Проверка значимости всего уравнения регрессии в целом. Оценка статистической значимости уравнения регрессии и его параметров

После оценки индивидуальной статистической значимости каждого из коэффициентов регрессии обычно анализируется совокупная значимость коэффициентов, т.е. всего уравнения в целом. Такой анализ осуществляется на основе проверки гипотезы об общей значимости гипотезы об одновременном равенстве нулю всех коэффициентов регрессии при объясняющих переменных:

H 0: b 1 = b 2 = ... = b m = 0.

Если данная гипотеза не отклоняется, то делается вывод о том, что совокупное влияние всех m объясняющих переменных Х 1 , Х 2 , ..., Х m модели на зависимую переменную Y можно считать статистически несущественным, а общее качество уравнения регрессии – невысоким.

Проверка данной гипотезы осуществляется на основе дисперсионного анализа сравнения объясненной и остаточной дисперсии.

Н 0: (объясненная дисперсия) = (остаточная дисперсия),

H 1: (объясненная дисперсия) > (остаточная дисперсия).

Строится F-статистика:

где – объясненная регрессией дисперсия;

– остаточная дисперсия (сумма квадратов отклонений, поделённая на число степеней свободы n-m-1). При выполнении предпосылок МНК построенная F-статистика имеет распределение Фишера с числами степеней свободы n1 = m, n2 = n–m–1. Поэтому, если при требуемом уровне значимости a F набл > F a ; m ; n - m -1 = F a (где F a ; m ; n - m -1 - критическая точка распределения Фишера), то Н 0 отклоняется в пользу Н 1 . Это означает, что объяснённая регрессией дисперсия существенно больше остаточной дисперсии, а следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной Y. Если F набл < F a ; m ; n - m -1 = F кр. , то нет основания для отклонения Н 0 . Значит, объясненная дисперсия соизмерима с дисперсией, вызванной случайными факторами. Это дает основание считать, что совокупное влияние объясняющих переменных модели несущественно, а следовательно, общее качество модели невысоко.

Однако на практике чаще вместо указанной гипотезы проверяют тесно связанную с ней гипотезу о статистической значимости коэффициента детерминации R 2:



Н 0: R 2 > 0.

Для проверки данной гипотезы используется следующая F-статистика:

. (8.20)

Величина F при выполнении предпосылок МНК и при справедливости H 0 имеет распределение Фишера, аналогичное распределению F-статистики (8.19). Действительно, разделив числитель и знаменатель дроби в (8.19) на общую сумму квадратов отклонений и зная, что она распадается на сумму квадратов отклонений, объяснённую регрессией, и остаточную сумму квадратов отклонений (это является следствием, как будет показано позже, системы нормальных уравнений)

,

мы получим формулу (8.20):

Из (8.20) очевидно, что показатели F и R 2 равны или не равны нулю одновременно. Если F = 0, то R 2 = 0, и линия регрессии Y = является наилучшей по МНК, и, следовательно, величина Y линейно не зависит от Х 1 , Х 2 , ..., Х m . Для проверки нулевой гипотезы Н 0: F = 0 при заданном уровне значимости a по таблицам критических точек распределения Фишера находится критическое значение F кр = F a ; m ; n - m -1 . Нулевая гипотеза отклоняется, если F > F кр. Это равносильно тому, что R 2 > 0, т.е. R 2 статистически значим.

Анализ статистики F позволяет сделать вывод о том, что для принятия гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии коэффициент детерминации R 2 не должен существенно отличаться от нуля. Его критическое значение уменьшается при росте числа наблюдений и может стать сколь угодно малым.

Пусть, например, при оценке регрессии с двумя объясняющими переменными X 1 i , X 2 i по 30 наблюдениям R 2 = 0,65. Тогда

F набл = =25,07.

По таблицам критических точек распределения Фишера найдем F 0,05; 2; 27 = 3,36; F 0,01; 2; 27 = 5,49. Поскольку F набл = 25,07 > F кр как при 5%–м, так и при 1%–м уровне значимости, то нулевая гипотеза в обоих случаях отклоняется.

Если в той же ситуации R 2 = 0,4, то

F набл = = 9.

Предположение о незначимости связи отвергается и здесь.

Отметим, что в случае парной регрессии проверка нулевой гипотезы для F-статистики равносильна проверке нулевой гипотезы для t-статистики

коэффициента корреляции. В этом случае F-статистика равна квадрату t-статистики. Самостоятельную значимость коэффициент R 2 приобретает в случае множественной линейной регрессии.

8.6. Дисперсионный анализ для разложения общей суммы квадратов отклонений. Степени свободы для соответствующих сумм квадратов отклонений

Применим изложенную выше теорию для парной линейной регрессии.

После того, как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Оценка значимости уравнения регрессии в целом даётся с помощью F-критерия Фишера. При этом выдвигается нулевая гипотеза, что коэффициент регрессии равен нулю, т.е. b = 0, и, следовательно, фактор х не оказывает влияния на результат у.

Непосредственному расчёту F-критерия предшествует анализ дисперсии. Центральное место в нём занимает разложение общей суммы квадратов отклонений переменной у от среднего значения на две части – “объяснённую” и “необъяснённую”:

Уравнение (8.21) является следствием системы нормальных уравнений, выведенных в одной предыдущих тем.

Доказательство выражения (8.21).

Осталось доказать, что последнее слагаемое равно нулю.

Если сложить от 1 до n все уравнения

y i = a+b×x i +e i , (8.22)

то получим åy i = a×å1+b×åx i +åe i . Так как åe i =0 и å1 =n, то получим

Тогда .

Если же вычесть из выражения (8.22) уравнение (8.23), то получим

В результате получим

Последние суммы равны нулю в силу системы двух нормальных уравнений.

Общая сумма квадратов отклонений индивидуальных значений результативного признака у от среднего значения вызвана влиянием множества причин. Условно разделим всю совокупность причин на две группы: изучаемый фактор х и прочие факторы. Если фактор на оказывает никакого влияния на результат, то линия регрессии параллельна оси OX и . Тогда вся дисперсия результативного признака обусловлена воздействием прочих факторов и общая сумма квадратов отклонений совпадет с остаточной. Если же прочие факторы не влияют на результат, то у связана с х функционально и остаточная сумма квадратов равна нулю. В этом случае сумма квадратов отклонений, объяснённая регрессией, совпадает с общей суммой квадратов.

Поскольку не все точки поля корреляции лежат на линии регрессии, то всегда имеет место их разброс как обусловленный влиянием фактора х, т.е. регрессией у по х, так и вызванный действием прочих причин (необъяснённая вариация). Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации признака у приходится на объяснённую вариацию. Очевидно, что если сумма квадратов отклонений, обусловленная регрессией, будет больше остаточной суммы квадратов, то уравнение регрессии статистически значимо и фактор х оказывает существенное влияние на признак у. Это равносильно тому, что коэффициент детерминации будет приближаться к единице.

Любая сумма квадратов связана с числом степеней свободы (df – degrees of freedom), с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Применительно к исследуемой проблеме число степеней свободы должно показать, сколько независимых отклонений из n возможных требуется для образования данной суммы квадратов. Так, для общей суммы квадратов требуется (n-1) независимых отклонений, ибо по совокупности из n единиц после расчёта среднего свободно варьируют лишь (n-1) число отклонений. Например, мы имеем ряд значений у: 1,2,3,4,5. Среднее из них равно 3, и тогда n отклонений от среднего составят: -2, -1, 0, 1, 2. Так как , то свободно варьируют лишь четыре отклонения, а пятое отклонение может быть определено, если предыдущие четыре известны.

При расчёте объяснённой или факторной суммы квадратов используются теоретические (расчётные) значения результативного признака

Тогда сумма квадратов отклонений, обусловленных линейной регрессии, равна

Поскольку при заданном объёме наблюдений по x и y факторная сумма квадратов при линейной регрессии зависит только от константы регрессии b, то данная сумма квадратов имеет только одну степень свободы.

Существует равенство между числом степеней свободы общей, факторной и остаточной суммой квадратов отклонений. Число степеней свободы остаточной суммы квадратов при линейной регрессии составляет n-2. Число степеней свободы общей суммы квадратов определяется числом единиц варьируемых признаков, и поскольку мы используем среднюю вычисленную по данным выборки, то теряем одну степень свободы, т.е. df общ. = n–1.

Итак, имеем два равенства:

Разделив каждую сумму квадратов на соответствующее ей число степеней свободы, получим средний квадрат отклонений, или, что то же самое, дисперсию на одну степень свободы D.

;

;

.

Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчёте на одну степень свободы, получим величину F-критерия Фишера

где F-критерий для проверки нулевой гипотезы H 0: D факт = D ост.

Если нулевая гипотеза справедлива, то факторная и остаточная дисперсии не отличаются друг от друга. Для H 0 необходимо опровержение, чтобы факторная дисперсия превышала остаточную в несколько раз. Английским статистиком Снедекором разработаны таблицы критических значений F-отношений при различных уровнях существенности нулевой гипотезы и различном числе степеней свободы. Табличное значение F-критерия – это максимальная величина отношения дисперсий, которая может иметь место при случайном их расхождении для данного уровня вероятности наличия нулевой гипотезы. Вычисленное значение F-отношения признаётся достоверным, если оно больше табличного. Если F факт > F табл, то нулевая гипотеза H 0: D факт = D ост об отсутствии связи признаков отклоняется и делается вывод о существенности этой связи.

Если F факт < F табл, то вероятность нулевой гипотезы H 0: D факт = D ост выше заданного уровня (например, 0,05) и она не может быть отклонена без серьёзного риска сделать неправильный вывод о наличии связи. В этом случае уравнение регрессии считается статистически незначимым. Гипотеза H 0 не отклоняется.

В рассматриваемом примере из главы 3:

= 131200 -7*144002 = 30400 – общая сумма квадратов;

1057,878*(135,43-7*(3,92571) 2) = 28979,8 – факторная сумма квадратов;

=30400-28979,8 = 1420,197 – остаточная сумма квадратов;

D факт = 28979,8;

D ост = 1420,197/(n-2) = 284,0394;

F факт =28979,8/284,0394 = 102,0274;

F a =0,05; 2; 5 =6,61; F a =0,01; 2; 5 = 16,26.

Поскольку F факт > F табл как при 1%-ном, так и при 5%-ном уровне значимости, то можно сделать вывод о значимости уравнения регрессии (связь доказана).

Величина F-критерия связана с коэффициентом детерминации . Факторную сумму квадратов отклонений можно представить как

,

а остаточную сумму квадратов – как

.

Тогда значение F-критерия можно выразить как

.

Оценка значимости регрессии обычно даётся в виде таблицы дисперсионного анализа

, его величина сравнивается с табличным значением при определённом уровне значимости α и числе степеней свободы (n-2).
Источники вариации Число степеней свободы Сумма квадратов отклонений Дисперсия на одну степень свободы F-отношение
фактическое Табличное при a=0,05
Общая
Объяснённая 28979,8 28979,8 102,0274 6,61
Остаточная 1420,197 284,0394

После того как уравнение регрессии построено и с помощью коэффициента детерминации оценена его точность, остается открытым вопрос за счет чего достигнута эта точность и соответственно можно ли этому уравнению доверять. Дело в том, что уравнение регрессии строилось не по генеральной совокупности, которая неизвестна, а по выборке из нее. Точки из генеральной совокупности попадают в выборку случайным образом, по этому в соответствии с теорией вероятности среди прочих случаев возможен вариант, когда выборка из “широкой” генеральной совокупности окажется “узкой” (рис. 15).

Рис. 15. Возможный вариант попадания точек в выборку из генеральной совокупности.

В этом случае:

а) уравнение регрессии, построенное по выборке, может значительно отличаться от уравнения регрессии для генеральной совокупности, что приведет к ошибкам прогноза;

б) коэффициент детерминации и другие характеристики точности окажутся неоправданно высокими и будут вводить в заблуждение о прогнозных качествах уравнения.

В предельном случае не исключен вариант, когда из генеральной совокупности представляющей собой облако с главной осью параллельной горизонтальной оси (отсутствует связь между переменными) за счет случайного отбора будет получена выборка, главная ось которой окажется наклоненной к оси. Таким образом, попытки прогнозировать очередные значения генеральной совокупности опираясь на данные выборки из нее чреваты не только ошибками в оценке силы и направления связи между зависимой и независимой переменными, но и опасностью найти связь между переменными там, где на самом деле ее нет.

В условиях отсутствия информации обо всех точках генеральной совокупности единственный способ уменьшить ошибки в первом случае заключается в использовании при оценке коэффициентов уравнения регрессии метода, обеспечивающего их несмещенность и эффективность. А вероятность наступления второго случая может быть значительно снижена благодаря тому, что априори известно одно свойство генеральной совокупности с двумя независимыми друг от друга переменными – в ней отсутствует именно эта связь. Достигается это снижение за счет проверки статистической значимости полученного уравнения регрессии.

Один из наиболее часто используемых вариантов проверки заключается в следующем. Для полученного уравнения регрессии определяется
-статистика
- характеристика точности уравнения регрессии, представляющая собой отношение той части дисперсии зависимой переменной которая объяснена уравнением регрессии к необъясненной (остаточной) части дисперсии. Уравнение для определения
-статистики в случае многомерной регрессии имеет вид:

где:
- объясненная дисперсия - часть дисперсии зависимой переменнойYкоторая объяснена уравнением регрессии;

-остаточная дисперсия - часть дисперсии зависимой переменнойYкоторая не объяснена уравнением регрессии, ее наличие является следствием действия случайной составляющей;

- число точек в выборке;

- число переменных в уравнении регрессии.

Как видно из приведенной формулы, дисперсии определяются как частное от деления соответствующей суммы квадратов на число степеней свободы. Число степеней свободы это минимально необходимое число значений зависимой переменной, которых достаточно для получения искомой характеристики выборки и которые могут свободно варьироваться с учетом того, что для этой выборки известны все другие величины, используемые для расчета искомой характеристики.

Для получения остаточной дисперсии необходимы коэффициенты уравнения регрессии. В случае парной линейной регрессии коэффициентов два, по этому в соответствии с формулой (принимая
) число степеней свободы равно
. Имеется в виду, что для определения остаточной дисперсии достаточно знать коэффициенты уравнения регрессии и только
значений зависимой переменной из выборки. Оставшиеся два значения могут быть вычислены на основании этих данных, а значит, не являются свободно варьируемыми.

Для вычисления объясненной дисперсии значений зависимой переменной вообще не требуются, так как ее можно вычислить, зная коэффициенты регрессии при независимых переменных и дисперсию независимой переменной. Для того чтобы убедиться в этом, достаточно вспомнить приводившееся ранее выражение
. По этому число степеней свободы для остаточной дисперсии равно числу независимых переменных в уравнении регрессии (для парной линейной регрессии
).

В результате
-критерий для уравнения парной линейной регрессии определяется по формуле:

.

В теории вероятности доказано, что
-критерий уравнения регрессии, полученного для выборки из генеральной совокупности у которой отсутствует связь между зависимой и независимой переменной имеет распределение Фишера, достаточно хорошо изученное. Благодаря этому для любого значения
-критерия можно рассчитать вероятность его появления и наоборот, определить то значение
-критерия которое он не сможет превысить с заданной вероятностью.

Для осуществления статистической проверки значимости уравнения регрессии формулируется нулевая гипотеза об отсутствии связи между переменными (все коэффициенты при переменных равны нулю) и выбирается уровень значимости.

Уровень значимости – это допустимая вероятность совершитьошибку первого рода – отвергнуть в результате проверки верную нулевую гипотезу. В рассматриваемом случае совершить ошибку первого рода означает признать по выборке наличие связи между переменными в генеральной совокупности, когда на самом деле ее там нет.

Обычно уровень значимости принимается равным 5% или 1%. Чем выше уровень значимости (чем меньше
), тем вышеуровень надежности теста, равный
, т.е. тем больше шанс избежать ошибки признания по выборке наличия связи у генеральной совокупности на самом деле несвязанных между собой переменных. Но с ростом уровня значимости возрастает опасность совершенияошибки второго рода – отвергнуть верную нулевую гипотезу, т.е. не заметить по выборке имеющуюся на самом деле связь переменных в генеральной совокупности. По этому, в зависимости от того, какая ошибка имеет большие негативные последствия, выбирают тот или иной уровень значимости.

Для выбранного уровня значимости по распределению Фишера определяется табличное значение
вероятность превышения, которого в выборке мощностью, полученной из генеральной совокупности без связи между переменными, не превышает уровня значимости.
сравнивается с фактическим значением критерия для регрессионного уравнения.

Если выполняется условие
, то ошибочное обнаружение связи со значением
-критерия равным или большимпо выборке из генеральной совокупности с несвязанными между собой переменными будет происходить с вероятностью меньшей чем уровень значимости. В соответствии с правилом “очень редких событий не бывает”, приходим к выводу, что установленная по выборке связь между переменными имеется и в генеральной совокупности, из которой она получена.

Если же оказывается
, то уравнение регрессии статистически не значимо. Иными словами существует реальная вероятность того, что по выборке установлена не существующая в реальности связь между переменными. К уравнению, не выдержавшему проверку на статистическую значимость, относятся так же, как и к лекарству с истекшим сроком годнос- ти – такие лекарства не обязательно испорчены, но раз нет уверенности в их качестве, то их предпочитают не использовать. Это правило не уберегает от всех ошибок, но позволяет избежать наиболее грубых, что тоже достаточно важно.

Второй вариант проверки, более удобный в случае использования электронных таблиц, это сопоставление вероятности появления полученного значения
-критерия с уровнем значимости. Если эта вероятность оказывается ниже уровня значимости
, значит уравнение статистически значимо, в противном случае нет.

После того как выполнена проверка статистической значимости регрессионного уравнения в целом полезно, особенно для многомерных зависимостей осуществить проверку на статистическую значимость полученных коэффициентов регрессии. Идеология проверки такая же как и при проверке уравнения в целом но в качестве критерия используется -критерий Стьюдента , определяемый по формулам:

и

где: , - значения критерия Стьюдента для коэффициентовисоответственно;

- остаточная дисперсия уравнения регрессии;

- число точек в выборке;

- число переменных в выборке, для парной линейной регрессии
.

Полученные фактические значения критерия Стьюдента сравниваются с табличными значениями
, полученными из распределения Стьюдента. Если оказывается, что
, то соответствующий коэффициент статистически значим, в противном случае нет. Второй вариант проверки статистической значимости коэффициентов – определить вероятность появления критерия Стьюдента
и сравнить с уровнем значимости
.

Для переменных, чьи коэффициенты оказались статистически не значимы, велика вероятность того, что их влияние на зависимую переменную в генеральной совокупности вообще отсутствует. По этому или необходимо увеличить число точек в выборке, тогда возможно коэффициент станет статистически значимым и заодно уточнится его значение, или в качестве независимых переменных найти другие, более тесно связанные с зависимой переменной. Точность прогнозирования при этом в обоих случаях возрастет.

В качестве экспрессного метода оценки значимости коэффициентов уравнения регрессии можно применять следующее правило – если критерий Стьюдента больше 3, то такой коэффициент, как правило, оказывается статистически значим. А вообще считается, что для получения статистически значимых уравнений регрессии необходимо, чтобы выполнялось условие
.

Стандартная ошибка прогнозирования по полученному уравнению регрессии неизвестного значения
при известном
оценивают по формуле:

Таким образом прогноз с доверительной вероятностью 68% может быть представлен в виде:

В случае если требуется иная доверительная вероятность
, то для уровня значимости
необходимо найти критерий Стьюдента
идоверительный интервал для прогноза с уровнем надежности
будет равен
.

Прогнозирование многомерных и нелинейных зависимостей

В случае если прогнозируемая величина зависит от нескольких независимых переменных, то в этом случае имеется многомерная регрессия вида:

где:
- коэффициенты регрессии, описывающие влияние переменных
на прогнозируемую величину.

Методика определения коэффициентов регрессии не отличается от парной линейной регрессии, особенно при использовании электронной таблицы, так как там применяется одна и та же функция и для парной и для многомерной линейной регрессии. При этом желательно чтобы между независимыми переменными отсутствовали взаимосвязи, т.е. изменение одной переменной не сказывалось на значениях других переменных. Но это требование не является обязательным, важно чтобы между переменными отсутствовали функциональные линейные зависимости. Описанные выше процедуры проверки статистической значимости полученного уравнения регрессии и его отдельных коэффициентов, оценка точности прогнозирования остается такой же как и для случая парной линейной регрессии. В тоже время применение многомерных регрессий вместо парной обычно позволяет при надлежащем выборе переменных существенно повысить точность описания поведения зависимой переменной, а значит и точность прогнозирования.

Кроме этого уравнения многомерной линейной регрессии позволяют описать и нелинейную зависимость прогнозируемой величины от независимых переменных. Процедура приведения нелинейного уравнения к линейному виду называется линеаризацией . В частности если эта зависимость описывается полиномом степени отличной от 1, то, осуществив замену переменных со степенями отличными от единицы на новые переменные в первой степени, получаем задачу многомерной линейной регрессии вместо нелинейной. Так, например если влияние независимой переменной описывается параболой вида

то замена
позволяет преобразовать нелинейную задачу к многомерной линейной вида

Так же легко могут быть преобразованы нелинейные задачи у которых нелинейность возникает вследствие того, что прогнозируемая величина зависит от произведения независимых переменных. Для учета такого влияния необходимо ввести новую переменную равную этому произведению.

В тех случаях, когда нелинейность описывается более сложными зависимостями, линеаризация возможна за счет преобразования координат. Для этого рассчитываются значения
и строятся графики зависимости исходных точек в различных комбинациях преобразованных переменных. Та комбинация преобразованных координат или преобразованных и не преобразованных координат, в которой зависимость ближе всего к прямой линии подсказывает замену переменных которая приведет к преобразованию нелинейной зависимости к линейному виду. Например, нелинейная зависимость вида

превращается в линейную вида

где:
,
и
.

Полученные коэффициенты регрессии для преобразованного уравнения остаются несмещенными и эффективными, но проверка статистической значимости уравнения и коэффициентов невозможна

Проверка обоснованности применения метода наименьших квадратов

Применение метода наименьших квадратов обеспечивает эффективность и несмещенность оценок коэффициентов уравнения регрессии при соблюдении следующих условий (условий Гауса -Маркова ):

1.

2.

3. значения не зависят друг от друга

4. значения не зависят от независимых переменных

Наиболее просто можно проверить соблюдение этих условий путем построения графиков остатков
в зависимости от, затем от независимой (независимых) переменных. Если точки на этих графиках расположены в коридоре расположенном симметрично оси абсцисс и в расположении точек не просматриваются закономерности, то условия Гауса-Маркова выполнены и возможности повысить точность уравнения регрессии отсутствуют. Если это не так, то существует возможность существенно повысить точность уравнения и для этого необходимо обратиться к специальной литературе.

Проверить значимость параметров уравнения регрессии можно, используя t-статистику .

Задание:
По группе предприятий, выпускающих один и тот же вид продукции, рассматриваются функции издержек:
y = α + βx;
y = α x β ;
y = α β x ;
y = α + β / x;
где y – затраты на производство, тыс. д. е.
x – выпуск продукции, тыс. ед.

Требуется:
1. Построить уравнения парной регрессии y от x:

  • линейное;
  • степенное;
  • показательное;
  • равносторонней гиперболы.
2. Рассчитать линейный коэффициент парной корреляции и коэффициент детерминации . Сделать выводы.
3. Оценить статистическую значимость уравнения регрессии в целом.
4. Оценить статистическую значимость параметров регрессии и корреляции.
5. Выполнить прогноз затрат на производство при прогнозном выпуске продукции, составляющем 195 % от среднего уровня.
6. Оценить точность прогноза, рассчитать ошибку прогноза и его доверительный интервал.
7. Оценить модель через среднюю ошибку аппроксимации.

Решение :

1. Уравнение имеет вид y = α + βx
1. Параметры уравнения регрессии.
Средние значения

Дисперсия

Среднеквадратическое отклонение

Коэффициент корреляции

Связь между признаком Y фактором X сильная и прямая
Уравнение регрессии

Коэффициент детерминации
R 2 = 0.94 2 = 0.89, т.е. в 88.9774 % случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - высокая

x y x 2 y 2 x ∙ y y(x) (y-y cp) 2 (y-y(x)) 2 (x-x p) 2
78 133 6084 17689 10374 142.16 115.98 83.83 1
82 148 6724 21904 12136 148.61 17.9 0.37 9
87 134 7569 17956 11658 156.68 95.44 514.26 64
79 154 6241 23716 12166 143.77 104.67 104.67 0
89 162 7921 26244 14418 159.9 332.36 4.39 100
106 195 11236 38025 20670 187.33 2624.59 58.76 729
67 139 4489 19321 9313 124.41 22.75 212.95 144
88 158 7744 24964 13904 158.29 202.51 0.08 81
73 152 5329 23104 11096 134.09 67.75 320.84 36
87 162 7569 26244 14094 156.68 332.36 28.33 64
76 159 5776 25281 12084 138.93 231.98 402.86 9
115 173 13225 29929 19895 201.86 854.44 832.66 1296
0 0 0 16.3 20669.59 265.73 6241
1027 1869 89907 294377 161808 1869 25672.31 2829.74 8774

Примечание: значения y(x) находятся из полученного уравнения регрессии:
y(1) = 4.01*1 + 99.18 = 103.19
y(2) = 4.01*2 + 99.18 = 107.2
... ... ...

2. Оценка параметров уравнения регрессии
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
T табл (n-m-1;α/2) = (11;0.05/2) = 1.796
Поскольку Tнабл > Tтабл, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически - значим.

Анализ точности определения оценок коэффициентов регрессии





S a = 0.1712
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 1
(-20.41;56.24)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика


Статистическая значимость коэффициента регрессии a подтверждается

Статистическая значимость коэффициента регрессии b не подтверждается
Доверительный интервал для коэффициентов уравнения регрессии
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(a - t S a ; a + t S a)
(1.306;1.921)
(b - t b S b ; b + t b S b)
(-9.2733;41.876)
где t = 1.796
2) F-статистики


Fkp = 4.84
Поскольку F > Fkp, то коэффициент детерминации статистически значим

В социально-экономических исследованиях часто приходится работать в условиях ограниченной совокупности, либо с выборочными данными. Поэтому после математических параметров уравнение регрессии необходимо оценить их и уравнение в целом на статистическую значимость, т.е. необходимо убедиться, что полученное уравнение и его параметры сформированы под влиянием неслучайных факторов.

Прежде всего, оценивается статистическая значимость уравнения в целом. Оценка, как правило, проводится с использованием F-критерия Фишера. Расчет F-критерия базируется на правиле сложения дисперсий. А именно, общего дисперсионного признака-результата = дисперсия факторная + дисперсия остаточная.

Фактическая цена

Теоретическая цена
Построив уравнение регрессии можно рассчитать теоретическое значение признака-результата, т.е. рассчитанные по уравнению регрессии с учетом его параметров.

Эти значения будут характеризовать признак-результат, сформировавшийся под влиянием факторов включенных в анализ.

Между фактическими значениями признака-результата и рассчитанными на основе уравнения регрессии всегда существуют расхождения (остатки), обусловленные влиянием прочих факторов, не включенных в анализ.

Разность между теоретическими и фактическими значениями признака-результата называется остатками. Общая вариация признака-результата:

Вариация по признаку-результату, обусловленная вариацией признаков факторов, включенных в анализ оценивается через сопоставления теоретических значений резул. признака и его средних значений. Остаточная вариация через сопоставление теоретических и фактических значений результатирующего признака. Общая дисперсия , остаточная и фактическая имеют разное число степеней свободы.

Общая , п - число единиц в изучаемой совокупности

Фактическая , п - число факторов, включенных в анализ

Остаточная

F-критерий Фишера рассчитывается как отношение к , причем рассчитаны на одну степень свободы.

Использование F-критерия Фишера в качестве оценки статистической значимости уравнения регрессии очень логично. - это результат. признака, обусловленная факторами включенными в анализ, т.е. это доля объясненной результат. признака. - это (вариация) признака результата обусловленная факторами влияние которых не учитывается, т.е. не включенными в анализ.

Т.о. F-критерий призван оценить значимое превышение над . Если несущественно ниже , а тем более, если оно превышает , следовательно, в анализ включены не те факторы, которые действительно влияют на признак-результат.

F-критерий Фишера табулирован, фактическое значение сравнивается с табличным. Если , то уравнение регрессии признается статистически значимым. Если наоборот – уравнение статистически не значимо и не может использоваться на практике, значимость уравнения в целом говорит о статистической значимости показателей корелляции.

После оценки уравнения в целом необходимо оценить статистическую значимость параметров уравнения. Эта оценка осуществляется с использованием t-статистики Стьюдента. t-статистика рассчитывается как отношение параметров уравнения (по модулю) к их стандартной средней квадратической ошибке. Если оценивается однофакторная модель, то рассчитывается 2 статистики.

Во всех компьютерных программах расчет стандартной ошибки и t-статистики для параметров проводится с расчетом самих параметров. T-статистика табулирована. Если значение , то параметр признается статистически значимым, т.е. сформированным под влиянием неслучайных факторов.

Расчет t-статистики по существу означает проверку нулевой гипотезы о незначимости параметра, т.е. равенстве его нулю. При однофакторной модели оценивается 2 гипотезы: и

Уровень значимости принятия нулевой гипотезы зависит от уровня принятой доверительной вероятности. Так если исследователь задает уровень вероятности 95%, уровень значимости принятия будет рассчитываться , следовательно, если уровень значимости ≥ 0,05, то принимается и параметры считаются статистически незначимыми. Если , то отвергается и принимается альтернатива: и .

В пакетах прикладных программ по статистике также приводится уровень значимости принятия нулевых гипотез. Оценка значимости уравнения регрессии и его параметров может дать следующие результаты:

Во-первых, уравнение в целом значимо(по F-критерию) и также статистически значимы все параметры уравнения. Это означает, что полученное уравнение может быть использовано как для принятия управленческих решений, так и для прогнозирования.

Во-вторых, по F-критерию уравнение статистически значимо, но не значим хотя бы один из параметров уравнения. Уравнение может быть использовано для принятия управленческих решений относительно анализируемых факторов, но не может быть использовано для прогнозирования.

В-третьих, уравнение статистически не значимо, либо по F- критерию уравнение значимо, но не значимы все параметры полученного уравнения. Уравнение не может быть использовано не для каких целей.

Чтобы уравнение регрессии можно было признать моделью связи между признаком-результатом и признаками-факторами необходимо чтобы в него были включены все важнейшие факторы, определяющие результат, чтобы содержательная интерпретация параметров уравнения соответствовала теоретически обоснованным связям в изучаемом явлении. Коэффициент детерминации R 2 должен быть > 0,5.

При построении множественного уравнения регрессии целесообразно осуществить оценку по так называемому скорректированному коэффициенту детерминации (R 2). Величина R 2 (как и корелляции) возрастает при увеличение числа факторов включенных в анализ. Особенно завышается значение коэф-в в условиях небольших совокупностей. С целью погасить отрицательное влияние R 2 и корелляции корректируют с учетом числа степеней свободы, т.е. числа свободно варьирующих элементов при включении определенных факторов.

Скорректированный коэф-т детерминации

п –объем совокупности/число наблюдений

k – число факторов включенных в анализ

п-1 – число степеней свободы

(1-R 2) - величина остатка/ необъясненной дисперсии результативного признака

Всегда меньше R 2 . на основе можно сравнивать оценки уравнений с разным числом анализируемых факторов.

34. Задачи изучения динамических рядов.

Ряды динамики называют временными рядами или динамическими рядами. Динамический ряд – это упорядоченная во времени последовательность показателей, характеризующих то или иное явление (объем ВВП с 90 по 98 гг). Целью изучения рядов динамики является выявление закономерности развития изучаемого явления (основной тенденции) и прогнозирование на этой основе. Из определения РД следует, что любой ряд состоит из двух элементов: время t и уровень ряда (те конкретные значения показателя, на основе которого построен ДРяд). ДРяды могут быть 1)моментными – ряды, показатели которых фиксируются на момент времени, на определенную дату, 2)интервальными – ряды, показатели которого получают за какой-то период времени (1.численность населения СПб, 2.объем ВВП за период). Разделение рядов на моментные и интервальные необходимо, поскольку это определяет специфику расчета некоторых показателей ДРядов. Суммирование уровней интервальных рядов дает содержательно интерпретируемый результат, что нельзя сказать о суммировании уровней моментных рядов, поскольку последние содержат повторный счет. Важнейшей проблемой в анализе рядов динамики является проблема сопоставимости уровней ряда. Это понятие очень разноплановое. Уровни должны быть сопоставимы по методам расчета и по территории и охвату единиц совокупности. Если ДРяд строится в стоимостных показателях, то все уровни должны быть представлены или рассчитаны в сопоставимых ценах. При построении интервальных рядов уровни должны характеризовать одинаковые отрезки времени. При построении моментных РядовД уровни должны фиксироваться на одну и ту же дату. ДРяды могут быть полными и неполными. Неполные ряды используются в официальных изданиях (1980,1985,1990,1995,1996,1997,1998,1999…). Комплексный анализ РД включает изучение следующих моментов:

1. расчет показателей изменения уровней РД

2. расчет средних показателей РД

3. выявление основной тенденции ряда, построение трендовых моделей

4. оценка автокорреляции в РД, построение авторегрессионных моделей

5. корреляция РД (изучение связей м/у ДРядами)

6. прогнозирование РД.

35. Показателей изменения уровней временных рядов .

В общем виде РядД может быть представлен:

у – уровень ДР, t – момент или период времени к которому относится уровень (показатель), n – длина ДРяда (число периодов). при изучении ряда динамики рассчитывают следующие показатели: 1. абсолютный прирост, 2. коэффициент роста (темп роста), 3. ускорение, 4. коэффициент прироста (темп прироста), 5. абсолютное значение 1 % прироста. Рассчитываемые показатели могут быть: 1. цепные – получают путем сопоставления каждого уровня ряда с непосредственно предшествующим, 2. базисные – получают путем сопоставления с уровнем, выбранным за базу сравнения (если специально не оговаривается, за базу берется 1ый уровень ряда). 1. Цепные абсолютные приросты: . Показывает на сколько больше или меньше . Цепные абсолютные приросты называют показателями скорости изменения уровней динамического ряда. Базисный абсолютный прирост : . Если уровни ряда представляют собой относительные показатели, выраженные в %-ах, то абсолютный прирост выражается в пунктах изменения. 2. коэффициент роста (темпы роста): Рассчитывается как отношение уровней ряда к непосредственно предшествующим (цепные коэффициенты роста), либо к уровню, принятому за базу сравнения (базисные коэффициенты роста): . Характеризует во сколько раз каждый уровень ряда > или < предшествующего или базисного. На основе коэффициентов роста рассчитываются темпы роста. Это коэффициенты роста, выраженные в %ах: 3. на основе абсолютных приростов рассчитывают показатель – ускорение абсолютных приростов : . Ускорение – абсолютный прирост абсолютных приростов. Оценивает как изменяются сами приросты, они стабильны или принимают ускорение (возрастают). 4. темп прироста – это отношение прироста к базе сравнения. Выражается в %-ах: ; . Темп прироста – это темп роста минус 100%. Показывает на сколько % данный уровень ряда > или < предшествующего либо базисного. 5. абсолютное значение 1% прироста. Рассчитывается как отношение абсолютного прироста к темпу прироста, т.е.: - сотая доля предыдущего уровня. Все эти показатели рассчитываются для оценки степени изменения уровней ряда. Цепные коэффициенты и темпы роста называются показателями интенсивности изменения уровней ДРядов.

2. Расчет средних показателей РД Рассчитывают средние уровни рядов, средние абсолютные приросты, средние темпы роста и средние темпы прироста. Средние показатели рассчитываются с целью обобщения информации и возможности сравнивать уровни и показатели их изменения по различным рядам. 1. средний уровень ряда а) для интервальных временных рядов рассчитывается по средней арифметической простой: , где n – число уровней во временном ряду; б) для моментных рядов средний уровень рассчитывается по специфической формуле, которая называется средней хронологической: . 2. средний абсолютный прирост рассчитывается на основе цепных абсолютных приростов по средней арифметической простой:

. 3. Средний коэффициент роста рассчитывается на основе цепных коэффициентов роста по формуле средней геометрической: . При комментарии средних показателей ДРядов необходимо указывать 2 момента: период, который характеризует анализируемый показатель и временной интервал, за который построен ДРяд. 4. Средний темп роста : . 5. средний темп прироста : .

Оценив параметры a и b , мы получили уравнение регрессии, по которому можно оценить значения y по заданным значениям x . Естественно полагать, что расчетные значения зависимой переменной не будут совпадать с действительными значениями, так как линия регрессии описывает взаимосвязь лишь в среднем, в общем. Отдельные значения рассеяны вокруг нее. Таким образом, надежность получаемых по уравнению регрессии расчетных значений во многом определяется рассеянием наблюдаемых значений вокруг линии регрессии. На практике, как правило, дисперсия ошибок неизвестна и оценивается по наблюдениям одновременно с параметрами регрессии a и b . Вполне логично предположить, что оценка связана с суммой квадратов остатков регрессии. Величина является выборочной оценкой дисперсии возмущений , содержащихся в теоретической модели . Можно показать, что для модели парной регрессии

где - отклонение фактического значения зависимой переменной от ее расчетного значения.

Если , то для всех наблюдений фактические значения зависимой переменной совпадают с расчетными (теоретическими) значениями. Графически это означает, что теоретическая линия регрессии (линия, построенная по функции ) проходит через все точки корреляционного поля, что возможно только при строго функциональной связи. Следовательно, результативный признак у полностью обусловлен влиянием фактора х.

Обычно на практике имеет место некоторое рассеивание точек корреляционного поля относительно теоретической линии регрессии, т. е. отклонения эмпирических данных от теоретических . Этот разброс обусловлен как влиянием фактора х , т.е. регрессией y по х , (такую дисперсию называют объясненной, так как она объясняется уравнением регрессии),так и действием прочих причин (необъясненная вариация, случайная). Величина этих отклонений и лежит в основе расчета показателей качества уравнения.

Согласно основному положению дисперсионного анализа общая сумма квадратов отклонений зависимой переменной y от среднего значения может быть разложена на две составляющие: объясненную уравнением регрессии и необъясненную:

,

где - значения y , вычисленные по уравнению .

Найдем отношение суммы квадратов отклонений, объясненной уравнением регрессии, к общей сумме квадратов:

, откуда

. (7.6)

Отношение части дисперсии, объясненной уравнением регрессии к общей дисперсии результативного признака называется коэффициентом детерминации . Значение не может превзойти единицы и это максимальное значение будет только достигнуто при , т.е. когда каждое отклонение равно нулю и поэтому все точки диаграммы рассеяния в точности лежат на прямой.

Коэффициент детерминации характеризует долю объясненной регрессией дисперсии в общей величине дисперсии зависимой переменной. Соответственно величина характеризует долю вариации (дисперсии) у, необъясненную уравнением регрессии, а значит, вызванную влиянием прочих неучтенных в модели факторов. Чем ближе к единице, тем выше качество модели.



При парной линейной регрессии коэффициент детерминации равен квадрату парного линейного коэффициента корреляции: .

Корень из этого коэффициента детерминации есть коэффициент (индекс) множественной корреляции, или теоретическое корреляционное отношение.

Для того чтобы узнать, действительно ли полученное при оценке регрессии значение коэффициента детерминации отражает истинную зависимость между y и x выполняют проверку значимости построенного уравнения в целом и отдельных параметров. Проверка значимости уравнения регрессии позволяет узнать, пригодно уравнение регрессии для практического использования, например, для прогноза или нет.

При этом выдвигают основную гипотезу о незначимости уравнения в целом, которая формально сводится к гипотезе о равенстве нулю параметров регрессии, или, что то же самое, о равенстве нулю коэффициента детерминации: . Альтернативная гипотеза о значимости уравнения - гипотеза о неравенстве нулю параметров регрессии или о неравенстве нулю коэффициента детерминации: .

Для проверки значимости модели регрессии используют F- критерий Фишера, вычисляемый как отношение суммы квадратов (в расчете на одну независимую переменную) к остаточной сумме квадратов (в расчете на одну степень свободы):

, (7.7)

где k – число независимых переменных.

После деления числителя и знаменателя соотношения (7.7) на общую сумму квадратов отклонений зависимой переменной, F- критерий может быть эквивалентно выражен на основе коэффициента :

.

Если нулевая гипотеза справедлива, то объясненная уравнением регрессии и необъясненная (остаточная) дисперсии не отличаются друг от друга.

Расчетное значение F- критерий сравнивается с критическим значением, которое зависит от числа независимых переменных k , и от числа степеней свободы (n-k-1) . Табличное (критическое) значение F- критерия – это максимальная величина отношений дисперсий, которое может иметь место при случайном расхождении их для заданного уровня вероятности наличия нулевой гипотезы. Если расчетное значение F- критерий больше табличного при заданном уровне значимости, то нулевая гипотеза об отсутствии связи отклоняется и делается вывод о существенности этой связи, т.е. модель считается значимой.

Для модели парной регрессии

.

В линейной регрессии обычно оценивается значимость не только уравнения в целом, но и отдельных его коэффициентов. Для этого определяется стандартная ошибка каждого из параметров. Стандартные ошибки коэффициентов регрессии параметров определяются по формулам:

, (7.8)

(7.9)

Стандартные ошибки коэффициентов регрессии или среднеквадратические отклонения, рассчитанные по формулам (7.8,7.9), как правило, приводятся в результатах расчета модели регрессии в статистических пакетах.

Опираясь на среднеквадратические ошибки коэффициентов регрессии, проверяют значимость этих коэффициентов используя обычную схему проверки статистических гипотез.

В качестве основной гипотезы выдвигают гипотезу о незначимом отличии от нуля «истинного» коэффициента регрессии. Альтернативной гипотезой при этом является гипотеза обратная, т. е. о неравенстве нулю «истинного» параметра регрессии. Проверка этой гипотезы осуществляется с помощью t- статистики, имеющей t -распределение Стьюдента:

Затем расчетные значения t- статистики сравниваются с критическими значениями t- статистики, определяемыми по таблицам распределения Стьюдента. Критическое значение определяется в зависимости от уровня значимости α и числа степеней свободы, которое равно (n-k-1), п - число наблюдений, k - число независимых переменных. В случае линейной парной регрессии число степеней свободы равно (п- 2). Критическое значение также может быть вычислено на компьютере с помощью встроенной функции СТЬЮДРАСПОБР пакета Ехсеl.

Если расчетное значение t- статистики больше критического, то основную гипотезу отвергают и считают, что с вероятностью (1-α) «истинный» коэффициент регрессии значимо отличается от нуля, что является статистическим подтверждением существования линейной зависимости соответствующих переменных.

Если расчетное значение t- статистики меньше критического, то нет оснований отвергать основную гипотезу, т. е. «истинный» коэффициент регрессии незначимо отличается от нуля при уровне значимости α . В этом случае фактор, соответствующий этому коэффициенту должен быть исключен из модели.

Значимость коэффициента регрессии можно установить методом построения доверительного интервала. Доверительный интервал для параметров регрессии a и b определяют следующим образом:

,

,

где определяется по таблице распределения Стьюдента для уровня значимости α и числа степеней свободы (п- 2) для парной регрессии.

Поскольку коэффициенты регрессии в эконометрических исследованиях имеют четкую экономическую интерпретацию, доверительные интервалы не должны содержать нуль. Истинное значение коэффициента регрессии не может одновременно содержать положительные и отрицательные величины, в том числе и нуль, иначе мы получаем противоречивые результаты при экономической интерпретации коэффициентов, чего не может быть. Таким образом, коэффициент значим, если полученный доверительный интервал не накрывает нуль.

Пример 7.4. По данным примера 7.1:

а) Построить парную линейную модель регрессии зависимости прибыли от реализации от отпускной цены с использованием программных средств обработки данных.

б) Оценить значимость уравнения регрессии в целом, используя F- критерий Фишера при α=0,05.

в) Оценить значимость коэффициентов модели регрессии, используя t -критерий Стьюдента при α=0,05 и α=0,1.

Для проведения регрессионного анализа используем стандартную офисную программу EXCEL. Построение регрессионной модели проведем с помощью инструмента РЕГРЕССИЯ настройки ПАКЕТ АНАЛИЗА (рис.7.5), запуск которого осуществляется следующим образом:

СервисАнализ данныхРЕГРЕССИЯОК.

Рис.7.5. Использование инструмента РЕГРЕССИЯ

В диалоговом окне РЕГРЕССИЯ в поле Входной интервал Y необходимо ввести адрес диапазона ячеек, содержащих зависимую переменную. В поле Входной интервал Х нужно ввести адреса одного или нескольких диапазонов, содержащих значения независимых переменных Флажок Метки в первой строке – устанавливается в активное состояние, если выделены и заголовки столбцов. На рис. 7.6. показана экранная форма вычисления модели регрессии с помощью инструмента РЕГРЕССИЯ.

Рис. 7.6. Построение модели парной регрессии с помощью

инструмента РЕГРЕССИЯ

В результате работы инструмента РЕГРЕСИЯ формируется следующий протокол регрессионного анализа (рис.7.7).

Рис. 7.7. Протокол регрессионного анализа

Уравнение зависимости прибыли от реализации от отпускной цены имеет вид:

Оценку значимости уравнения регрессии проведем используя F- критерий Фишера. Значение F- критерий Фишера возьмем из таблицы «Дисперсионный анализ» протокола EXCEL (рис. 7.7.). Расчетное значение F- критерия 53,372. Табличное значение F- критерия при уровне значимости α=0,05 и числе степеней свободы составляет 4,964. Так как , то уравнение считается значимым.

Расчетные значения t -критерия Стьюдента для коэффициентов уравнения регрессии приведены в результативной таблице (рис. 7.7). Табличное значение t -критерия Стьюдента при уровне значимости α=0,05 и 10 степенях свободы составляет 2,228. Для коэффициента регрессии a , следовательно коэффициент a не значим. Для коэффициента регрессии b , следовательно, коэффициент b значим.