Правило лопиталя решение онлайн. Правило Лопиталя для чайников: определение, примеры решения, формулы

Правило Лопиталя (п. Л.) облегчает вычисление пределов функций. Например, надо найти предел функции, которая является отношением функций стремящихся к нулю. Т.е. отношение функций это неопределенность 0/0. Раскрыть ее поможет . В пределе отношение функций можно заменить отношением производных этих функций. Т.е. надо производную числителя разделить на производную знаменателя и от этой дроби взять предел.

1. Неопределенность 0/0. Первое п.Л.

Если = 0, то , если последний существует.

2. Неопределенность вида ∞/∞ Второе п. Л.

Нахождение пределов такого типа называется раскрытием неопределенностей.

Если = ∞, то , если последний существует.

3. Неопределенности 0⋅∞, ∞- ∞, 1 ∞ и 0 0 сводятся к неопределенностям 0/0 и ∞/∞ путем преобразований. Такая запись служит для краткого указания случая при отыскании предела. Каждая неопределенность раскрывается по своему. Правило Лопиталя можно применять несколько раз, пока не избавимся от неопределенности. Применение правила Лопиталя приносит пользу тогда, когда отношение производных удается преобразовать к более удобному виду легче, чем отношение функций.

  • 0⋅∞ произведение двух функций, первая стремится к нулю, вторая к бесконечности;
  • ∞- ∞ разность функций, стремящихся к бесконечности;
  • 1 ∞ степень, ее основание стремится к единице, а показатель к бесконечности;
  • ∞ 0 степень, ее основание стремится к бесконечности, а степень к нулю;
  • 0 0 степень, ее основание стремится к 0 и показатель тоже стремятся к нулю.

Пример 1. В этом примере неопределенность 0/0

Пример 2. Здесь ∞/∞

В этих примерах производные числителя делим на производные знаменателя и подставляем предельное значение вместо х.

Пример 3. Вид неопределенности 0⋅∞ .

Неопределенность 0⋅∞ преобразуем к ∞/∞, для этого х переносим в знаменатель в виде дроби 1/x , в числителе пишем производную от числителя, а в знаменателе производную от знаменателя.

Пример 4 Вычислить предел функции

Здесь неопределенность вида ∞ 0 Сначала логарифмируем функцию, затем найдем от нее предел

Для получения ответа надо е возвести в степень -1, получим e -1 .

Пример 5. Вычислить предел от если x → 0

Решение. Вид неопределенности ∞ -∞ Приведя дробь к общему знаменателю перейдем от ∞-∞ к 0/0. Применим правило Лопиталя, однако снова получим неопределенность 0/0, поэтому п. Л. надо применить второй раз. Решение имеет вид:

= = = =
= =

Пример 6 Решить

Решение. Вид неопределенности ∞/∞, раскрыв ее получим

В случаях 3), 4), 5) сначала логарифмируют функцию и находят предел логарифма, а затем искомый предел е возводим в полученную степень.

Пример 7. Вычислить предел

Решение. Здесь вид неопределенности 1 ∞ . Обозначим A =

Тогда lnA = = = = 2.

Основание логарифма е, поэтому для получения ответа надо е возвести в квадрат, получим e 2 .

Иногда бывают случаи, когда отношение функций имеет предел, в отличие от отношения производных, которое не имеет его.

Рассмотрим пример:

Т.к. sinx ограничен, а х неограниченно растет, второй член равен 0.

Эта функция не имеет предела, т.к. она постоянно колеблется между 0 и 2, к этому примеру неприменимо п. Л.

Правило говорит, что если функции f (x ) и g (x ) обладают следующим набором условий:

тогда существует . При этом теорема верна и для других баз (для указанной будет приведено доказательство).

История

Способ раскрытия такого рода неопределённостей был опубликован Лопиталем в его сочинении «Анализ бесконечно малых», изданном в году. В предисловии к этому сочинению Лопиталь указывает, что без всякого стеснения пользовался открытиями Лейбница и братьев Бернулли и «не имеет ничего против того, чтобы они предъявили свои авторские права на все, что им угодно». Иоганн Бернулли предъявил претензии на все сочинение Лопиталя целиком и в частности после смерти Лопиталя опубликовал работу под примечательным названием «Усовершенствование моего опубликованного в „Анализе бесконечно малых“ метода для определения значения дроби, числитель и знаменатель которой иногда исчезают», .

Доказательство

Отношение бесконечно малых

Докажем теорему для случая, когда пределы функций равны нулю (т. н. неопределённость вида ).

Поскольку мы рассматриваем функции f и g только в правой проколотой полуокрестности точки a , мы можем непрерывным образом их доопределить в этой точке: пусть f (a ) = g (a ) = 0 . Возьмём некоторый x из рассматриваемой полуокрестности и применим к отрезку теорему Коши . По этой теореме получим:

,

но f (a ) = g (a ) = 0 , поэтому .

Src="/pictures/wiki/files/56/85e2b8bb13d6fb1ddcf88e22a4bb6ef2.png" border="0"> для конечного предела и src="/pictures/wiki/files/101/e8b2f2b8861947c8728d4d1be40366d4.png" border="0"> для бесконечного,

что является определением предела отношения функций.

Отношение бесконечно больших

Докажем теорему для неопределённостей вида .

Пусть, для начала, предел отношения производных конечен и равен A . Тогда, при стремлении x к a справа, это отношение можно записать как A + α , где α - (1). Запишем это условие:

.

Зафиксируем t из отрезка и применим теорему Коши ко всем x из отрезка :

, что можно привести к следующему виду: .

Для x , достаточно близких к a , выражение имеет смысл; предел первого множителя правой части равен единице (так как f (t ) и g (t ) - константы , а f (x ) и g (x ) стремятся к бесконечности). Значит, этот множитель равен 1 + β , где β - бесконечно малая функция при стремлении x к a справа. Выпишем определение этого факта, используя то же значение , что и в определении для α :

.

Получили, что отношение функций представимо в виде (1 + β)(A + α) , и . По любому данному можно найти такое , чтобы модуль разности отношения функций и A был меньше , значит, предел отношения функций действительно равен A .

Если же предел A бесконечен (допустим, он равен плюс бесконечности), то

(x)}{g"(x)}>2M)" src="/pictures/wiki/files/101/e46c5113c49712376d1c357b5b202a65.png" border="0">.

В определении β будем брать ; первый множитель правой части будет больше 1/2 при x , достаточно близких к a , а тогда src="/pictures/wiki/files/50/2f7ced4a9b4b06f7b9085e982250dbcf.png" border="0">.

Для других баз доказательства аналогичны приведённым.

Примеры

(Только если числитель и знаменатель ОБА стремятся или к 0 ; или к ; или к .)


Wikimedia Foundation . 2010 .

Смотреть что такое "Лопиталя правило" в других словарях:

    Исторически неправильное наименование одного из основных правил раскрытия неопределённостей. Л. п. было найдено И. Бернулли и сообщено им Г. Лопиталю (См. Лопиталь), опубликовавшему это правило в 1696. См. Неопределённые выражения … Большая советская энциклопедия

    Раскрытие неопределенностей вида сведением предела отношения функций к пределу отношения производных рассматриваемых функций. Так, для случая, когда действительные функции f и gопределены в проколотой правосторонней окрестности точки ачисловой… … Математическая энциклопедия

    Правило Бернулли Лопиталя метод нахождения пределов функций, раскрывающий неопределённости вида и. Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.… … Википедия

    В математическом анализе правилом Лопиталя называют метод нахождения пределов функций, раскрывающий неопределённости вида 0 / 0 и. Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу… … Википедия

    В математическом анализе правилом Лопиталя называют метод нахождения пределов функций, раскрывающий неопределённости вида 0 / 0 и. Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу… … Википедия

Пусть при $x\to a$ функции $f(x)$ и $\varphi(x)$ обе бесконечно малые или обе бесконечно большие. Тогда их отношение не определено в точке $x=a$ , и в этом случае говорят, что оно представляет собой неопределенность типа $\left[\frac{0}{0}\right]$ или соответственно. Это отношение может иметь конечный или бесконечный предел в точке $x=a$ . Нахождение этого предела называется раскрытием неопределенности.

t_E1_p217_1
Теорема (Теорема Лопиталя-Бернулли.)
Пусть в некоторой окрестности $P$ точки $x=a$ функции $f(x)$ и $g(x)$ дифференцируемы всюду, кроме, может быть, самой точки $x=a$ , и пусть $g"(x)\neq0$ на $P$ . Если функции $f(x)$ и $\varphi(x)$ являются одновременно либо бесконечно малыми, либо бесконечно большими при $x\to a$ и при этом существует предел отношения $\frac{f"(x)}{\varphi"(x)}$ их производных при $x\to a$ , то тогда существует также и предел отношения $\frac{f(x)}{g(x)}$ самих функций, причем

(1)

\begin{align} \lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}. \end{align}

Правило () применимо и в случае, когда $a=\infty$ .

m_KR_p156_1
Метод (Правило Лопиталя. Раскрытие неопределенностей типа $\left[\frac{0}{0}\right]$ и $\left[\frac{\infty}{\infty}\right]$ .)
В силу теоремы () существует общий способ нахождения предела отношений двух функций, основанный на равенстве
$$\lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}.$$
Этот способ называется правилом Лопиталя .
Если для производных $f"(x)$ и $g"(x)$ выполняются условия теоремы (), то правило Лопиталя можно применять повторно:
$$\lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}=\lim\limits_{x\to a}\frac{f""(x)}{g""(x)}.$$
При этом на каждом этапе применения правила Лопиталя следует пользоваться упрощающими отношение тождественными преобразованиями, а также комбинировать это правило с любыми другими приемами вычисления пределов.

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to0}\frac{e^{2x}-1}{\arctan5x}.$$
Используя формулу (), получаем: $$\lim\limits_{x\to0}\frac{e^{2x}-1}{\arctan5x}=\left[\frac{0}{0}\right]=\lim\limits_{x\to0}\frac{2e^{2x}}{\frac{1}{1+25x^2}\cdot5}=\frac{2}{5},$$ поскольку $e^{2x}\to1$ и $\frac{1}{1+25x^2}\to1$ при $x\to0$ .

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to\infty}\frac{\ln2x}{x^3}.$$
Применяя дважды формулу (), получаем: $$\lim\limits_{x\to+\infty}\frac{\ln^2x}{x^3}=\left[\frac{\infty}{\infty}\right]=\lim\limits_{x\to+\infty}\frac{\frac{2\ln x}{x}}{3x^2}=\frac{2}{3}\lim\limits_{x\to+\infty}\frac{\ln x}{x^3}=\frac{2}{3}\lim\limits_{x\to+\infty}\frac{\frac{1}{x}}{3x^2}=0.$$

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}.$$
Используем формулу (): $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to 0}\frac{\frac{1}{\cos^2x}-\cos x}{3x^2}=\frac{1}{3}\lim\limits_{x\to0}\frac{1-\cos^3x}{x^2\cos^2x}.$$
Освободим знаменатель дроби от множителя $\cos^2x$ , поскольку он имеет предел $1$ при $x\to0$ . Развернем стоящую в числителе разность кубов и освободим числитель от сомножителя $(1+\cos x+\cos^2x)$ , имеющего предел $3$ при $x\to0$ . После этих упрощений получаем $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to0}\frac{1-\cos x}{x^2}.$$
Применим снова формулу (): $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to0}\frac{1-\cos x}{x^2}=\lim\limits_{x\to0}\frac{\sin x}{2x}.$$
Используя первый замечательный предел, получаем окончательный ответ $\frac{1}{2}$ , уже не прибегая к правилу Лопиталя.

m_E1_p219_1
Метод (Правило Лопиталя. Раскрытие неопределенности типа $\left$ .)
Для вычисления $\lim\limits_{x\to a}f(x)g(x)$ , где $f(x)$ — бесконечно малая, а $g(x)$ — бесконечно большая функции при $x\to a$ , следует преобразовать произведение к виду $\frac{f(x)}{1/g(x)}$ (неопределенность типа $\left[\frac{0}{0}\right]$ ) или к виду $\frac{g(x)}{1/f(x)}$ (неопределенность типа $\left[\frac{\infty}{\infty}\right]$ ) и далее использовать правило Лопиталя.

e_E1_p219_1

Пример
Найти $$\lim\limits_{x\to1}\sin(x-1)\cdot\tan\frac{\pi x}{2}.$$
Имеем: $$\begin{array}{c}\lim\limits_{x\to1}\sin(x-1)\cdot\tan\frac{\pi x}{2}=\left=\lim\limits_{x\to1}\frac{\sin(x-1)}{\cot\frac{\pi x}{2}}=\left[\frac{0}{0}\right]=\\=\lim\limits_{x\to1}\frac{\cos(x-1)}{-\frac{\pi}{2}\frac{1}{\sin^2\frac{\pi x}{2}}}=-\frac{2}{\pi}\lim\limits_{x\to1}\cos(x-1)\sin^2\frac{\pi x}{2}=-\frac{2}{\pi}.\end{array}$$

m_E1_p220_1
Метод (Правило Лопиталя. Раскрытие неопределенности типа $\left[\infty-\infty\right]$ .)
Для вычисления $\lim\limits_{x\to a}(f(x)-g(x))$ , где $f(x)$ и $g(x)$ — бесконечно большие функции при $x\to a$ , следует преобразовать разность к виду $f(x)\left(1-\frac{g(x)}{f(x)}\right)$ , затем раскрыть неопределенность $\frac{g(x)}{f(x)}$ типа $\left[\frac{\infty}{\infty}\right]$ . Если $\lim\limits_{x\to a}\frac{g(x)}{f(x)}\neq1$ , то $\lim\limits_{x\to a}(f(x)-\varphi(x))=\infty$ . Если же $\lim\limits_{x\to a}\frac{\varphi(x)}{f(x)}=1$ , то получаем неопределенность типа $[\infty\cdot0]$ , рассмотренную ранее.

e_E1_p220_1

Пример
Найти $$\lim\limits_{x\to+\infty}(x-\ln^3x).$$
Имеем: $$\lim\limits_{x\to+\infty}(x-\ln^3x)=[\infty-\infty]=\lim\limits_{x\to+\infty}x\left(1-\frac{\ln^3x}{x}\right).$$
Так как $$\begin{array}{c}\lim\limits_{x\to+\infty}\frac{\ln^3x}{x}=\left[\frac{\infty}{\infty}\right]=\lim\limits_{x\to+\infty}\frac{3\ln^2x\cdot\frac{1}{x}}{1}=3\lim\limits_{x\to+\infty}\frac{\ln^2x}{x}=\\=3\lim\limits_{x\to+\infty}\frac{2\ln x\cdot\frac{1}{x}}{1}=6\lim\limits_{x\to+\infty}\frac{\ln x}{x}=6\lim\limits_{x\to+\infty}\frac{\frac{1}{x}}{1}=6\lim\limits_{x\to+\infty}\frac{1}{x}=0,\end{array}$$ то $$\lim\limits_{x\to+\infty}(x-\ln^3x)=+\infty.$$

m_E1_p221_1
Метод (Правило Лопиталя. Раскрытие неопределенностей типа $\left$ , $\left[\infty^0\right]$ , $\left$ .)
Во всех трех случаях имеется в виду вычисление предела выражения $\left(f(x)\right)^{g(x)}$ , где $f(x)$ есть в первом случае бесконечно малая, во втором случае — бесконечно большая, в третьем случае — функция, имеющая предел равный единице. Функция же $g(x)$ в первых двух случаях является бесконечно малой, а в третьем случае — бесконечно большой.
Логарифмируя выражение $\left(f(x)\right)^{g(x)}$ , получим равенство
$$\ln y=g(x)\ln f(x).$$
Найдем предел $\ln y$ , после чего найдем предел $y$ . Во всех трех случаях $\ln y$ является неопределенностью типа $$ , метод раскрытия которой изложен ранее.

e_E1_p221_1

Пример
Найти $$\lim\limits_{x\to+\infty}\left(1+\frac{1}{x}\right)^{2x}.$$
Введем обозначение $y=\left(1+\frac{1}{x}\right)^{2x}$ . Тогда $\ln y=2x\ln\left(1+\frac{1}{x}\right)$ является неопределенностью $[\infty\cdot0]$ . Преобразуя выражение $\ln y$ к виду $\ln y=2\frac{\ln\left(1+\frac{1}{x}\right)}{1/x}$ , находим по правилу Лопиталя $$\lim\limits_{x\to+\infty}\ln y=2\lim\limits_{x\to+\infty}\frac{\frac{1}{1+\frac{1}{x}}\left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}}=2\lim\limits_{x\to+\infty}\frac{1}{1+\frac{1}{x}}=2.$$
Следовательно, $$\lim\limits_{x\to+\infty}y=\lim\limits_{x\to+\infty}\left(1+\frac{1}{x}\right)^{2x}=e^2.$$

Решение пределов функции онлайн . Найти предельное значение функции либо функциональной последовательности в точке, вычислить предельное значение функции на бесконечности. определить сходимость числового ряда и многое другое можно выполнить благодаря нашему онлайн сервису - . Мы позволяем находить лимиты функций онлайн быстро и безошибочно. Вы сами вводите переменную функции и предел, к которому она стремится, анаш сервис проводит все вычисления за вас, выдавая точный и простой ответ. Причем для нахождения предела онлайн вы можете вводить как числовые ряды, так и аналитические функции, содержащие константы в буквенном выражении. В этом случае найденный предел функции будет содержать эти константы как постоянные аргументы в выражении. Нашим сервисом решаются любые сложные задачи по нахождению пределов онлайн , достаточно указать функцию и точку в которой необходимо вычислить предельное значение функции . Вычисляя пределы онлайн , можно пользоваться различными методами и правилами их решения, при этом сверяя полученный результат с решением пределов онлайн на www.сайт, что приведет с успешному выполнению задачи - вы избежите собственных ошибок и описок. Либо вы полностью можете довериться нам и использовать наш результат в своей работе, не затрачивая лишних усилий и времени на самостоятельные вычисления предела функции. Мы допускаем ввод таких предельных значений, как бесконечность. Необходимо ввести общий член числовой последовательности и www.сайт вычислит значение предела онлайн на плюс или минус бесконечности.

Одним из основных понятий математического анализа является лимит функции и предел последовательности в точке и на бесконечности, важно уметь правильно решать пределы . С нашим сервисом это не составит никакого труда. Производится решение пределов онлайн в течение нескольких секунд, ответ точный и полный. Изучение математического анализа начинается с предельного перехода , пределы используются практически во всех разделах высшей математики, поэтому полезно иметь под рукой сервер для решения лимитов онлайн , каковым является сайт.

Теорема Лопита́ля (также правило Бернулли - Лопиталя ) - метод нахождения пределов функций,раскрывающий неопределённости вида и . Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.

Точная формулировка .

Правило говорит, что если функции f (x ) и g (x ) обладают следующим набором условий:

тогда существует . При этом теорема верна и для других баз (для указанной будет приведено доказательство).

История.

Способ раскрытия такого рода неопределённостей был опубликован Лопиталем в его сочинении «Анализбесконечно малых», изданном в 1696 году. В предисловии к этому сочинению Лопиталь указывает, что безвсякого стеснения пользовался открытиями Лейбница и братьев Бернулли и «не имеет ничего против того,чтобы они предъявили свои авторские права на все, что им угодно». Иоганн Бернулли предъявил претензиина все сочинение Лопиталя целиком и в частности после смерти Лопиталя опубликовал работу подпримечательным названием «Усовершенствование моего опубликованного в „Анализе бесконечно малых“метода для определения значения дроби, числитель и знаменатель которой иногда исчезают», 1704 .

Доказательство.

Отношение бесконечно малых

Докажем теорему для случая, когда пределы функций равны нулю (т. н. неопределённость вида ).

Поскольку мы рассматриваем функции f и g только в правой проколотой полуокрестности точки a , мы можемнепрерывным образом их доопределить в этой точке: пусть f (a ) = g (a ) = 0. Возьмём некоторый x израссматриваемой полуокрестности и применим к отрезку теорему Коши . По этой теореме получим:

,

но f (a ) = g (a ) = 0, поэтому .

Для конечного предела и

Для бесконечного,

что является определением предела отношения функций.

Отношение бесконечно больших

Докажем теорему для неопределённостей вида .

Пусть, для начала, предел отношения производных конечен и равен A . Тогда, при стремлении x к a справа,это отношение можно записать как A + α, где α - O (1). Запишем это условие:

Зафиксируем t из отрезка и применим теорему Коши ко всем x из отрезка :

Что можно привести к следующему виду:

.

Для x , достаточно близких к a , выражение имеет смысл; предел первого множителя правой части равенединице (так как f (t ) и g (t ) - константы , а f (x ) и g (x ) стремятся к бесконечности). Значит, этот множительравен 1 + β, где β - бесконечно малая функция при стремлении x к a справа. Выпишем определение этогофакта, используя то же значение , что и в определении для α:

Получили, что отношение функций представимо в виде (1 + β)(A + α), и .По любому данному можно найти такое , чтобы модуль разности отношения функций и A был меньше ,значит, предел отношения функций действительно равен A .