины X называется арифметическое значение квадратного корня её дисперсии:

.

Пример 5. Вычислить дисперсии и средние квадратические отклонения случайных величин X и Y , законы распределения которых приведены в таблицах выше.

Решение. Математические ожидания случайных величин X и Y , как было найдено выше, равны нулю. Согласно формуле дисперсии при Е (х )=Е (y )=0 получаем:

Тогда средние квадратические отклонения случайных величин X и Y составляют

.

Таким образом, при одинаковых математических ожиданиях дисперсия случайной величины X очень мала, а случайной величины Y - значительная. Это следствие различия в их распределении.

Пример 6. У инвестора есть 4 альтернативных проекта инвестиций. В таблице обобщены данные об ожидаемой прибыли в этих проектах с соответствующей вероятностью.

Проект 1 Проект 2 Проект 3 Проект 4
500, P =1 1000, P =0,5 500, P =0,5 500, P =0,5
0, P =0,5 1000, P =0,25 10500, P =0,25
0, P =0,25 9500, P =0,25

Найти для каждой альтернативы математическое ожидание, дисперсию и среднее квадратическое отклонение.

Решение. Покажем, как вычисляются эти величины для 3-й альтернативы:

В таблице обобщены найденные величины для всех альтернатив.

У всех альтернатив одинаковы математические ожидания. Это означает, что в долгосрочном периоде у всех - одинаковые доходы. Стандартное отклонение можно интерпретировать как единицу измерения риска - чем оно больше, тем больше риск инвестиций. Инвестор, который не желает большого риска, выберет проект 1, так как у него наименьшее стандартное отклонение (0). Если же инвестор отдаёт предпочтение риску и большим доходам в короткий период, то он выберет проект наибольшим стандартным отклонением - проект 4.

Свойства дисперсии

Приведём свойства дисперсии.

Свойство 1. Дисперсия постоянной величины равна нулю:

Свойство 2. Постоянный множитель можно выносить за знак дисперсии, возводя его при этом в квадрат:

.

Свойство 3. Дисперсия случайной величины равна математическому ожиданию квадрата этой величины, из которого вычтен квадрат математического ожидания самой величины:

,

где .

Свойство 4. Дисперсия суммы (разности) случайных величин равна сумме (разности) их дисперсий:

Пример 7. Известно, что дискретная случайная величина X принимает лишь два значения: −3 и 7. Кроме того, известно математическое ожидание: E (X ) = 4 . Найти дисперсию дискретной случайной величины.

Решение. Обозначим через p вероятность, с которой случайная величина принимает значение x 1 = −3 . Тогда вероятностью значения x 2 = 7 будет 1 − p . Выведем уравнение для математического ожидания:

E (X ) = x 1 p + x 2 (1 − p ) = −3p + 7(1 − p ) = 4 ,

откуда получаем вероятности: p = 0,3 и 1 − p = 0,7 .

Закон распределения случайной величины:

X −3 7
p 0,3 0,7

Дисперсию данной случайной величины вычислим по формуле из свойства 3 дисперсии:

D (X ) = 2,7 + 34,3 − 16 = 21 .

Найти математическое ожидание случайной величины самостоятельно, а затем посмотреть решение

Пример 8. Дискретная случайная величина X принимает лишь два значения. Большее из значений 3 она принимает с вероятностью 0,4. Кроме того, известна дисперсия случайной величины D (X ) = 6 . Найти математическое ожидание случайной величины.

Пример 9. В урне 6 белых и 4 чёрных шара. Из урны вынимают 3 шара. Число белых шаров среди вынутых шаров является дискретной случайной величиной X . Найти математическое ожидание и дисперсию этой случайной величины.

Решение. Случайная величина X может принимать значения 0, 1, 2, 3. Соответствующие им вероятности можно вычислить по правилу умножения вероятностей . Закон распределения случайной величины:

X 0 1 2 3
p 1/30 3/10 1/2 1/6

Отсюда математическое ожидание данной случайной величины:

M (X ) = 3/10 + 1 + 1/2 = 1,8 .

Дисперсия данной случайной величины:

D (X ) = 0,3 + 2 + 1,5 − 3,24 = 0,56 .

Математическое ожидание и дисперсия непрерывной случайной величины

Для непрерывной случайной величины механическая интерпретация математического ожидания сохранит тот же смысл: центр массы для единичной массы, распределённой непрерывно на оси абсцисс с плотностью f (x ). В отличие от дискретной случайной величиной, у которой аргумент функции x i изменяется скачкообразно, у непрерывной случайной величины аргумент меняется непрерывно. Но математическое ожидание непрерывной случайной величины также связано с её средним значением.

Чтобы находить математическое ожидание и дисперсию непрерывной случайной величины, нужно находить определённые интегралы . Если дана функция плотности непрерывной случайной величины, то она непосредственно входит в подынтегральное выражение. Если дана функция распределения вероятностей, то, дифференцируя её, нужно найти функцию плотности.

Арифметическое среднее всех возможных значений непрерывной случайной величины называется её математическим ожиданием , обозначаемым или .

Однако только этой характеристики ещё не достаточно для исследования случайной величины. Представим двух стрелков, которые стреляют по мишени. Один стреляет метко и попадает близко к центру, а другой… просто развлекается и даже не целится. Но что забавно, его средний результат будет точно таким же, как и у первого стрелка! Эту ситуацию условно иллюстрируют следующие случайные величины:

«Снайперское» математическое ожидание равно , однако и у «интересной личности»: – оно тоже нулевое!

Таким образом, возникает потребность количественно оценить, насколько далеко рассеяны пули (значения случайной величины) относительно центра мишени (математического ожидания). Ну а рассеяние с латыни переводится не иначе, как дисперсия .

Посмотрим, как определяется эта числовая характеристика на одном из примеров 1-й части урока:

Там мы нашли неутешительное математическое ожидание этой игры, и сейчас нам предстоит вычислить её дисперсию, которая обозначается через .

Выясним, насколько далеко «разбросаны» выигрыши/проигрыши относительно среднего значения. Очевидно, что для этого нужно вычислить разности между значениями случайной величины и её математическим ожиданием :

–5 – (–0,5) = –4,5
2,5 – (–0,5) = 3
10 – (–0,5) = 10,5

Теперь вроде бы нужно просуммировать результаты, но этот путь не годится – по той причине, что колебания влево будут взаимоуничтожаться с колебаниями вправо. Так, например, у стрелка-«любителя» (пример выше) разности составят , и при сложении дадут ноль, поэтому никакой оценки рассеяния его стрельбы мы не получим.

Чтобы обойти эту неприятность можно рассмотреть модули разностей, но по техническим причинам прижился подход, когда их возводят в квадрат. Решение удобнее оформить таблицей:

И здесь напрашивается вычислить средневзвешенное значение квадратов отклонений. А это ЧТО такое? Это их математическое ожидание , которое и является мерилом рассеяния:

определение дисперсии. Из определения сразу понятно, что дисперсия не может быть отрицательной – возьмите на заметку для практики!

Вспоминаем, как находить матожидание. Перемножаем квадраты разностей на соответствующие вероятности (продолжение таблицы) :
– образно говоря, это «сила тяги»,
и суммируем результаты:

Не кажется ли вам, что на фоне выигрышей результат получился великоватым? Всё верно – мы возводили в квадрат, и чтобы вернуться в размерность нашей игры, нужно извлечь квадратный корень. Данная величина называется средним квадратическим отклонением и обозначается греческой буквой «сигма»:

Иногда это значение называют стандартным отклонением .

В чём его смысл? Если мы отклонимся от математического ожидания влево и вправо на среднее квадратическое отклонение:

– то на этом интервале будут «сконцентрированы» наиболее вероятные значения случайной величины. Что мы, собственно, и наблюдаем:

Однако так сложилось, что при анализе рассеяния почти всегда оперируют понятием дисперсии. Давайте разберёмся, что она означает применительно к играм. Если в случае со стрелками речь идёт о «кучности» попаданий относительно центра мишени, то здесь дисперсия характеризует две вещи:

Во-первых, очевидно то, что при увеличении ставок, дисперсия тоже возрастает. Так, например, если мы увеличим в 10 раз, то математическое ожидание увеличится в 10 раз, а дисперсия – в 100 раз (коль скоро, это квадратичная величина) . Но, заметьте, что сами-то правила игры не изменились! Изменились лишь ставки, грубо говоря, раньше мы ставили 10 рублей, теперь 100.

Второй, более интересный момент состоит в том, что дисперсия характеризует стиль игры. Мысленно зафиксируем игровые ставки на каком-то определённом уровне , и посмотрим, что здесь к чему:

Игра с низкой дисперсией – это осторожная игра. Игрок склонен выбирать самые надёжные схемы, где за 1 раз он не проигрывает/выигрывает слишком много. Например, система «красное/чёрное» в рулетке (см. Пример 4 статьи Случайные величины ) .

Игра с высокой дисперсией. Её часто называют дисперсионной игрой. Это авантюрный или агрессивный стиль игры, где игрок выбирает «адреналиновые» схемы. Вспомним хотя бы «Мартингейл» , в котором на кону оказываются суммы, на порядки превосходящие «тихую» игру предыдущего пункта.

Показательна ситуация в покере: здесь есть так называемые тайтовые игроки, которые склонны осторожничать и «трястись» над своими игровыми средствами (банкроллом) . Неудивительно, что их банкролл не подвергается значительным колебаниям (низкая дисперсия). Наоборот, если у игрока высокая дисперсия, то это агрессор. Он часто рискует, делает крупные ставки и может, как сорвать огромный банк, так и програться в пух и прах.

То же самое происходит на Форексе, и так далее – примеров масса.

Причём, во всех случаях не важно – на копейки ли идёт игра или на тысячи долларов. На любом уровне есть свои низко- и высокодисперсионные игроки. Ну а за средний выигрыш, как мы помним, «отвечает» математическое ожидание .

Наверное, вы заметили, что нахождение дисперсии – есть процесс длительный и кропотливый. Но математика щедрА:

Формула для нахождения дисперсии

Данная формула выводится непосредственно из определения дисперсии, и мы незамедлительно пускаем её в оборот. Скопирую сверху табличку с нашей игрой:

и найденное матожидание .

Вычислим дисперсию вторым способом. Сначала найдём математическое ожидание – квадрата случайной величины . По определению математического ожидания :

В данном случае:

Таким образом, по формуле:

Как говорится, почувствуйте разницу. И на практике, конечно, лучше применять формулу (если иного не требует условие).

Осваиваем технику решения и оформления:

Пример 6

Найти её математическое ожидание, дисперсию и среднее квадратическое отклонение.

Эта задача встречается повсеместно, и, как правило, идёт без содержательного смысла.
Можете представлять себе несколько лампочек с числами, которые загораются в дурдоме с определёнными вероятностями:)

Решение : Основные вычисления удобно свести в таблицу. Сначала в верхние две строки записываем исходные данные. Затем рассчитываем произведения , затем и, наконец, суммы в правом столбце:

Собственно, почти всё готово. В третьей строке нарисовалось готовенькое математическое ожидание: .

Дисперсию вычислим по формуле:

И, наконец, среднее квадратическое отклонение:
– лично я обычно округляю до 2 знаков после запятой.

Все вычисления можно провести на калькуляторе, а ещё лучше – в Экселе:

вот здесь уже трудно ошибиться:)

Ответ :

Желающие могут ещё более упростить свою жизнь и воспользоваться моим калькулятором (демо) , который не только моментально решит данную задачу, но и построит тематические графики (скоро дойдём) . Программу можно скачать в библиотеке – если вы загрузили хотя бы один учебный материал, либо получить другим способом . Спасибо за поддержку проекта!

Пара заданий для самостоятельного решения:

Пример 7

Вычислить дисперсию случайной величины предыдущего примера по определению.

И аналогичный пример:

Пример 8

Дискретная случайная величина задана своим законом распределения:

Да, значения случайной величины бывают достаточно большими (пример из реальной работы) , и здесь по возможности используйте Эксель. Как, кстати, и в Примере 7 – это быстрее, надёжнее и приятнее.

Решения и ответы внизу страницы.

В заключение 2-й части урока разберём ещё одну типовую задачу, можно даже сказать, небольшой ребус:

Пример 9

Дискретная случайная величина может принимать только два значения: и , причём . Известна вероятность , математическое ожидание и дисперсия .

Решение : начнём с неизвестной вероятности. Так как случайная величина может принять только два значения, то сумма вероятностей соответствующих событий:

и поскольку , то .

Осталось найти …, легко сказать:) Но да ладно, понеслось. По определению математического ожидания:
– подставляем известные величины:

– и больше из этого уравнения ничего не выжать, разве что можно переписать его в привычном направлении:

или:

О дальнейших действиях, думаю, вы догадываетесь. Составим и решим систему:

Десятичные дроби – это, конечно, полное безобразие; умножаем оба уравнения на 10:

и делим на 2:

Вот так-то лучше. Из 1-го уравнения выражаем:
(это более простой путь) – подставляем во 2-е уравнение:


Возводим в квадрат и проводим упрощения:

Умножаем на :

В результате получено квадратное уравнение , находим его дискриминант:
– отлично!

и у нас получается два решения:

1) если , то ;

2) если , то .

Условию удовлетворяет первая пара значений. С высокой вероятностью всё правильно, но, тем не менее, запишем закон распределения:

и выполним проверку, а именно, найдём матожидание: