Электрические заряды, их взаимодействие. Электризация тел

Цель урока:

Образовательная: Формирование начальных представлений об электрическом заряде, о взаимодействии заряженных тел, о существовании двух видов зарядов.
Изучение и выяснение сущности процесса электризации тел.
Воспитательная:
Воспитание любознательности, эмоциональной и доброжелательной атмосферы.
Воспитание умения работать в коллективе.
Развивающая:
Выделять электрические явления в природе и технике.
Определять знак заряда наэлектризованного тела.
Познакомить с краткими историческими сведениями изучения электрических зарядов.

Тип урока: открытие новых знаний

Ход урока.

    Организационный момент

    Актуализация знаний

    Объяснение нового материала

    Закрепление

    Итог урока. Рефлексия

    Оргмомент

Первичный инструктаж по ТБ.

II . Мотивация учебной деятельности

Учитель демонстрирует загадочный эксперимент: «Танцующие человечки».

Учитель:

Ребята, сейчас я покажу вам фокус. Внимательно следите за всеми моими действиями, а в конце моего эксперимента попробуем ответить на мой вопрос.

На демонстрационный стол учитель ставит оборудование с «Танцующими человечками»

Ш. Актуализация знаний

Учитель:

И так, мы закончили изучение темы «Изменение агрегатных состояний вещества», сейчас повторим пройденный материал. На интерактивной доске нанесена сетка кроссворда. Я задаю вопрос и номер вертикальной клетки, в которую надо ученику начинать записывать ответ на вопрос. Когда вы правильно заполните весь кроссворд, то в 10 столбце будет написано слово, которое является темой сегодняшнего урока.

На каждый вопрос будут отвечать разные ученики

Вопросы:

    Скалярная физическая величина, которая в данном разделе представлена как «Количество теплоты» (энергия)

    Явление передачи внутренней энергии от одного тела к другому или от одной его части к другой (теплопроводность)

    Процесс, протекающий с выделением большого количества теплоты при соединении атомов в молекулы (горение)

    Один ход поршня в двигателе внутреннего сгорания (такт)

    Физическая величина, которая остается постоянной во время процесса перехода вещества из одного агрегатного состояния в другое (температура)

    Разновидность теплового двигателя (турбина)

    Составная часть теплового двигателя в качестве всего выступает атмосфера (холодильник)

    Переход вещества из жидкого состояния в газообразное (парообразование)

    Изобретатель универсальной паровой машины. (Уатт)

    Процесс перехода вещества из газообразного состояния в жидкое (конденсация)

    Интенсивное парообразование, при котором внутри жидкости растут и поднимаются пузырьки пара (кипение)

    Изменение материи (явление)

    Новый материал

Учитель:

Сначала мы узнаем легенду об электризации, а затем проведем эксперимент.

    Выступление

В VI веке до нашей эры древние греки очень любили украшения и мелкие поделки из янтаря, названного ими за его цвет и блеск «электрон» - что значит «солнечный камень». Дочь Фалеса пряла шерсть янтарным веретеном, изделием финикийских мастеров. Как-то, уронив веретено в воду, девушка стала обтирать его краем своего шерстяного хитона и заметила, что к веретену пристало несколько шерстинок. Думая, что они прилипли к веретену, потому что оно все еще влажно, она принялась вытирать его еще сильнее. И что же? Шерстинок налипало тем больше, чем сильнее натиралось веретено. Девушка обратилась за разъяснением этого явления к отцу. Философ не смог сразу объяснить происходящее своей дочери, но похвалив за внимательность, обещал подумать. Вечером Фалес, пробуя очистить веретено, заметил, что при натирании веретена в темноте видны искры. «Тут есть о чём подумать и поразмыслить с моими учениками», - решил Фалес. Фалес понял, что причина в веществе, из которого сделано веретено, и в первый же раз, как к пристани Милета подошел корабль финикийских купцов, он накупил различных янтарных изделий и убедился, что все они, будучи натерты шерстяной материей, притягивают легкие предметы, подобно тому, как магнит притягивает железо. А явление замеченное дочерью Фалес назвал электричеством от слова электрон (янтарь).

Речь идет о распространённом явлении в природе и в жизни людей – электризации тел.

Почему это произошло? В чем суть физического явления? Это нам предстоит выяснить на сегодняшнем уроке.

В тетрадях записываем: тему урока. Сформулируйте цель нашего урока.

Только ли янтарь может притягивать другие тела?

В начале семнадцатого века английский ученый Уильям Гильберт выяснил, что при трении могут электризоваться многие вещества: алмаз, сапфир, сургуч, и что притягивают они не только пушинки, но и металлы, дерево, воду, масло ….

Давайте проверим. (Опыт показывает учитель).

Опыт 1: Наэлектризованная эбонитовая палочка подносится к деревянной линейке. (Линейка, лампа, вкрученная в патрон на подставке, эбонитовая палочка, потертая о мех)

Результат: Линейка начинает вращаться.

Опыт 2: Наэлектризованная стеклянн ая палочка (или плексигласовая линейка, потертая о бумагу или шелк) подносится к живому комнатному цветку.

Результат : Листочки отклоняются к палочке.

Опыт 3: Видеоролик (Шарик и вода)

Результат : Струйка отклоняется к шарику.
Что мы наблюдали в процессе опытов? (После обсуждения опытов, делаем выводы).

    Явления, в которых тела приобретают свойства притягивать другие тела , с 17 века называют электризацией. Или говорят: Это процесс сообщения телу электрического заряда.

    Электризация тел происходит при их соприкосновении (при контакте). (При трении увеличивается их площадь соприкосновения).

    Электризация может происходить не только в результате трения, но и другими способами:

СОПРИКОСНОВЕНИЕМ, УДАРОМ (например, резиновый шланг резко ударить о массивный предмет и поднести к электроскопу),

ПОД ВОЗДЕЙСТВИЕМ СВЕТА.

Раздел теории электричества, в котором изучается взаимодействие неподвижных электрических зарядов называется электростатикой (от электро... и статика от греч. statike - учение о равновесии) .

В 17 веке немецким ученым Отто фон Герике было замечено, что, кроме притяжения, существует электрическое отталкивание. А помогла ему в этих исследованиях сделанная им первая электростатическая машина.

В настоящее время эта машина выглядит так (показать ) и называется электрофорная машина. Чуть позже познакомимся с ней поближе.

В электризации всегда участвует не менее 2-х тел. При этом электризуются оба тела.

Наэлектризованные тела либо притягиваются, либо отталкиваются.

Проверим в действии электрофорную машину. К шарикам электрофорной машины подсоединяем бумажные султанчики, которые находятся на изолирующих подставках.

Опыт 5. (Помогает ученик ). Вращая ручку машины, наблюдаем за их поведением.

А) султанчики подсоединены к одному полюсу машины (листочки султанов отталкиваются);

Б) султанчики подсоединены к разным полюсам машины (листочки султанов притягиваются);

Результат : в природе существуют два вида электрических зарядов.

Какие выводы вы сделали из этой серии экспериментов?

Как проявляется электризация тел? (Электризация проявляется в виде притяжения или отталкивания тел ). Сколько тел участвует в электризации? Как ведут себя тела, имеющие заряды одного вида? Разного вида?

    В природе существуют два вида электрических зарядов.

    Тела, имеющие электрические заряды одного вида - отталкиваются, а тела, имеющие заряды разного вида - притягиваются.

Шарль Дюфе добился наибольших успехов в систематизации сведений по электрическим эффектам. Шарль Франсуа Дюфе (1698-1739) - французский физик открыл в 18 веке (1733) существование двух видов электричества, которое назвал " стеклянным" и "смоляным ".

Первое возникает на стекле, горном хрустале, драгоценных камнях, шерсти, волосах и т. д.; второе - на янтаре, шелке, бумаге и т. п. При этом установил, что однородные электричества отталкиваются, а разнородные притягиваются.

Представление о положительном и отрицательном зарядах было введено в 1747 году Франклином. Эбонитовая палочка от электризации о шерсть и мех заряжается отрицательно. Заряд, который образуется на стеклянной палочке, потертой о шелк, Франклин назвал положительным.

Стеклянное электричество (стеклянная палочка) - положительное.

Смоляное (эбонитовая палочка) – отрицательное.

Нигде и никогда в природе не возникает и не исчезает заряд одного знака . Заряды появляются парами. Появление положительного заряда всегда сопровождается появлением отрицательного. И наоборот. Это и есть закон сохранения электрического заряда. Положительный заряд в физике обозначается +q или q. Отрицательный заряд – -q.

Электрический заряд – это физическая величина, характеризующая свойства заряженных тел взаимодействовать друг с другом . Измеряется в кулонах (в честь Ш.Кулона.)

Обратите внимание, что приобретаемый заряд тела – относителен. То есть, он зависит от материала взаимодействующих тел. Например, нейлон, потертый о стекло, зарядится отрицательно. Но если его потереть о резину, то он зарядится положительно.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда .

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Рисунок 1.1.1.

Перенос заряда с заряженного тела на электрометр

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10 –9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

    Закрепление материала

Выполнение теста.

Решение задач.

1. С какой силой взаимодействуют два заряда по 10 нКл, находящихся на расстоянии 3 см друг от друга?

F= k |q1| |q2|/r2 F= 10-3 H

2. На каком расстоянии друг от друга заряды 1мкКл и 10нКл взаимодействуют с силой 9мН?

F= k|q1||q2|/r2 r2= k|q1||q2|/F; r= 10 cм

    Рефлексия. Итог урока.

Что мы узнали? Чему научились? Достигли мы цели урока? Что было сложным? Где в жизни могут вам пригодиться знания, которые вы получили на уроке?

Домашнее задание: §§

** подготовить сообщения «Первые исследователи по изучению природы молнии», «Использование взаимодействия наэлектризованных тел в технике» (дифференцированно)

Оценивание деятельности учащихся на уроке

Подвесив на двух нитях лёгкие шарики из фольги и коснувшись каждого из них стеклянной палочкой, потёртой о шёлк, можно увидеть, что шарики оттолкнутся дpуг от друга. Если потом коснуться одного шарика стеклянной палочкой, потёpтой о шёлк, а другого эбонитовой палочкой, потёpтoй о мех, то шарики притянутся дpуг к другу. Это означает, что стеклянная и эбонитовая палочки при трении приобретают заряды разных знаков , т.е. в природе существуют два рода электрических зарядов , имеющих противоположные знаки: положительный и отрицательный. Условились считать, что стеклянная палочка, потёртая о шёлк, приобретает положительный заряд , а эбонитовая палочка, потёртая о мех, приобретает отрицательный заряд .

Из описанного опыта также следует, что заряженные тела взаимодействуют друг с другом . Такое взаимодействие зарядов называют электрическим. При этом одноимённые заряды, т.е. заряды одного знака, отталкиваются друг от друга, а разноимённые заряды притягиваются друг к другу.

На явлении отталкивания одноимённо заряженных тел основано устройство электроскопа - прибора, позволяющего определить, заряжено ли данное тело, и электрометра , прибора, позволяющего оценить значение электрического заряда.

Если заряженным телом коснуться стержня электроскопа, то листочки электроскопа разойдутся, поскольку они приобретут заряд одного знака. То же произойдёт со стрелкой электрометра, если коснуться заряженным телом его стержня. При этом, чем больше заряд, тем на больший угол отклонится стрелка от стержня.

Из простых опытов следует, что сила взаимодействия между заряженными телами может быть больше или меньше в зависимости от величины приобретённого заряда. Таким образом, можно сказать, что электрический заряд, с одной стороны, характеризует способность тела к электрическому взаимодействию, а с другой стороны, является величиной, определяющей интенсивность этого взаимодействия.

Заряд обозначают буквой q , за единицу заряда принят кулон : [q ] = 1 Кл .

Если коснуться заряженной палочкой одного электрометра, а затем этот электрометр соединить металлическим стержнем с другим электрометром, то заряд, находящийся на первом электрометре, поделится между двумя электрометрами. Можно затем соединить электрометр с ещё несколькими электрометрами, и заряд будет делиться между ними. Таким образом, электрический заряд обладает свойством делимости . Пределом делимости заряда, т.е. наименьшим зарядом, существующим в природе, является заряд электрона . Заряд электрона отрицателен и равен 1,6*10 -19 Кл . Любой другой заряд кратен заряду электрона.

§ 1 Два вида электрических зарядов. Взаимодействие электрических зарядов

Структура Вселенной формируется гравитационным притяжением, но только эта сила привела бы к неограниченному сжатию. Чтобы размеры тел оставались стабильными, необходима сила отталкивания. К таким силам можно отнести силы электромагнитного взаимодействия. Они вызывают притяжение и отталкивание частиц. Электродинамика - область физики, которая изучает электромагнитное взаимодействие заряженных частиц. Электростатика - раздел электродинамики, изучающий взаимодействие неподвижных (статических) электрических зарядов.

Что же такое электрический заряд? Для создания представления необходимы начальные сведения, знания, опыты, эксперименты и гипотезы.

Электрическое взаимодействие (в отличие от гравитационного) - это не только взаимное притяжение, но и отталкивание.

Проведем эксперимент: эбонитовую палочку, наэлектризованную трением, подносим сначала к одному «султанчику», затем ко второму. Увидим, что листочки будут отталкиваться, когда «султанчики» будем подносить друг к другу (рис.1).

Второй «султанчик» электризуем палочкой, изготовленной из стекла, потертую о шелк. Поднесем его к первому «султанчику», и увидим притяжение их листочков (рис. 2, 3).

Существующие в природе электрические заряды (положительные и отрицательные) можно подтвердить этими опытами.

Тела, имеющие электрический заряд, взаимодействуют друг с другом следующим образом:

·притягиваются, если имеют заряды противоположного знака (рис. 4);

·отталкиваются, если они имеют заряды одинакового знака (рис. 5).

В процессе электризации разных тел сила взаимодействия между телами будет больше (если тело имеет большой заряд) или меньше (если тело имеет маленький заряд). Таким образом, заряд - это физическая величина, и единицей измерения заряда принято считать 1 кулон (1Кл).

Электрический заряд - это физическая мера, характеризующая свойства заряженных тел взаимодействовать друг с другом.

Самая маленькая порция заряда - элементарный заряд, он равняется 1,6 · 10-19 Кл. Меньше этой величины не может быть заряд никакого тела.

Если наэлектризовать эбонитовую палочку шерстяной варежкой, а шелковым платком стеклянную палочку, то подвесив палочки на нитях, можно увидеть, что:

Эбонит и шерсть притягивают друг друга;

Стекло и шелк притягивают друг друга;

Стекло и шерсть отталкиваются друг от друга;

Эбонит и шелк отталкиваются друг от друга.

Два тела наэлектризуем трением, при этом они заряжаются равными по модулю и противоположными по знаку зарядами. Благодаря контакту первое тело теряет электроны, другое приобретает их. Этим можно объяснить, почему на одном теле будет избыток электронов (отрицательный заряд), а на другом - недостаток (положительный заряд).

Вывод: если тело заряжено отрицательно, то у него имеется избыток электронов, если же оно

заряжено положительно, то у него недостаток электронов.

Два наэлектризованных тела притягиваются или отталкиваются, это зависит от того, каким способом они наэлектризованы. Тела, которые электризуются с помощью трения, всегда только притягиваются.

В проводниках некоторые электроны могут перемещаться от одного атома к другому, этот процесс происходит по причине того, что электроны слабо связаны с атомным ядром. Их называют свободными. Именно эти атомы обеспечивают перенос заряда (проводимость).

В диэлектриках практически нет проводимости, т.к. в них почти нет свободных электронов и "некому" переносить заряд.

По электрическим свойствам все вещества можно разделить на два вида:

1. Диэлектрики - вещества, которые не имеют свободных зарядов и не позволяют заряду одного тела "перетекать" на другие тела.

2. Проводники - это тела и вещества, в которых существуют свободные заряженные частицы; они могут перемещаться, при этом переносят заряд в другие части тела либо к другим телам.

По способности проводить заряды вещества можно разделить на проводники: металлы, почва, растворы солей и кислот и т. п., и непроводники (диэлектрики): фарфор, эбонит, стекло, газы, пластмассы и т. п. К полупроводникам относят ряд веществ, проводимость которых зависит от внешних условий (температуры, освещенности, наличия примесей).

Электрометр - это прибор для обнаружения электрических зарядов и определения их приблизительной величины (Рис. 6).

Чтобы определить, заряжено тело или нет, можно воспользоваться электрометром. Для этого нужно поднести тело к шару А, если тело заряжено, то стрелка В отклонится. Почему же она отклоняется? Допустим, тело обладало отрицательным зарядом, т.е. на теле был избыток электронов. При соприкосновении с шаром часть электронов переместится на электрометр. Шар станет отрицательно заряженным. Шар соединен со стержнем, а стержень - со стрелкой, и все они являются проводниками, электроны переместятся на стержень, а затем и на стрелку. Пластмассовая пробка поможет в изоляции системы шар, стержень, стрелка. Следовательно, стержень и стрелка получат одноименный отрицательный заряд и будут отталкиваться, тем самым стрелка отклонится. Причем, чем больше будет заряд, тем больше будет угол отклонения стрелки. Электрометр позволяет только оценить величину заряда, т.е. сказать, что у одного тела заряд больше, чем у другого. С помощью электрометра нельзя определить наличие маленького заряда, т.к. при малом заряде силы отталкивания одноименных зарядов будет недостаточно для отклонения стрелки, т.е. с помощью электрометра невозможно определить наличие маленького заряда. Почему же стрелка при отсутствии заряда возвращается в исходное положение? Стрелка будет стремиться принять вертикальное положение, так как точка подвеса стрелки находится выше центра тяжести.

Происходящие в природе физические процессы не всегда объясняются действием законов молекулярно-кинетической теории, механики либо термодинамики. Существуют еще электромагнитные силы, которые действуют на расстоянии и не зависят от массы тела.

Их проявления впервые описаны в трудах древних ученых Греции, когда они янтарем, потертым о шерсть, притягивали легкие, маленькие частицы отдельных веществ.

Исторический вклад ученых в развитие электродинамики

Опыты с янтарем подробно изучались английским исследователем Уильямом Гильбертом . В последних годах XVI века он сделал отчет о своей работе, а предметы, способные притягивать другие тела на расстоянии, обозначил термином «наэлектризованные».

Французским физиком Шарлем Дюфе было определено существование зарядов с противоположными знаками: одни образовывались при трении стеклянных предметов о шелковую ткань, а другие - смол по шерсти. Он так и назвал их: стеклянные и смоляные. После завершения исследований Бенджамина Франклина было введено понятие отрицательных и положительных зарядов.

Шарль Кулон реализовал возможность измерения силы зарядов конструкцией крутильных весов собственного изобретения.

Роберт Милликен на основе серии проведенных опытов установил дискретный характер электрических зарядов любого вещества, доказав, что они состоят из определенного количества элементарных частиц. (Не путать с другим понятием этого термина - дробности, прерывистости.)

Труды перечисленных ученых послужили фундаментом современных знаний о процессах и явлениях, происходящих в электрических и магнитных полях, создаваемых электрическими зарядами и их движением, изучаемых электродинамикой.

Определение зарядов и принципы их взаимодействия

Электрическим зарядом характеризуют свойства веществ, обеспечивающих им возможность создавать электрические поля и взаимодействовать в электромагнитных процессах. Еще его называют количеством электричества и определяют как физическую скалярную величину. Для обозначения заряда приняты символы «q» или «Q», а при измерениях используют единицу «Кулон», названную в честь французского ученого, разработавшего уникальную методику.

Им был создан прибор, в корпусе которого использовались подвешенные на тонкой нити из кварца шарики. Они ориентировались в пространстве определенным образом, а их положение регистрировалось относительно проградуированной шкалы с равными делениями.

Через специальное отверстие в крышке к этим шарикам подводился другой шар, обладающий дополнительным зарядом. Возникающие силы взаимодействия заставляли отклоняться шарики, поворачивали их коромысло. Величина разницы отсчетов на шкале до ввода заряда и после него позволяла оценивать количество электричества в испытуемых образцах.

Заряд в 1 кулон характеризуется в системе СИ силой тока в 1 ампер, проходящей через поперечное сечение проводника за время, равное 1 секунде.

Все электрические заряды современная электродинамика разделяет на:

    положительные;

    отрицательные.

При взаимодействии их между собой у них возникают силы, направление которых зависит от существующей полярности.


Одинакового типа заряды, положительные либо отрицательные, всегда отталкиваются в противоположные стороны, стремясь, как можно дальше удалиться друг от друга. А у зарядов противоположных знаков действуют силы, стремящиеся сблизить их и соединить в одно целое.

Принцип суперпозиции

Когда в определенном объеме находится несколько зарядов, то для них действует принцип суперпозиции.


Его смысл в том, что каждый заряд определенным образом по рассмотренному выше способу взаимодействует со всеми остальными, притягиваясь к разноименным и отталкиваясь от однотипных. К примеру, на положительный заряд q1 действует сила притяжения F31 к отрицательному заряду q3 и отталкивания F21 - от q2.

Результирующая сила F1, действующая на q1, определяется геометрическим сложением векторов F31 и F21. (F1= F31+ F21).

Таким же методом определяются действующие результирующие силы F2 и F3 на заряды q2 и q3 соответственно.

Посредством принципа суперпозиции сделан вывод о том, что при определенном количестве зарядов в замкнутой системе между всеми ее телами действуют установившиеся электростатические силы, а потенциал в любой определенной точке этого пространства равен сумме потенциалов от всех отдельно приложенных зарядов.

Действие этих законов подтверждают созданные приборы электроскоп и электрометр , имеющие общий принцип работы.


Электроскоп состоит из двух одинаковых лепестков тонкой фольги, подвешенных в изолированном пространстве на токопроводящей нити, присоединенной к металлическому шарику. В обычном состоянии на этот шарик заряды не действуют, поэтому лепестки свободно висят в пространстве внутри колбы прибора.

Как можно передавать заряд между телами

Если к шарику электроскопа поднести заряженное тело, например, палочку, то заряд пройдет через шарик по токопроводящей нити к лепесткам. Они получат одноименный заряд и станут отодвигаться друг от друга на угол, пропорциональный приложенному количеству электричества.

У электрометра такое же принципиальное устройство, но он имеет небольшие отличия: один лепесток закреплен стационарно, а второй отходит от него и снабжен стрелкой, которая позволяет снимать отсчет с проградуированной шкалы.

Для переноса заряда от удаленного стационарно закрепленного и заряженного тела на электрометр можно воспользоваться промежуточными носителями.


Измерения, сделанные электрометром, не обладают высоким классом точности и на их основе сложно анализировать силы, действующие между зарядами. Для их исследования больше приспособлены крутильные весы Кулона. У них использованы шарики с диаметрами, значительно меньшими, чем их удаление друг от друга. Они обладают свойствами точечных зарядов - заряженных тел, размеры которых не влияют на точность прибора.

Измерения, выполненные Кулоном, подтвердили его догадку о том, что точечный заряд передается от заряженного тела к такому же по свойствам и массе, но незаряженному таким образом, чтобы равномерно распределиться между ними, уменьшаясь на источнике в 2 раза. Таким способом удалось уменьшать величину заряда в два, три и иное количество раз.

Силы, существующие между неподвижными электрическими зарядами, называют кулоновским либо статическим взаимодействием. Их изучает электростатика, являющаяся одним из разделов электродинамики.

Виды носителей электрических зарядов

Современная наука считает самой маленькой отрицательно заряженной частицей электрон , а положительной - позитрон . Они имеют одинаковую массу 9,1·10-31 кг. Элементарная частица протон обладает всего одним положительным зарядом и массой 1,7·10-27 кг. В природе количество положительных и отрицательных зарядов уравновешено.

В металлах движение электронов создает , а в полупроводниках носителями его зарядов являются электроны и дырки.

В газах ток образуется передвижением ионов - заряженных неэлементарных частиц (атомов или молекул) с положительными зарядами, называемыми катионами либо отрицательными - анионами.

Ионы образуются из нейтральных частиц.


Положительный заряд создается у частицы, потерявшей электрон под действием мощного электрического разряда, светового или радиоактивного облучения, потока ветра, движения масс воды или ряда других причин.

Отрицательные ионы образуются из нейтральных частиц, дополнительно получивших электрон.

Использование ионизации в медицинских целях и быту

Исследователи давно заметили способность отрицательных ионов воздействовать на организм человека, улучшать потребление кислорода воздуха, быстрее доставлять его к тканям и клеткам, ускорять процесс окисления серотонина. Это все в комплексе значительно повышает иммунитет, улучшает настроение, снимает боли.

Первый ионизатор, используемый для лечения людей, получил название люстры Чижевского , в честь советского ученого, который создал прибор, благотворно влияющий на здоровье человека.

В современных электроприборах для работы в бытовых условиях можно встретить встроенные ионизаторы в пылесосы, увлажнители воздуха, фены, сушилки…

Специальные ионизаторы воздуха очищают его состав, уменьшают количество пыли и вредных примесей.

Ионизаторы воды способны снижать количество химических реагентов в ее составе. Их используют для очистки бассейнов и водоемов, насыщая воду ионами меди или серебра, которые уменьшают рост водорослей, уничтожают вирусы и бактерии.