Как циркулирует кровь — кровяное давление, кровоток, распределение крови. Кровеносная система – как она работает? Профилактика проблем с кровообращением, лечение

В результате изучения материала данной главы студент будет:

знать

  • строение и функции крови и лимфы как жидких сред и транспортных систем в человеческом организме;
  • о формировании крово- и лимфообращения в онтогенезе;
  • возрастные физиологические особенности крови, сердечно-сосудистой и лимфатической систем в разные периоды детства;
  • факторы, влияющие на состояние и развитие кровоснабжения в онтогенезе;
  • пути реализации гигиенических требований к организации ухода, воспитания и обучения, направленных на укрепление и развитие системы кровоснабжения ребенка и подростка;

уметь

Анализировать взаимосвязь возрастных особенностей кровоснабжения в разные периоды онтогенеза и обусловленных ими гигиенических требований к организации ухода, обучения и воспитания детей и подростков;

владеть навыками

  • оценки основных показателей крови и гемодинамики в зависимости от возраста ребенка;
  • культурно-просветительной работы по предупреждению нарушений кровоснабжения в детском и подростковом возрасте.

Кровь

Состав и функции крови

Связующим элементом, обеспечивающим жизнедеятельность каждой клетки организма, является кровь - жидкая соединительная ткань, непрерывно передвигающаяся по сосудам. Она выполняет важнейшую задачу доставки кислорода, питательных веществ, гормонов ко всем тканям организма и удаления продуктов жизнедеятельности клеток. Помимо этого, кровь участвует в процессах терморегуляции, поддерживая постоянную температуру тела, и в процессах иммунной защиты организма от микроорганизмов, способных вызвать заболевания.

Кровь состоит из жидкой части - кровяной плазмы (примерно 54% объема) и так называемых форменных элементов крови - специфических кровяных клеток (46% объема) (рис. 4.1). Плазма - желтоватая полупрозрачная жидкость, содержащая 90-92% воды и 8-10% различных биологически активных веществ (белков, жиров, углеводов, микроэлементов, витаминов, гормонов, ферментов, продуктов пищеварения и отходов жизнедеятельности). Из органов пищеварения в плазму поступают питательные

Рис. 4.1. Состав крови человека вещества, которые током крови разносятся ко всем органам. Концентрация минеральных веществ в плазме крови относительно постоянна: соотношение воды и минеральных солей поддерживается путем выделения избыточного количества химических соединений через почки, потовые железы, легкие.

Красные кровяные клетки - эритроциты - являются переносчиками кислорода и углекислого газа в крови. У человека их диаметр составляет 7-8 мкм и приблизительно равен диаметру капилляров, а толщина равна 2 мкм. В 1 мл крови содержится около 5 млн эритроцитов. Они образуются в основном в костях черепа, грудине, ребрах, позвонках и лопатках, существуют 3-4 месяца и разрушаются в печени или селезенке в количестве 200 млрд в день. Зрелые формы эритроцитов не имеют клеточного ядра, оно утрачивается в процессе созревания. Кроме того, они обладают деформабильностью - способностью к обратимым изменениям размеров и формы при прохождении через капилляры. Благодаря специфическому железосодержащему белку гемоглобину эритроциты способны связывать кислород и переносить его к внутренним органам; фермент карбоанги- драза связывает образующийся в процессе клеточного метаболизма углекислый газ С0 2 , что позволяет эритроцитам выводить его из организма. Специфическая двояковогнутая форма эритроцита увеличивает эффективную поверхность газообмена (рис. 4.2). Гемоглобин активно соединяется не только с кислородом, но и с угарным газом СО, который парализует соединение гемоглобина с кислородом и делает невозможным перенос кислорода кровью (отравление угарным газом). Недостаток эритроцитов в крови, или снижение содержания гемоглобина, получило название «анемия» (малокровие) и проявляется слабостью, головокружением, одышкой.

Рис. 4.2.

1 - эритроциты; 2 - лейкоциты; 3 - тромбоциты (снимок с использованием электронного микроскопа)

Группы крови и резус-фактор. Кровь одного человека не всегда совместима с кровью другого. В мембране эритроцитов человека содержатся различные антигены - белки-маркеры, в которых закодирована специфичность данной клетки. При попадании в организм клеток с «чужим» маркером организм стремится повредить и удалить эту клетку - такая реакция является одной из основ иммунной защиты организма. Однако при необходимости переливания крови эта реакция может привести к тяжелым последствиям: введенная кровь другого человека «не принимается» организмом, развивается склеивание эритроцитов и последующее их разрушение. Антигенный «портрет» крови получил название группы крови , он отражает содержание в эритроцитах специфических белков, отвечающих за совместимость или несовместимость крови различных людей.

У людей различают четыре группы крови, определяемые по системе АВО. Открытие системы принадлежит К. Ландштейнеру, который в 1901 г. обнаружил в эритроцитах людей агглютиногены («маркеры») А и В, а в плазме крови - агглютинины а и b (антитела - гамма-глобулины). В зависимости от наличия или отсутствия в крови конкретного человека агглютиногенов и агглютининов группы крови в системе АВО обозначаются цифрами и теми агглютиногенами, которые содержатся в эритроцитах данной группы:

  • I группа (О) - в эритроцитах агглютиногенов нет, в плазме содержатся агглютинины а и Ь
  • II группа (А) - в эритроцитах содержится агглютиноген А, в плазме - агглютинин Ь
  • III группа (В) - в эритроцитах находится агглютиноген В, в плазме - агглютинин а
  • IV группа (АВ) - в эритроцитах обнаруживаются агглютиногены А и В, в плазме агглютининов нет.

Агглютинация (склеивание эритроцитов с последующим их разрушением) происходит в том случае, если в крови человека встречаются агглютиноген с одноименным агглютинином: агглютиноген А с агглютинином а или агглютиноген В с агглютинином Ь. При переливании несовместимой крови в результате агглютинации и последующего гемолиза (распада) эритроцитов развивается гемотрансфузионный шок, который может привести к смерти. Поэтому было разработано правило переливания небольших количеств крови (200 мл), по которому учитывается наличие агглютиногенов в эритроцитах донора и агглютининов в плазме реципиента (табл. 4.1).

Таблица 4.1

Совместимость крови людей

Группа крови

Может отдавать кровь группам

Может принимать кровь групп

I, II, III, IV (О, А, В, АВ)

II, IV (А, АВ)

III, IV (В, АВ)

I,II,III, IV (О, А, В, АВ)

Примечание. При необходимости переливания больших количеств крови можно пользоваться только кровыо одноименной группы.

В плазме крови новорожденных агглютининов (антител) нет. Они образуются в течение первого года жизни ребенка к тем антигенам, которых нет в его собственных эритроцитах.

Кроме группы крови, совместимость определяется системой Rh-фактора (резус-система ). Резус-принадлежность крови определяется наличием или отсутствием на поверхности эритроцитов группы специфических белков-«маркеров», называемых резус-фактором (наличие фактора обозначается - Rh+, отсутствие - Rh-). Этот фактор обнаружен в 1940 г. К. Ландштейнером и А. Вейнером у обезьян Macacus rhesus , а затем и у человека. Около 85% европейцев, 93% африканцев, 99% индейцев и азиатов обладают резус-фактором и соответственно являются резус-поло- жительными, остальные люди, не имеющие его - резусотрицательными. При попадании в организм человека с резус-положительным фактором (Rh+) резус-отрицательной крови (Rh-) несовместимости не происходит. Но при обратной ситуации - попадании Rh+-i

Белые кровяные клетки - лейкоциты - играют важную роль в защите организма от болезней. Существует несколько видов лейкоцитов, отличающихся по строению и функциям. Они бесцветны, поэтому их и называют белыми клетками крови (см. рис. 4.2). В 1 мм 3 крови содержится 6-8 тыс. лейкоцитов. Продолжительность их жизни различна: от нескольких суток до нескольких десятков лет. Лейкоциты непрерывно образуются в кроветворных органах - красном костном мозге, селезенке и лимфатических узлах. Лейкоциты способны активно передвигаться.

Все лейкоциты имеют ядра, по строению ядра они делятся на два типа. Гранулоциты имеют разделенное на лопасти ядро, зернистую цитоплазму и способны к амебоидному движению. Их можно разделить на фагоциты, или нейтрофилы, поглощающие болезнетворные бактерии; эозинофилы и базофилы. Лграиулоциты содержат ядро овальной формы и незернистую цитоплазму. Они подразделяются на моноциты, поглощающие бактерии, и лимфоциты, вырабатывающие антитела. Соотношение состава белых клеток крови (лейкоцитов) представлено на рис. 4.1.

Красные кровяные пластинки (тромбоциты ) - это фрагменты клеток неправильной формы, обычно лишенные ядра. Они образуются в костном мозге; в 1 мл крови содержится около 250 тыс. тромбоцитов. Их основное назначение - инициация свертывания крови.

Гемостаз (свертывание крови, или гемокоагуляция) - сложный биологический процесс образования в крови тромбов, в результате чего кровь теряет текучесть. При разрушении стенки сосуда тромбоциты собираются у места травмы и выделяют тромбопластин, который наряду с кальцием, витамином К и протромбином способствует превращению фибриногена (растворимого белка крови) в фибрин (нерастворимые белковые «нити»). Образуются сети фибрина, где задерживаются форменные элементы крови. Сгусток крови, состоящий из нитей фибрина и клеток крови, - тромб - закупоривает поврежденное место. Этот процесс препятствует потере крови организмом при повреждении сосудистого русла и является важным механизмом поддержания гомеостаза - постоянства внутренней среды. Дисбаланс сложных механизмов системы гемостаза может проявляться в неспособности крови образовывать тромбы (например, при наследственной болезни гемофилии, характеризующейся повышенной кровоточивостью, приводящей к значительным потерям крови при небольших повреждениях) или, напротив, в тромбообразовании в сосудах с нарушением тока крови (при некоторых болезнях крови или специфических изменениях системы гемостаза в пожилом возрасте).

Стенки капилляров проницаемы для всех компонентов крови, за исключением эритроцитов. Часть крови уходит через них, образуя межклеточную жидкость. Именно через эту жидкость и происходит обмен веществ между кровью и тканями. Значительная часть межклеточной жидкости возвращается в кровь через венозные концы капилляров или лимфатическую систему.

Для полноценного функционирования головного мозга требуется его постоянное и бесперебойное кровоснабжение. Нормальная деятельность мозговых центров напрямую зависит от беспрерывного поступления кислорода и питательных веществ, которые доставляются с кровью. Именно поэтому за работу мозга в первую очередь отвечает сосудистая система человеческого тела. Нервные клетки повреждаются быстрее остальных, в случае нарушений кровообращения. Даже кратковременный сбой системы кровотока может привести к потере сознания. Такая высокая чувствительность обусловлена острой потребностью мозга в кислороде и питательных веществах, в частности - в глюкозе.

Система кровоснабжения

Какие артерии направляются к черепу и питают мозг кровью? К ним относятся главные четыре сосуда: 2 внутренние сонные артерии и 2 позвоночные. От головы кровь отливает по 2 яремным внутренним венам.

Внутренние сонные артерии . Являются ветвями общих сонных сосудов и располагаются в области шеи, по ее бокам. Если приложить палец к телу в этом участке, то можно четко ощутить их пульсацию. Когда сонные артерии пережимают, то происходит внезапное нарушение мозговой деятельности и у человека случается обморок.

Левая артерия отходит от аортальной дуги. Вверху горла, у края гортани, общий сонный сосуд разделяется на внутренний и наружный. Внутренняя артерия проходит внутрь черепа и принимает непосредственное участие в кровоснабжении мозга и глазных яблок. В свою очередь, наружная сонная артерия обеспечивает кровью шею, кожный покров лица и головы.

Данные элементы сосудистой системы отходят от правой и левой подключичной артерии. Они проникают в область головы через отверстия, находящиеся в горизонтальных отростках позвонков шейного отдела. В полость черепа позвоночные артерии проходят через крупную затылочную щель.

Артерии системы мозгового кровообращения соединяются с дугой аорты и по этой причине в них всегда поддерживается высокое давление крови, движущейся с большой скоростью. Для нормализации кровотока перед его поступлением в головной мозг, позвоночные и сонные артерии имеют двойные изгибы в участке входа в череп. Эти изгибы называются сифоны и именно в них происходит замедление потока крови и снижение пульсовых колебаний.

Проникнув в полость головы, сонные и позвоночные сосуды объединяются в один, образуя у основания черепа Веллизиев круг. Этот артериальный круг большого мозга производит контроль над распределением поступающей крови во все отделы головного мозга и препятствует сбоям в системе кровоснабжения.

Мозговые артерии . От сонной внутренней артерии отделяются мозговые (передняя и средняя). Они отвечают за питание внутренней и наружной оболочки полушарий мозга. Они приводят кровь к лобной, височной и теменной долям, а также к глубоким отделам. Ветви позвоночных артерий состоят из задних мозговых сосудов, питающих доли затылочных полушарий, и из артерий, подающих кровь к стволу мозга.

От крупных мозговых артерий разветвляются многочисленные мелкие, которые погружаются в ткани головного мозга. Они образуют цельную капиллярную сеть.

Головной мозг является основным элементом центральной нервной системы, отвечающей за деятельность всех систем организма. Поэтому очень важно, чтобы кровоснабжение не нарушалось и мозговые структуры получали все необходимые вещества и кислород, которые поступают через главные артерии, направляющиеся к черепу.

В человеческом организме кровеносная система устроена так, чтобы полностью отвечать его внутренним потребностям. Немаловажную роль в продвижении крови играет наличие замкнутой системы, в которой разделены артериальный и венозный кровяные потоки. И осуществляется это с помощью наличия кругов кровообращения.

Историческая справка

В прошлом, когда под рукой у ученых еще не было информативных приборов, способных изучать физиологические процессы на живом организме, величайшие деятели науки вынуждены были заниматься поиском анатомических особенностей у трупов. Естественно, что у умершего человека сердце не сокращается, поэтому некоторые нюансы приходилось домысливать самостоятельно, а иногда и попросту фантазировать. Так, еще во втором веке нашей эры Клавдий Гален, обучающийся по трудам самого Гиппократа, предполагал, что артерии содержат в своем просвете воздух вместо крови. На протяжении дальнейших столетий было выполнено немало попыток объединить и связать воедино имеющиеся анатомические данные с позиции физиологии. Все ученые знали и понимали, как устроена система кровообращения, но вот как это работает?

Колоссальный вклад в систематизацию данных по работе сердца внесли ученые Мигель Сервет и Уильям Гарвей в 16-м веке. Гарвей, ученый, впервые описавший большой и малый круги кровообращения, в 1616 году определил наличие двух кругов, но вот как связаны между собой артериальное и венозное русло, он объяснить в своих трудах не мог. И лишь впоследствии, в 17-м веке, Марчелло Мальпиги, один из первых начавший использовать микроскоп в своей практике, открыл и описал наличие мельчайших, невидимых невооруженным глазом капилляров, которые служат связующим звеном в кругах кровообращения.

Филогенез, или эволюция кругов кровообращения

В связи с тем, что по мере эволюции животные класса позвоночных становились все более прогрессивными в анатомо-физиологическом отношении, им требовалось сложное устройство и сердечно-сосудистой системы. Так, для более быстрого движения жидкой внутренней среды в организме позвоночного животного появилась необходимость замкнутой системы циркуляции крови. По сравнению с иными классами животного царства (например, с членистоногими или с червями), у хордовых появляются зачатки замкнутой сосудистой системы. И если у ланцетника, к примеру, отсутствует сердце, но существует брюшная и спинная аорта, то у рыб, амфибий (земноводных), рептилий (пресмыкающихся) появляется двух- и трехкамерное сердце соответственно, а у птиц и млекопитающих – четырехкамерное сердце, особенностью которого является средоточие в нем двух кругов кровообращения, не смешивающихся между собой.

Таким образом, наличие у птиц, млекопитающих и человека, в частности, двух разделенных кругов кровообращения – это не что иное, как эволюция кровеносной системы, необходимая для лучшего приспособления к условиям окружающей среды.

Анатомические особенности кругов кровообращения

Круги кровообращения – это совокупность кровеносных сосудов, представляющая собой замкнутую систему для поступления во внутренние органы кислорода и питательных веществ посредством газообмена и обмена нутриентами, а также для выведения из клеток двуокиси углерода и иных продуктов метаболизма. Для организма человека характерны два круга – системный, или большой круг, а также легочной, называемый также малым кругом.

Видео: круги кровообращения, мини-лекция и анимация


Большой круг кровообращения

Основной функцией большого круга является обеспечение газообмена во всех внутренних органах, кроме легких. Он начинается в полости левого желудочка; представлен аортой и ее ответвлениями, артериальным руслом печени, почек, головного мозга, скелетной мускулатуры и других органов. Далее данный круг продолжается капиллярной сетью и венозным руслом перечисленных органов; и посредством впадения полой вены в полость правого предсердия заканчивается в последнем.

Итак, как уже сказано, начало большого круга – это полость левого желудочка. Сюда направляется артериальный кровяной поток, содержащий в себе большую часть кислорода, нежели двуокиси углерода. Этот поток в левый желудочек попадает непосредственно из кровеносной системы легких, то есть из малого круга. Артериальный поток из левого желудочка посредством аортального клапана проталкивается в крупнейший магистральный сосуд – в аорту. Аорту образно можно сравнить со своеобразным деревом, которое имеет множество ответвлений, потому что от нее отходят артерии ко внутренним органам (к печени, почкам, желудочно-кишечному тракту, к головному мозгу – через систему сонных артерий, к скелетным мышцам, к подкожно-жировой клетчатке и др). Органные артерии, также имеющие многочисленные разветвления и носящие соответственные анатомии названия, несут кислород в каждый орган.

В тканях внутренних органов артериальные сосуды подразделяются на сосуды все меньшего и меньшего диаметра, и в результате формируется капиллярная сеть. Капилляры – это наимельчайшие сосуды, практически не имеющие среднего мышечного слоя, а представленные внутренней оболочкой – интимой, выстланной эндотелиальными клетками. Просветы между этими клетками на микроскопическом уровне настолько велики по сравнению с другими сосудами, что позволяют беспрепятственно проникать белкам, газам и даже форменным элементам в межклеточную жидкость окружающих тканей. Таким образом, между капилляром с артериальной кровью и жидкой межклеточной средой в том или ином органе происходит интенсивный газообмен и обмен других веществ. Кислород проникает из капилляра, а углекислота, как продукт метаболизма клеток – в капилляр. Осуществляется клеточный этап дыхания.

После того, как в ткани перешло большее количество кислорода, а из тканей была удалена вся углекислота, кровь становится венозной. Весь газообмен осуществляется с каждым новым притоком крови, и за тот промежуток времени, пока она движется по капилляру в сторону венулы – сосудика, собирающего венозную кровь. То есть с каждым сердечным циклом в том или ином участке организма осуществляется поступление кислорода в ткани и удаление из них двуокиси углерода.

Указанные венулы объединяются в вены покрупнее, и формируется венозное русло. Вены, аналогично артериям, носят те названия, в каком органе они располагаются (почечные, мозговые и др). Из крупных венозных стволов формируются притоки верхней и нижней полой вены, а последние затем впадают в правое предсердие.

Особенности кровотока в органах большого круга

Некоторые из внутренних органов имеют свои особенности. Так, например, в печени существует не только печеночная вена, «относящая» венозный поток от нее, но и воротная, которая наоборот, приносит кровь в печеночную ткань, где выполняется очищение крови, и только потом кровь собирается в притоки печеночной вены, чтобы попасть к большому кругу. Воротная вена приносит кровь от желудка и кишечника, поэтому все, что человек съел или выпил, должно пройти своеобразную «очистку» в печени.

Кроме печени, определенные нюансы существуют и в других органах, например, в тканях гипофиза и почек. Так, в гипофизе отмечается наличие так называемой «чудесной» капиллярной сети, потому что артерии, приносящие кровь в гипофиз из гипоталамуса, разделяются на капилляры, которые затем собираются в венулы. Венулы, после того, как кровь с молекулами релизинг-гормонов собрана, вновь разделяются на капилляры, а затем уже формируются вены, относящие кровь от гипофиза. В почках дважды на капилляры разделяется артериальная сеть, что связано с процессами выделения и обратного всасывания в клетках почек – в нефронах.

Малый круг кровообращения

Его функцией является осуществление газообменных процессов в легочной ткани с целью насыщения «отработанной» венозной крови кислородными молекулами. Он начинается в полости правого желудочка, куда из право-предсердной камеры (из «конечной точки» большого круга) поступает венозный кровяной поток с крайне незначительным количеством кислорода и с большим содержанием углекислоты. Эта кровь посредством клапана легочной артерии продвигается в один из крупных сосудов, называемый легочным стволом. Далее венозный поток двигается по артериальному руслу в легочной ткани, которое также распадается на сеть из капилляров. По аналогии с капиллярами в других тканях, в них осуществляется газообмен, вот только в просвет капилляра поступают молекулы кислорода, а в альвеолоциты (клетки альвеол) проникает углекислота. В альвеолы при каждом акте дыхания поступает воздух из окружающей среды, из которого кислород через клеточные мембраны проникает в плазму крови. С выдыхаемым воздухом при выдохе поступившая в альвеолы углекислота выводится наружу.

После насыщения молекулами O 2 кровь приобретает свойства артериальной, протекает по венулам и в конечном итоге добирается до легочных вен. Последние в составе четырех или пяти штук открываются в полость левого предсердия. В результате, через правую половину сердца протекает венозный кровяной поток, а через левую половину – артериальный; и в норме эти потоки смешиваться не должны.

В ткани легких имеется двойная сеть капилляров. При помощи первой осуществляются газообменные процессы с целью обогащения венозного потока молекулами кислорода (взаимосвязь непосредственно с малым кругом), а во второй осуществляется питание самой легочной ткани кислородом и нутриентами (взаимосвязь с большим кругом).


Дополнительные круги кровообращения

Данными понятиями принято выделять кровоснабжение отдельных органов. Так, например, к сердцу, которое больше других нуждается в кислороде, артериальный приток осуществляется из ответвлений аорты в самом ее начале, которые получили название правой и левой коронарных (венечных) артерий. В капиллярах миокарда происходит интенсивный газообмен, а венозный отток осуществляется в коронарные вены. Последние собираются в коронарный синус, который открывается прямо в право-предсердную камеру. Таким путем осуществляется сердечный, или коронарный круг кровообращения.

венечный (коронарный) круг кровообращения в сердце

Виллизиев круг представляет собой замкнутую артериальную сеть из мозговых артерий. Мозговой круг обеспечивает дополнительное кровоснабжение мозга при нарушении мозгового кровотока по другим артериям. Это защищает столь важный орган от недостатка кислорода, или гипоксии. Мозговой круг кровообращения представлен начальным сегментом передней мозговой артерии, начальным сегментом задней мозговой артерии, передними и задними соединительными артериями, внутренними сонными артериями.

виллизиев круг в мозге (классический вариант строения)

Плацентарный круг кровообращения функционирует только во время вынашивания плода женщиной и осуществляет функцию «дыхания» у ребенка. Плацента формируется, начиная с 3-6 недели беременности, и начинает функционировать в полную силу с 12-й недели. В связи с тем, что легкие плода не работают, поступление кислорода в его кровь осуществляется посредством потока артериальной крови в пупочную вену ребенка.

кровообращение плода до рождения

Таким образом, всю кровеносную систему человека можно условно разделить на отдельные взаимосвязанные участки, выполняющие свои функции. Правильное функционирование таких участков, или кругов кровообращения, является залогом здоровой работы сердца, сосудов и всего организма в целом.

Кровью, насыщенной питательными веществами и кислородом, - главное условие его нормальной деятельности - обеспечивает сосудистая система. Никакие другие клетки не перестают так быстро, как нервные, функционировать при резком уменьшении или прекращении кровоснабжения. Даже кратковременное нарушение притока крови к мозгу может привести к обмороку. Причина такой чувствительности - большая потребность нервных клеток в кислороде и питательных веществах, главным образом, глюкозе.

Суммарный мозговой кровоток у человека составляет около 50 мл крови в минуту на 100 г ткани мозга и является неизменным. У детей значения кровотока на 50% выше, чем у взрослых, у стариков - на 20% снижены. В нормальных условиях неизменность кровотока через мозг в целом наблюдается при колебаниях среднего артериального давления от 80 до 160 мм рт. ст. Влияют на суммарный мозговой кровоток очень резкие изменения напряжения кислорода и углекислого газа в артериальной крови. Постоянство суммарного мозгового кровотока поддерживается сложным регуляторным механизмом.

Кровоснабжение различных отделов мозга зависит от степени их активности.
При усиленной работе коры мозга (например, при чтении, решении задач)
кровоток в отдельных зонах возрастает на 20-60% вследствие расширения
мозговых сосудов. При общем возбуждении он увеличивается в 1,5-2 раза,
а в состоянии ярости - в 3 раза. При наркозе или гипотермии
корковый кровоток существенно уменьшается.

Система кровоснабжения головного мозга

Поступает кровь в головной мозг по 4 крупным сосудам: 2 внутренним сонным и 2 позвоночным артериям. Оттекает кровь от него по 2 внутренним яремным венам.

Внутренние сонные артерии
Внутренние сонные артерии - это ветви общих сонных артерий, левая - отходит от дуги аорты. Левая и правая общие сонные артерии располагаются в боковых областях шеи. Пульсовые колебания их стенок можно легко почувствовать через кожу, приложив пальцы к шее. Сильное пережатие сонных артерий нарушает кровоснабжение мозга. На уровне верхнего края гортани общая сонная артерия разделяется на наружную и внутреннюю сонные артерии. Внутренняя сонная артерия проникает в полость черепа, где принимает участие в кровоснабжении головного мозга и глазного яблока, наружная сонная артерия питает органы шеи, лицо, кожу головы.

Позвоночные артерии
Позвоночные артерии отходят от подключичных артерий, направляются к голове через цепочку отверстий в поперечных отростках шейных позвонков и попадают в полость черепа через большое затылочное отверстие.

Поскольку сосуды, питающие головной мозг, отходят от ветвей дуги аорты, скорость и давление крови в них высокие и имеют пульсовые колебания. Для их сглаживания при входе в череп внутренние сонные и позвоночные артерии образуют двойные изгибы (сифоны). Войдя в полость черепа, артерии соединяются между собой, образуя на нижней поверхности головного мозга так называемый виллизиев круг, или артериальный круг большого мозга. Он позволяет при затруднении доставки крови по какому-либо сосуду провести ее перераспределение за счет других источников и не допустить нарушения кровоснабжения участка мозга. Вместе с тем в нормальных условиях кровь, приносимая по разным артериям, не смешивается в сосудах виллизиева круга.

Мозговые артерии
От внутренней сонной артерии отходят передняя и средняя мозговые артерии, питающие внутреннюю и наружную поверхности полушарий мозга (лобную, теменную и височную доли) и глубокие отделы мозга. Задние мозговые артерии, питающие затылочные доли полушарий, и артерии, снабжающие кровью ствол мозга и мозжечок, являются ветвями позвоночных артерий. От позвоночных артерий отходят и сосуды, питающие спинной мозг. Из крупных мозговых артерий берут начало многочисленные тонкие артерии, погружающиеся в ткань мозга. Диаметр этих артерий колеблется в широких пределах, по длине их подразделяют на короткие - питающие кору мозга, и длинные - питающие белое вещество. Наибольший процент кровоизлияний в мозг наблюдается при патологических изменениях стенок именно этих артерий.

Разветвления мелких артерий образуют капиллярную сеть, неравномерно распределенную в головном мозге - плотность капилляров в сером веществе в 2-3 раза выше, чем в белом. В среднем на 100 г ткани мозга приходится 15´107 капилляров, а их суммарное сечение равно 20 кв. см.

Стенка капилляра не соприкасается с поверхностью нервных клеток, и передача кислорода и других веществ из крови в нервную клетку осуществляется при посредничестве особых клеток - астроцитов.

Гематоэнцефалический барьер
Регуляция транспортировки веществ из кровеносного капилляра в нервную ткань получила название гематоэнцефалического барьера. В норме из крови в мозг не проходят (задерживаются барьером) соединения йода, соли салициловой кислоты, антибиотики, иммунные тела. А значит, лекарственные средства, содержащие эти вещества, при введении в кровь не действуют на нервную систему. И наоборот, легко проходят через гематоэнцефалический барьер алкоголь , хлороформ, стрихнин, морфин, столбнячный токсин и др. Это объясняется быстрое действие на нервную систему этих веществ.

Для того чтобы избежать гематоэнцефалического барьера, антибиотики и другие химические вещества, используемые при лечении инфекционных заболеваний мозга, вводят непосредственно в жидкость, окружающую мозг, - ликвор (цереброспинальную жидкость). Делают это через прокол в поясничном отделе позвоночного столба или в подзатылочной области.

Внутренние яремные вены
Отток крови от головного мозга происходит по венам, впадающим в синусы твердой мозговой оболочки. Они представляют собой щелевидные каналы в плотной соединительнотканной оболочке мозга, просвет которых остается открытым при любых условиях. Такое устройство обеспечивает бесперебойный отток крови от мозга, что предотвращает ее застой. Синусы оставляют на внутренней поверхности черепа след в виде широких борозд. По системе синусов венозная кровь от мозга перемещается к яремному отверстию на основании черепа, оттуда берет начало внутренняя яремная вена. По правой и левой внутренним яремным венам кровь от мозга оттекает в систему верхней полой вены.

Синусы твердой мозговой оболочки через особые вены-выпускники, проходящие сквозь кости черепа, сообщаются с поверхностными (подкожными) венами головы. Это позволяет при определенных условиях «сбросить» часть венозной крови из полости черепа не во внутреннюю яремную вену, а через подкожные сосуды в наружную яремную вену.

Эволюция головного мозга привела человека на вершину пирамиды
живой природы. Головной мозг относится к центральной нервной системе
и выполняет в организме функции регуляции и координации деятельности
всех органов, осуществляет их связь с окружающей средой
и приспосабливает организм к происходящим изменениям.

Нарушения мозгового кровообращения

Временные нарушения мозгового кровообращения происходят по разным причинам. Из-за остеохондроза отверстия в шейных позвонках суживаются, проходящие в них сосуды сдавливаются, и кровоснабжение мозга затрудняется - появляются головные боли , мигрени и пр. При повышении артериального давления, сильном волнении или напряжении также появляются головные боли, головокружение, чувство тяжести в голове, иногда рвота и кратковременная потеря сознания.

В нашем организме кровь непрерывно движется по замкнутой системе сосудов в строго определенном направлении. Это непрерывное движение крови называется кровообращением . Кровеносная система человека замкнутая и имеет 2 круга кровообращения: большой и малый. Основным органом, обеспечивающим движение крови, является сердце.

Кровеносная система состоит из сердца и сосудов . Сосуды бывают трех типов: артерии, вены, капилляры.

Сердце – полый мышечный орган (масса около 300 грамм) размером приблизительно с кулак, расположен в грудной полости слева. Сердце окружено околосердечной сумкой, образованной соединительной тканью. Между сердцем и околосердечной сумкой находится жидкость, уменьшающая трение. У человека четырехкамерное сердце. Поперечная перегородка делит его на левую и правую половину, каждая из которых разделена клапанами ни предсердие и желудочек. Стенки предсердий тоньше, чем стенки желудочков. Стенки левого желудочка толще, чем стенки правого, так как он совершает большую работу, выталкивая кровь в большой круг кровообращения. На границе между предсердиями и желудочками находятся створчатые клапаны, которые препятствуют обратному току крови.

Сердце окружено околосердечной сумкой (перикардом). Левое предсердие отделено от левого желудочка двустворчатым клапаном, а правое предсердие от правого желудочка – трехстворчатым клапаном.

К створкам клапанов со стороны желудочков прикреплены прочные сухожильные нити. Такая их конструкция не позволяет крови двигаться из желудочков в предсердие при сокращении желудочка. У основания легочной артерии и аорты находятся полулунные клапаны, не позволяющие крови поступать из артерий обратно в желудочки.

В правое предсердие поступает венозная кровь из большого круга кровообращения, в левое – артериальная из легких. Так как левый желудочек снабжает кровью все органы большого круга кровообращения, в левое – артериальная из легких. Так как левый желудочек снабжает кровью все органы большого круга кровообращения, то его стенки примерно в три раза толще стенок правого желудочка. Сердечная мышца представляет собой особый вид поперечно-полосатой мышцы, в котором мышечные волокна срастаются между собой концами и образуют сложную сеть. Такое строение мышцы увеличивает ее прочность и ускоряет прохождение нервного импульса (вся мышца реагирует одновременно). Сердечная мышца отличается от скелетных мышц способностью ритмично сокращаться, отвечая на импульсы, возникающие в самом сердце. Это явление называется автоматией.

Артерии – сосуды, по которым кровь движется от сердца. Артерии – это толстостенные сосуды, средний слой которых представлен эластичными и гладкой мускулатурой, поэтому артерии способны выдержать значительное давление крови и не разрываться, а только растягиваться.

Гладкая мускулатура артерий выполняет не только структурную роль, но ее сокращения способствуют быстрейшему току крови, так как мощности только одного сердца не хватило бы для нормальной циркуляции крови. Внутри артерий нет никаких клапанов, кровь течет быстро.

Вены – сосуды, несущие кровь к сердцу. В стенках вен также есть клапаны, препятствующие обратному току крови.

Вены, более тонкостенные, чем артерии, и в среднем слое меньше эластичных волокон и мышечных элементов.

Кровь по венам течет не совсем пассивно, окружающие мышцы совершают пульсирующие движения и прогоняют кровь по сосудам к сердцу. Капилляры – самые мелкие кровеносные сосуды, через них плазма крови обменивается с тканевой жидкостью питательными веществами. Стенка капилляров состоит из одного слоя плоских клеток. В мембранах этих клеток имеются многочленные мельчайшие отверстия, которые облегчают прохождение через стенку капилляров веществ, участвующих в обмене.

Движение крови
происходит по двум кругам кровообращения.

Большой круг кровообращения – это путь крови от левого желудочка до правого предсердия: левый желудочек аорта грудная аорта брюшная аорта артерии капилляры в органах (газообмен в тканях) вены верхняя (нижняя) полая вена правое предсердие

Малый круг кровообращения – путь от правого желудочка до левого предсердия: правый желудочек легочный ствол артерии правая (левая) легочная капилляры в легких газообмен в легких легочные вены левое предсердие

В малом круге кровообращения по легочным артериям движется венозная кровь, а по легочным венам после газообмена в легких – артериальная кровь.