Действие жидкости и газа на погружённое в них тело. Видеоурок «Действие жидкости и газа на погружённое в них тело

469. Почему металлический корабль плавает в воде, а металлический гвоздь тонет?
Вес воды, вытесняемой подводной частью судна, равна весу судна в воздухе или силе тяжести, действующей на судно.

470. Как изменяется положение ватерлинии судна при его загрузке?
Ватерлиния приблизится к воде поскольку вес судна увеличился.

471. Как изменится осадка судна при переходе из реки в море?
Ватерлиния поднимется над поверхностью воды поскольку плотность морской воды выше, чем пресной.

472. В склянку налили ртуть, воду и керосин. Как расположатся в склянке эти жидкости?
По мере уменьшения плотностей: ртуть-вода-керосин.

473. В банку с ртутью уронили железную шайбу. Потонет шайба или будет плавать на ртути?
Не потонет, т.к. плотность железа меньше плотности ртути.

474. На рисунке 64 изображен деревянный брусок, плавающий в двух разных жидкостях. В каком случае жидкость имеет большую плотность? Одинакова ли сила тяжести, действующая на брусок? В каком случае архимедова сила больше?

Плотность жидкости б) больше, поскольку сила Архимеда, действующая на тело больше.

475. Поплавок со свинцовым грузилом внизу опускают сначала в воду, потом в масло. В обоих случаях поплавок плавает. В какую жидкость он погружается глубже?
В масло поплавок погрузится глубже, поскольку его плотность меньше плотности воды.

476. Изобразите силы, действующие на тело, когда оно плавает на поверхности жидкости (рис. 65).


477. Какие силы действуют на тело, когда оно всплывает на поверхность жидкости (рис. 66)? Покажите их стрелками в масштабе.

478. Изобразите стрелками силы, действующие на тело, когда оно тонет (рис. 67).

479. На одну сторону коромысла весов подвесили свинцовый свиток, на другую – кусок стекла равной массы. Сохранится ли равновесие, если и свинец и стекло целиком опустить в воду? Если нет, то какое плечо перетянет?
Равновесие не сохранится. Плечо с телом меньшего объема, т.е. со свинцом перетянет, т.к. сила Архимеда действующая на него будет меньше.

480. К коромыслу весов с двух сторон подвесили два одинаковых латунных грузика по 2 г и опустили один грузик в воду, а другой – в спирт. Какой грузик перетянет?
Грузик опущенный в жидкость с меньшей плотностью (т.е. спирт) перетянет.

481. На электронные весы поставили рядом банку с водой и деревянный брусок. Изменится ли показание весов, если брусок поместить в банку с водой, где он будет плавать?
Показания весов уменьшатся, т.к. на брусок будет действовать сила Архимеда.

482. Благодаря какому физическому закону рыбы могут, сжимая плавательный пузырь, подниматься и опускаться в воде?
Благодаря закону Архимеда.

483. На груди и спине водолаза помещают тяжелые свинцовые пластинки, подошвы башмаков также делают свинцовыми. Для чего это делается?
Чтобы вес водолаза был больше силы Архимеда действующей на него.

484. Пустая, плотно закрытая металлическая банка, почти целиком погружаясь в воду, в холодной воде плавает, а если воду нагреть, то она тонет. Чем объясняется это интересное явление?
Плотность нагретой воды уменьшается, следовательно и уменьшается сила Архимеда, действующая на банку.

485. Мраморный шар объемом 20 см3 уронили в реку. В какой силой он выталкивается из воды?

486. С какой силой выталкивается керосином кусок стекла объемом 10 см3 ?

487. Каков объем погруженного тела, если оно выталкивается водой с силой в 50 Н?

488. Какой объем воды вытесняет корабль, если на него действует выталкивающая сила 200 000 кН?

489. С какой силой человек будет выталкиваться из морской воды, если в пресной воде на него действует выталкивающая сила, равная 686 Н?

490. Определите вес в пресной воде 1 см3 меди.

491. Каков вес железа объемом 1 см3 в чистой воде?

492. Определите, сколько весит в воде стеклянный кубик объемом 1 см3 .

493. Пустой металлический шар весом 3 Н (в воздухе) и объемом 1200 см3 удерживают под водой. Останется ли шар под водой, если его отпустить? Какой величины требуется сила, чтобы удержать его под водой?

494. Кусок гранита объемом 5,5 дм3 и массой 15 кг целиком погружен в пруд. Какую силу необходимо приложить, чтобы держать его в воде?

495. Глыба мрамора объемом 1 м3 лежит на дне реки. Какую силу необходимо приложить, чтобы приподнять ее в воде? Каков ее вес в воздухе?

496. Каков вес в речной воде мраморной плиты, вес которой в воздухе 260 Н?

497. Какое натяжение испытывает трос при подъеме со дна озера гранитной плиты объемом 2 м3 ?

498. Колодезное железное ведро массой 1,56 кг и объемом 12 л опускают в колодец. Какую силу нужно приложить, чтобы поднять полное ведро в воде? Над водой? Трение не учитывать.


499. Какова плотность предмета, если его вес в воздухе 100 Н, а в пресной воде 60 Н?

500. Стеклянная пробка весит в воздухе 0,5 Н, в воде 0,32 Н, в спирте 0,35 Н. Какова плотность стекла? Какова плотность спирта?

501. Вес мраморной фигурки в воздухе 0,686 Н, а в пресной воде 0,372 Н. Определите плотность фигурки.

502. Гирька массой 100 г в пресной воде весит 0,588 Н, а в неизвестной жидкости 0,666 Н. Какова плотность неизвестной жидкости? Что это за жидкость?

503. Найдите плотность спирта, если кусок стекла весит в спирте 0,25 Н, в воздухе 0,36 Н, в воде 0,22 Н.

504. Стеклянная пластинка при погружении в чистую воду стала легче на 49 мН, а при погружении в керосин – на 39 мН. Какова плотность керосина?

505. Плот площадью 600 м2 после загрузки осел на 30 см. Найдите массу груза, помещенного на плот.

506. На паром длиной 5 м и шириной в 4 м заехал грузовик, в результате чего паром погрузился в воду на 5 см. Какова масса грузовика?

507. Найдите массу воды, вытесненной кораблем водоизмещением 50 000 т.
Масса воды равна водоизмещению, т.е. 50 000 т.

508. Прямоугольный паром длиной 10 м и шириной 4 м при загрузке осел на 75 см. Найдите массу груза.

509. Масса танка-амфибии около 2 т. Каков должен быть объем погруженной в воду части танка, чтобы танк мог плавать в воде?

510. Брусок из пробкового дерева, плотность которого 25 г/ см3 , плавает в пресной воде. Какая часть бруска погружена в воду?

511. По реке плывет бревно. Какая его часть погружена в воду, если плотность дерева 0,5 г/см3 ?

512. Что больше: подводная или надводная часть льдины, если плотность льда 0,9 г/ см3 ?

513. Глубина лужицы 2 см. Будет ли плавать в этой воде сосновый кубик, сторона которого равна 7 см? Будет ли плавать в этой лужице дощечка, массой равная кубику, толщиной 2 см?

514. Какую массу груза удержит в речной воде пробковый спасательный круг массой 12 кг?

515. Почему ребенок массой 30 кг свободно держится на воде в надувных нарукавниках, объем которых всего лишь 1,5 дм3 ?

516. Круглая железная дробинка массой 11,7 г соединена с пенопластовым кубиком массой 1,2 г. Всю систему полностью погрузили в воду. Общий вес в воде 6,4 ·10-2 Н. Какова плотность пенопласта?

517. Кусок воска весит в воздухе 882 мН. Воском облепили шарик и погрузили в воду. Вес всей системы в воде 98 мН. Определите плотность воска, если вес шарика в воде 196 мН.

518. К куску парафиновой свечи массой 4,9 г привязали шайбу, которая весит в воде 98 нМ. Общий вес плотностью погруженной в воду системы 78,4 мН. Найдите плотность парафина.

519. С какой выталкивающей силой действует воздух на тело объемом в 1 м3 при 0°С и нормальном атмосферном давлении?

523. В 1933 г. был построен дирижабль В-3, имеющий объем 6800 м3 . Какова подъемная сила этого дирижабля, если его наполняли водородом?

524. Один из первых конструкторов управляемого аэростата Сантос Дюмон построил шал объемом в 113 м3 и массой со всем оборудованием 27,5 кг. Шар был наполнен водородом. Мог ли на таком шаре подняться Сантос Дюмон, если его масса была равна 52 кг?

525. Может ли наполненный водородом воздушный шар объемом 1500 м3 поднять трех пассажиров массой по 60 кг каждый, если оболочка шара и гондола вместе имеют массу 250 кг?

526. В 1931 г. профессор Пикар на специально построенном аэростате поднялся на высоту 16 км. На этой высоте барометр показал давление 76 мм. рт. ст. Гондола аэростата, где помещался Пикар, была сделана из дюралюминия и плотно закрыта. Давление внутри гондолы все время оставалось равным 1 атмосфере (1 атм=760 мм.рт.ст.=1013 гПа.) Вычислите давление на 1 см2 стенки гондолы изнутри и снаружи.

Тип урока: . объяснение нового материала.

Задачи урока:

  • Повторить изученный ранее материал;
  • Подготовить учащихся к восприятию нового материала «Действие жидкости и газа на погруженное в них тело. Архимедова сила» - от понятия к умению;
  • Выяснить причину возникновения выталкивающей силы;
  • Вывести формулу для расчета и придти к методам определения силы Архимеда на практике;
  • Исследовать зависимость этой силы от различных параметров, и каким образом определить недостающие параметры;
  • Закрепить изученный материал при решении качественных задач, с последующей проверкой на опыте, способствовать развитию практических навыков, умению анализировать, обобщать, применять ранее изученное в новой ситуации.

Основные вопросы урока:

  • Давление в жидкости и газе.
  • Сила давления.
  • Действие жидкости и газа на погруженное в них тело.
  • Умение находить силу Архимеда различными способами.
  • Исследовать зависимость силы Архимеда от параметров.
  • Умение применить полученные знания при решении качественных задач и проверить правильность решения на опыте.

Средства обучения: ведерко Архимеда, сосуд с отливом, динамометр демонстрационный, штатив, тела одинакового объема и одинаковой массы, сосуд с водой, весы, разновесы, 2 одинаковых стакана, мерный цилиндр, линейка, динамометр Бакушинского.

План урока:

I. Повторение

II. Демонстрация и новый материал

1) Проблема: почему теннисный мячик выскочил из воды? Ответ: вода вытолкнула

2) Почему в воде можно поднять тяжелый предмет, который на суше поднять не под силу? (Вода помогает)
Таким образом получается, что на тело погруженное в жидкость действует сила давления со стороны жидкости, которая направлена?.. Вверх!
Попытаемся выяснить теоретически, почему эта сила возникает. Для этого рассмотрим тело в виде прямоугольного параллелепипеда, погруженное в жидкость и сделаем соответствующий рисунок.

S – площадь верхнего и нижнего оснований
h 1 – высота столба жидкости над верхней гранью
h 2 – высота столба жидкости на уровне нижней грани
р 1 – давление столба жидкости сверху
р 2 – давление столба жидкости на уровне нижней грани
F 1 – сила давления жидкости на верхнюю грань
F 2 – сила давления жидкости на нижнюю грань

Результирующая этих сил направлена в сторону большей силы F 2 , т.е. вверх. Это и есть выталкивающая сила, которую еще называют силой Архимеда.

F Арх = F вытал = F 2 – F 1

Таким образом, стало понятно, почему теннисный мяч выскочил из воды. Но ведь жидкость действует на тело со всех сторон, т.е. действует и на боковые грани, но эти силы сжимают тело, деформируют его и их действие не вызывает движения тела вверх. Таким образом, мы доказали существование выталкивающей силы, как результирующей, действующей на тело, погруженное в жидкость и определили ее направление: вертикально вверх. С теннисным шариком – все понятно. А почему тяжелые предметы легче в жидкости, в частности в воде? Рассмотрим силы, действующие на погруженное в жидкость тело.

Если тело подвешено к динамометру, то он показывает вес тела Р, который численно равен силе тяжести, т.к. тело находится в покое.
Если тело в воздухе, то он покажет вес Р. В жидкости динамометр тоже покажет вес Р 1 , но он будет меньше на величину силы Архимеда Р 1 = Р – F Арх. Чем меньше вес тела в жидкости, тем больше сила Архимеда. Таким образом, силу Архимеда можно определить как разницу веса тела в воздухе и в жидкости.
Таким образом, мы получили первый способ определения силы Архимеда:

F Арх = Р – Р 1

Определим F Арх, действующую на цилиндрик: задание выполняют ученики на своих рабочих местах.

Р = 1 Н
Р 1 = 0,65 Н
F Арх = 1 – 0,65 = 0,35 (Н)

Б) Посмотрим еще один опыт и, возможно, вы догадаетесь, как еще можно определить силу Архимеда.

Часть воды после погружения тела вылилась, динамометр стал показывать меньший вес. А теперь вытесненную телом воду перельем в ведерко. Динамометр покажет снова вес этого прибора в воздухе.
– Чему равна сила Архимеда? (Весу вытесненной воды)

Вывод: Сила, выталкивающая целиком погруженное в жидкость тело, равна весу жидкости в объеме этого тела; в газе – все аналогично, но там сила Архимеда во много раз меньше.
Ну, а теперь подскажите: как определить силу Архимеда II способом?

Ответ : Собрать жидкость, вытесненную погруженным в нее телом и взвесить.

F Арх = Р вытесн.жидкости = Р ж

(II) – Закон Архимеда определим на практике – делает ученик.

Погружаем то же тело в сосуд с отливом, взвешиваем и находим F Арх.
При демонстрации опыта вспоминаем правила взвешивания.

m ж = 0,035 кг
Р ж = m ж *g = 0,35 H
F А = Р ж = 0,35 H

Вывод: Если сравнить силу Архимеда, определенную I и II способами, то видим, что результат один и тот же. II способом можно определить F Арх если нет динамометра, но есть весы.

В) Но II способ позволяет определить F Арх еще одним способом. Мы получили, что

F Арх = Р вытесн.жидкости = Р ж
Р ж = m ж * g = ж * V тела * g

Таким образом, V ж = V тела (III). Эта формула является математической записью Закона Архимеда. Значит, если мы знаем в какую жидкость погружаем тело, его объем, то F Арх можно посчитать по этой формуле.

Вопрос : А если объем неизвестен?

Ответ : Если неизвестен объем тела, его можно определить с помощью мерного цилиндра (мы этому учились в I четверти) или с помощью линейки.

Ученики определяют объем все того же тела, предварительно вспомнив формулу объема параллелепипеда.

Вывод: Опять получили тот же результат: 0,35 Н. Таким образом, величина F Арх не зависит от способа ее определения.

III. Закрепление

Р 1 = Р – F Арх

Задание 1: Одно и тоже тело поместить сначала в воду, а затем в масло. Сравнить F Арх, действующую в этих жидкостях.

Ответ : F Арх в воде больше, чем в масле, т.к. вес тела в воде меньше, чем в масле. Это согласуется с выведенной формулой (1).

Задание 2: Тело погрузить в воду полностью и до половины. Определить F Арх

То же самое, полное совпадение с формулой (1). V 1 > V 2 , F Арх1 > F Арх2

Задание 3: Одинаковые по объему тела из разных материалов погрузить в воду. Определить F Арх. Проверьте I способом.

Вывод: F Арх не зависит от вещества, важен объем тела.

Задание 4: Изобразите графически силу Архимеда, действующую на тела.

IV. Итог урока

– Что мы узнали на уроке?

  • познакомились с новой силой – силой Архимеда;
  • выяснили, что она результат разной силы давления на тело, погруженное в жидкость, снизу и сверху и направлена вверх;
  • научились на практике определять эту силу двумя способами;
  • вывели формулу для расчета и выяснили, что F Арх зависит только от плотности жидкости и объема погруженной части тела и не важно, из какого вещества это тело сделано;
  • повторили ранее изученный материал: давление, сила давления, масса и как ее выразить через плотность и объем, вес тела;
  • закрепили навыки практической работы, полученные ранее: измерение силы динамометром, определение массы тела на рычажных весах, объема тел с помощью мерного цилиндра, вспомнили формулу объема параллелепипеда;
  • еще раз убедились, что физика без математики не существует.

V. Домашнее задание

  • внимательно прочитать записи, сделанные в тетради;
  • прочитать §§ 48, 49;
  • упр. 32 (1-3)

– Вы хорошо поработали на уроке. Всем спасибо за сотрудничество!

Литература :

  1. А.В. Перышкин, Н.А. Родина «Физика 7», Москва, «Просвещение», 1989 г.
  2. М.Е. Тульчинский «Качественные задачи по физике 6-7 кл.», Москва, «Просвещение», 1976 г.
  3. Л.А. Кирик «Самостоятельные и контрольные работы по физике. Разноуровневые дидактические материалы 7 класс. Механика. Давление жидкостей и газов», Москва-Харьков, «Илекса «Гимназия», 1998 г.
  4. «Контрольные работы по физике в 7-11 классах», дидактический материал, под ред. Э.Е. Эвенчик, С.Я. Шамаша , Москва, «Просвещение», 1991 г.
  5. И.С. Шутов, К.М. Гуринович «Физика 7-8. Решение практических задач», учебное пособие, Минск, «Современное Слово», 1997 г.
  6. «Модульный внутришкольный контроль на рефлексивной основе по физике», методическое пособие, сост. Е.Ф. Аврутина, Т.Г. Базилевич , Калуга, «Адэль», 1997 г.

>>Действие жидкости и газа на погруженное в них тело

Если погрузить в воду мячик, наполненный воздухом, и отпустить, то мы увидим, как он тут же всплывет. То же самое произойдет и с щепкой, пробкой и многими другими телами. Какая сила заставляет их всплывать?

Когда тело погружают в воду, на него со всех сторон начинают действовать силы давления воды (рис. 130, а). В каждой точке тела эти силы направлены перпендикулярно его поверхности. Если бы все эти силы были одинаковы, то тело испытывало бы лишь всестороннее сжатие. Но на разных глубинах гидростатическое давление различно: оно возрастает с увеличением глубины. Поэтому силы давления, приложенные к нижним участкам тела, оказываются больше сил давления, действующих на тело сверху. Преобладающие силы давления действуют в направлении снизу вверх. Это и заставляет тело всплывать.

Отослано читателями из интернет-сайтов

Электронные издания онлайн, сборник конспектов уроков по всем классам, рефераты с физики 7 класса, книги и учебники согласно каленадарного планирования физики 7 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

В ходе этого урока путем экспериментов и рассуждений мы убедимся в том, что на погруженные в жидкость или газ тела действует сила, направленная вверх, и научимся вычислять ее значение.

Тема: Давление твердых тел, жидкостей и газов

Урок: Действие жидкости и газа на погруженное тело

Всем известны детские стихи Агнии Барто

Наша Таня громко плачет,

Уронила в речку мячик.

Тише, Танечка, не плачь!

Не утонет в речке мяч!

Почему мяч не тонет? Выясним это с помощью эксперимента. Опустим мячик для настольного тенниса в воду и отпустим его. Он тут же всплывет на поверхность. Значит, со стороны воды на мячик действует некая сила направленная вверх. Но если опустить в воду металлический шар, он останется лежать на дне. Получается, что эта сила действует не на все тела?

Рис. 1. Почему теннисный мячик поднимается на поверхность жидкости, а стальной шарик идет ко дну?

Выскажем гипотезу: на тело, погруженное в жидкость, со стороны жидкости действует некая сила, направленная вертикально вверх. На все ли тела действует данная сила?

Чтобы выяснить это, обратимся к эксперименту. Укрепим на штативе пружину, а к пружине подвесим груз. Пружина растянется под действием веса груза. Положение нижнего конца пружины отметим с помощью стрелки-указателя на стойке штатива (Рис 2а).

Рис. 2. Действие жидкости на тело уменьшает растяжение пружины

Если теперь погрузить подвешенное на пружине тело в воду, то можно заметить, что растяжение пружины уменьшилось (Рис 2б). Это означает, что со стороны жидкости на груз действует выталкивающая сила. Этот опыт подтвердил высказанную гипотезу. Эта гипотеза справедлива также и для тел, погруженных в газ.

Итак, на все тела, погруженные в жидкость или газ, действует выталкивающая сила со стороны жидкости или газа.

Рассчитаем величину выталкивающей силы и проанализируем, от чего она зависит. Для этого представим себе, что в жидкость погружено тело в форме прямоугольного параллелепипеда и рассмотрим силы, действующие со стороны жидкости на грани этого тела.

Рис. 3. Силы, действующие на грани погруженного в жидкость тела

Силы, действующие на боковые грани (F 1 и F 2 на рисунке 3) будут уравновешивать друг друга, так как они равны по величине. Эти силы они лишь сжимают погруженное в жидкость тело. В отличие от этого, величины сил, действующих на верхнюю грань (F 3) и на нижнюю грань (F 4) будут различны. Это объясняется тем, что давление жидкости на меньшей глубине h 1 будет меньше, чем давление на большей глубине h 2 .

Равнодействующая сил F 4 и F 3 , направленных в противоположные стороны, равна разнице их численных значений и направлена в сторону большей силы, то есть вертикально вверх. Она и представляет собой выталкивающую силу , ранее обнаруженную нами экспериментально.

Теперь докажем, что величина выталкивающей силы равна весу вытесненной телом жидкости. Для этого вспомним, что величина силы давления равна произведению давления на площадь, на которую это давление оказывается

Давление жидкости на глубине h можно найти, если знать плотность жидкости ρ и ускорение свободного падения g

Тогда выталкивающая сила равна

В последней формуле каждое слагаемое содержит одинаковые множители, которые можно вынести за скобки. Тогда в скобках останется разность глубин погружения верхней и нижней граней тела. А это не что иное, как высота самого тела h .

Кроме того, произведение площади нижней грани тела на его высоту представляет собой объем тела

Тогда для выталкивающей силы получаем такое выражение:

Наконец, произведение плотности жидкости на объем тела (а он равен объему вытесненной телом жидкости) - это масса вытесненной жидкости. А произведение массы жидкости на ускорение свободного падения равно силе тяжести, действующей на вытесненную жидкость, а значит, и весу жидкости (поскольку жидкость неподвижна)

Такой же результат получится, если вместо жидкости рассмотреть газ.

Сформулируем полученный нами результат.

На тело, погруженное в жидкость или газ, действует сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненной этим телом.

Сформулированный выше закон был впервые получен древнегреческим ученым Архимедом и носит название закона Архимеда . Выталкивающую силу часто называют силой Архимеда или архимедовой силой.

Рис. 4. Архимед (287 до н.э. - 212 до н.э.)

Легенда гласит, что царь Сиракуз по имени Гиерон поручил Архимеду выяснить, из чистого ли золота сделана корона, которую он заказал ювелиру. Царь подозревал, что ювелир заменил часть золота равной по массе частью серебра.

Рис. 5. Выталкивающая сила, действующая на корону, оказалась больше, чем действующая на слиток золота, так как объем короны был больше, чем объем слитка из-за меньшей плотности серебра по сравнению с плотностью золота

Архимед взвесил корону и равный ей по массе слиток золота в воздухе. А затем провел то же самое взвешивание, погрузив и корону, и слиток в воду. Выталкивающая сила, действующая на корону и на слиток, оказалась разной. Так ювелир был уличен в измене.

На все тела, погруженные в жидкость, действует со стороны жидкости выталкивающая сила. Величина этой выталкивающей силы численно равна весу вытесненной жидкости. Подобная сила действует и на тела, погруженные в газ.

  1. Перышкин А.В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  2. Перышкин А.В. Сборник задач по физике, 7 - 9 кл.: 5-е изд., стереотип. - М: Издательство «Экзамен», 2010.
  3. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7 - 9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  1. Единая коллекция цифровых образовательных ресурсов ().

Домашнее задание

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7 - 9 классов №605 - 609, 621, 632, 635.