Актин входит в состав. Строение и функции микрофиламентов

механическую функцию выполняет белок: гемоглобин, миозин, коллаген, меланин, или инсулин??? и получил лучший ответ

Ответ от Полина фейгина[гуру]
1.Полиме́р - высокомолекулярное соединение, вещество с большой молекулярной массой (от нескольких тысяч до нескольких миллионов) , в котором атомы, соединённые химическими связями, образуют линейные или разветвлённые цепи, а также пространственные трёхмерные структуры. Часто в его строении можно выделить мономер - повторяющийся структурный фрагмент, включающий несколько атомов. Полимер образуется из мономеров в результате полимеризации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений.
Особые механические свойства:
эластичность - способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки) ;
малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло) ;
способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок) .
Особенности растворов полимеров:
высокая вязкость раствора при малой концентрации полимера;
растворение полимера происходит через стадию набухания.
Особые химические свойства:
способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.) .
Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают уникальным для неживой природы свойством - гибкостью.
2. Белки – это сложные высокомолекулярные природные соединения, построенные из -аминокислот. В состав белков входит 20 различных аминокислот, отсюда следует огромное многообразие белков при различных комбинациях аминокислот. Как из 33 букв алфавита мы можем составить бесконечное число слов, так из 20 аминокислот – бесконечное множество белков. В организме человека насчитывается до 100 000 белков.
Белки подразделяют на протеины (простые белки) и протеиды (сложные белки) .
Число аминокислотных остатков, входящих в молекулы, различно: инсулин – 51, миоглобин – 140. Отсюда Mr белка от 10 000 до нескольких миллионов.
Функции белков в организме разнообразны. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков. Белки - незаменимый строительный материал. Одной из важнейших функций белковых молекул является пластическая. Все клеточные мембраны содержат белок, роль которого здесь разнообразна. Количество белка в мембранах составляет более половины массы.
Многие белки обладают сократительной функцией. Это прежде всего белки актин и миозин, входящие в мышечные волокна высших организмов. Мышечные волокна - миофибриллы - представляют собой длинные тонкие нити, состоящие из параллельных более тонких мышечных нитей, окруженных внутриклеточной жидкостью. В ней растворены аденозинтрифосфорная кислота (АТФ) , необходимая для осуществления сокращения, гликоген - питательное вещество, неорганические соли и многие другие вещества, в частности кальций.
Велика роль белков в транспорте веществ в организме. Имея функциональные различные группы и сложное строение макромолекулы, белки связывают и переносят с током крови многие соединения. Это прежде всего гемоглобин, переносящий кислород из легких к клеткам. В мышцах эту функцию берет на себя еще один транспортный белок - миоглобин.
Еще одна функция белка - запасная. К запасным белкам относят ферритин - железо, овальбумин - белок яйца, казеин - белок молока, зеин - белок семян кукурузы.
Регуляторную функцию выполняют белки-гормоны.
Гормоны - биологически активные вещества, которые оказывают влияние на обмен веществ. Многие

Есть пять основных мест, где может быть приложено действие актин-связывающих белков. Они могут связываться с мономером актина; с «заостренным», или медленно растущим, концом филамента; с «оперенным», или быстро растущим, концом; с боковой поверхностью филамента; и наконец, сразу с двумя филаментами, образуя поперечную сшивку между ними. В дополнение к пяти указанным типам взаимодействия актин-связывающие белки могут быть чувствительны или нечувствительны к кальцию. При таком разнообразии возможностей вряд ли покажется удивительным, что было обнаружено множество актин-связывающих белков и что некоторые из них способны к нескольким типам взаимодействия.

Белки, связывающиеся с мономерами, подавляют формирование затравок, ослабляя взаимодействие мономеров друг с другом. Эти белки могут уменьшать, но могут и не уменьшать скорость элонгации - это зависит от того, будет ли комплекс актина с актин-связывающим белком способен присоединяться к филаментам. Профилин и фрагмин - чувствительные к кальцию белки, взаимодействующие с актиновыми мономерами. Оба нуждаются в кальции для связывания с актином. Комплекс профилина с мономером может надстраивать предсуществующие филаменты, а комплекс фрагмина с актином нет. Поэтому профилин в основном ингибирует нуклеацию, тогда как фрагмин подавляет и нуклеацию, и элонгацию. Из трех нечувствительных к кальцию взаимодействующих с актином белков два - ДНКаза I и белок, связывающийся с витамином D, - функционируют вне клетки. Физиологическое значение их способности связываться с актином неизвестно. В головном мозге есть, однако, белок, который, связываясь с мономерами, деполимеризует актиновые филаменты; его деполимеризующее действие объясняется тем, что связывание мономеров приводит к снижению концентрации доступного для полимеризации актина.

«Оперенный», или быстро растущий, конец актиновых филаментов может быть блокирован так называемыми кепирующими белками, а также цитохалазином В или D. Блокируя точку быстрой сборки филаментов, кепирующие белки способствуют нуклеации, но подавляют элонгацию и стыковку филаментов конец в конец. Суммарный эффект состоит в появлении укороченных филаментов, это обусловлено как увеличением количества затравок, конкурирующих за свободные мономеры, так и отсутствием стыковки. Известно по меньшей мере четыре белка, действующих подобным образом в присутствии кальция: гельзолин, виллин, фрагмин, а также белок с мол. массой 90 кДа из тромбоцитов. Все они способны сокращать обусловленную нуклеацией лагфазу при полимеризации очищенных мономеров и укорачивать уже образовавшиеся филаменты. Существуют также и нечувствительные к кальцию кепирующие белки. Так, белки с мол. массой 31 и 28 кДа из акантамебы и белок с мол. массой 65 кДа из тромбоцитов оказывают свое действие независимо от присутствия или отсутствия кальция.

Еще одна точка, в которой возможно взаимодействие белков с филаментами, - это «заостренный», или медленно растущий, конец. Связывание белка в ней может инициировать нуклеацию и мешать стыковке филаментов. Оно влияет и на скорость элонгации, причем это влияние зависит от концентрации актина. При значениях последней в интервале между критическими концентрациями для медленно растущего и быстро растущего концов связывание белка с медленным концом будет увеличивать скорость элонгации за счет предотвращения потери мономеров на нем. Если, однако, концентрация актина превосходит большую из критических, связывание белка с медленным концом приведет к снижению суммарной скорости элонгации вследствие блокирования одной из точек присоединения мономеров. Общим итогом указанных трех эффектов (стимуляции нуклеации, подавления стыковки и подавления элонгации) будет увеличение числа и уменьшение длины филаментов. Эти эффекты сходны с теми, которые вызывают белки, связывающиеся с «оперенным» концом. Вот почему для того, чтобы определить, к какому из двух классов относится данный белок, т. е. на какой конец филаментов он действует, нужно провести либо опыты по конкуренции этого белка с такими, которые связываются заведомо с быстрым концом, либо опыты с полимеризацией на пред-существующих затравках. В настоящее время лишь про один белок определенно известно, что он связывается с «заостренным», или медленно растущим, концом актиновых филаментов, а именно про акументин, содержащийся в больших количествах в макрофагах. Возможно, что это справедливо и для бревина - сывороточного белка, который вызывает быстрое снижение вязкости растворов F-актина, укорачивая филаменты без увеличения концентрации свободных мономеров. Ни бревин, ни акументин нечувствительны к концентрации кальция.


Четвертый тип связывания с актиновыми филаментами - это связывание с их боковой поверхностью без последующего сшивания их друг с другом. Присоединение белков к поверхности может как стабилизировать, так и дестабилизировать филаменты. Тропомиозин связывается нечувствительным к кальцию образом и стабилизирует F-актин, тогда как северин и виллин, связываясь с актиновыми филаментами, «разрезают» их в присутствии кальция.

Но, пожалуй, наиболее эффектными из актин-связывающих белков являются те, которые могут сшивать актиновые филаменты между собой и вызывать тем самым образование геля. Связываясь с F-актином, эти белки индуцируют обычно также и нуклеацию. По меньшей мере четыре сшивающих фибриллярный актин белка способны индуцировать гелеобразование в отсутствие кальция. Это а-актинин из тромбоцитов, виллин, фимбрин и актиногелин из макрофагов. Все они превращают раствор F-актина в жесткий гель, способный препятствовать движению металлического шарика; добавление кальция приводит к растворению такого геля. Все четыре перечисленных белка являются мономерными. В случае виллина белковая молекула может быть разделена на отдельные домены: сердцевину, которая чувствительна к кальцию и способна связываться с актиновыми филаментами и кепировать их, и головку, которая нужна для сшивания филаментов в отсутствие кальция. Существуют также многочисленные нечувствительные к кальцию сшивающие белки. Два из них, фи-ламин и актин-связывающий белок из макрофагов, являются гомодимерами, они состоят из длинных, гибких белковых субъединиц. Мышечный а-актииии - еще один нечувствительный к кальцию сшивающий белок. Образовывать сшивки без помощи дополнительных белков способны также винкулин и белок высокой молекулярной массы из клеток линии ВНК. В то же время фасцин из морских ежей сам по себе может обеспечить формирование лишь узких, похожих на иглы пучков актиновых филаментов, а для того, чтобы вызвать гелеобразование, ему нужно содействие белка с мол. массой 220 кДа.

Семейство спектрина - одно из самых интересных в группе тех сшивающих белков, на которые кальций непосредственно не действует. Собственно спектрин - это тетрамер (ар)г, обнаруженный первоначально в мембранном скелете эритроцитов. ap-Димеры связываются друг с другом «хвост к хвосту», а головки молекул остаются свободными и могут взаимодействовать с олигомерами актина. а-Субъединица каждого димера может, кроме того, взаимодействовать с кальмодулином - кальций-связывающим белком, участвующим во многих регулируемых кальцием процессах. До сих пор неизвестно, какое действие оказывает связывание кальмодулина на активность спектрина. Спектриноподобные молекулы найдены к настоящему времени в клетках многих типов, так что правильнее будет говорить о семействе спектрина. Субъединица спектрина из эритроцитов имеет мол. массу 240 кДа. Иммунологически родственный ей белок с такой же мол. массой был обнаружен в большинстве исследованных типов клеток. Мол. масса |3-субъединицы спектрина из эритроцитов - 220 кДа. В комплексе с белком с мол. массой 240 кДа, реагирующим с антителами против а-спектрина, в клетках может обнаруживаться, однако, и субъединица с мол. массой 260 кДа (найдена в терминальной сети) или, например, 235 кДа (найдена в нервных клетках и клетках других типов). Эти родственные, дающие перекрестную иммунологическую реакцию комплексы были описаны сначала как самостоятельные белки и получили название TW260/240 и фодрина. Таким образом, подобно многим другим цитоскелетным белкам, белки семейства спектрина являются тканеспецифичными. То, что все эти белки содержат кальмодулин-связывающий домен, было установлено лишь недавно, и что из этого следует, еще предстоит понять.

Миозин - единственный из имеющих отношение к актину белков, способный генерировать механическую силу. Производимая им за счет АТР механическая работа лежит в основе мышечного сокращения и обеспечивает, как полагают, натяжение, развиваемое фибробластами и другими клетками при контакте с внеклеточным матриксом. Взаимодействие миозина с актином очень сложно - настолько, что ему была посвящена отдельная книга в этой серии1. Миозин производит работу путем циклического взаимодействия с актином. Миозин-ADP связывается с актиновыми филаментами, происходит изменение конформации миозина, сопровождающееся освобождением ADP, и затем АТР, если он есть в растворе, замещает освободившийся из миозина ADP и индуцирует отсоединение актиновых нитей от миозина. После гидролиза АТР может начаться следующий цикл. Кальций регулирует этот процесс в нескольких точках. В некоторых мышечных клетках он взаимодействует с тропонином, контролируя связывание тропомиозина с актином. Про такие клетки говорят, что в них регуляция осуществляется на уровне тонких нитей. В других мышцах кальций действует на молекулу миозина - либо прямо, либо активируя ферменты, фосфорилирующие ее легкие цепи.

В некоторых немышечных клетках кальций регулирует сокращение на уровне сборки миозиновых нитей.

Взаимосвязь между разными классами актин-связывающих белков становится яснее, если рассматривать ее с точки зрения теории гелей, предложенной Flory. Эта теория утверждает, что при достаточно большой вероятности сшивок между полимерами формируется сшитая: трехмерная сеть. Тем самым предсказывается существование «точки гелеобразования», в которой должен происходить резкий переход от раствора к гелю, отчасти сходный в математическом отношении с такими фазовыми переходами, как плавление и испарение; дальнейшее увеличение количества сшивок - за точкой гелеобразования - должно приводить лишь к изменению-жесткости геля. Таким образом, белки, образующие поперечные сшивки, будут переводить вязкий раствор F-актина в состояние геля, а те белки, которые разрушают филаменты или вызывают увеличение их числа, станут растворять гель путем снижения средней длины полимеров, не сопровождающегося возрастанием количества сшивок: гель растворится, когда плотность распределения сшивок упадет ниже уровня, определяемого точкой гелеобразования. Миозин может взаимодействовать с гелем и вызывать его сокращение. Теория гелей оказывается полезной при сопоставлении свойств актин-связывающих белков разных классов и при разработке методов исследования, их функций. Следует, однако, иметь в-виду, что теория гелей рассматривает лишь изотропные структуры и сама по себе не учитывает топологических особенностей конкретных систем. Как станет ясно из. дальнейшего, топология цитоскелета является чрезвычайно важной его характеристикой, которую теория гелей: предсказать пока не может.

Для осмысленной интерпретации результатов химического исследования белков необходимо детальное знание условий внутри клетки, включая точную стехиометрию всех белков, имеющих отношение к изучаемым процессам, и такие регуляторные факторы, как pH, рСа,. концентрация нуклеотидов, а также, по-видимому фосфолипидный состав прилегающих мембран. В ситуации, когда белки могут в стехиометрии 1:500 эффективно» индуцировать явления, несущие черты резких кооперативных переходов, количественные предсказания становятся, очевидно, сомнительным делом.

Строение скелетной мышцы. Мышечное сокращение. Актин и Миозин.

Скелетные мышцы – удерживают тело в равновесии и осуществляют движения, это наши бицепсы, трицепсы и прочее, то есть то, что мы качаем, занимаясь бодибилдингом. Они способны очень быстро сокращаться, и очень быстро расслабляться, при интенсивной деятельности они довольно быстро утомляются.

Структурной и функциональной единицей скелетной мышцы является мышечное волокно, представляющее собой сильно вытянутую клетку. Длина мышечного волокна зависит от размеров мышцы и составляет от нескольких миллиметров до нескольких сантиметров. Толщина волокна различна 10-100 микрометров.

Мышечные волокна бывают двух видов:

1) Красные волокна - содержат большое количество митохондрий с высокой активностью окислительных ферментов. Сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает обычного кислородного питания. Они участвуют в движениях, не требующих значительных усилий, - например, в поддержании позы.

2) Белые волокна - значительная сила сокращений, для этого требуется много энергии и уже одного кислорода тут недостаточно, большая активность ферментов расщепляющих глюкозу. Поэтому двигательные единицы, состоящие из белых волокон, обеспечивают быстрые, но кратковременные движения, требующие рывковых усилий.

Мышечная клетка имеет своеобразное строение. Мышечное волокно многоядерно, связано это с особенностью формирования волокна при развитии плода. Образуются они на этапе эмбрионального развития организма из клеток предшественников – миобластов.

Миобласты неоформленные одноядерные мышечные клетки.

Миобласты интенсивно делятся, сливаются и образуют мышечные трубочки с центральным расположением ядер. Затем в мышечных трубочках начинается синтез миофибрилл,

Миофибриллы - цилиндрические сократительные нитки толщиной 1 - 2 миктометра, идущие вдоль от одного конца мышечной клетки до другого.

И завершается формирование волокна миграцией ядер на окраины клеток. Ядра мышечного волокна к этому времени уже теряют способность к делению, и занимаются только функцией генерации информации для синтеза белка.
Но не все миобласты идет по пути слияния, часть из них обособляется в виде так называемых клеток-спутников, которые располагаются на поверхности мышечного волокна, в оболочке которая окружает мышечную клетку. Эти клетки, их называют еще Клетки-Сателлиты, в отличии от мышечных волокон, не утрачивают способность к делению на протяжении всей жизни, что обеспечивает увеличение мышечное массы волокон и их обновление. Восстановление мышечных волокон при повреждении мышцы возможно благодаря этим клеткам. При гибели волокна, скрывающиеся в его оболочке, клетки-сателлиты активизируются, делятся и преобразуются в миобласты. Миобласты сливаются друг с другом и образуют новые мышечные волокна, в которых затем начинается сборка миофибрилл. То есть при регенерации полностью повторяются события эмбрионального развития мышц. (как при рождении).

Механизм сокращения мышечного волокна.

Разберем подробней строение миофибрилл, этих ниток которые растягиваются параллельно друг другу в мышечных клетках, число которых в одном таком волокне может достигать пару тысяч. Миофибриллы обладают способностью уменьшать свою длину при поступлении нервного импульса, стягивая тем самым мышечное волокно.
Чередование светлых и темных полос в миофибрильной нити определяется упорядоченным расположением по длине миофибриллы толстых нитей белка миозина и тонких нитей белка актина:

Толстые нити содержатся только в темных участках (А-зона), светлые участки (I-зона) не содержат толстых нитей, в середине I-зоны находится Z-диск – к нему крепятся тонкие нити актина. Участок миофибриллы, состоящий из А-зоны и двух половинок I-зоны, называют - саркомером . Саркомер - это базовая сократительная еденица мышцы. Границы саркомеров в соседних миофибриллах совпадают, поэтому вся мышечная клетка приобретает регулярную исчерченность.

Миозин - белок сократительных волокон мышц. Его содержание в мышцах около 40% от массы всех белков (для примера, в других тканях всего 1-2%). Молекула миозина представляет собой длинный нитевидный стержень, как будто сплетенные две веревки образующие на одном конце две грушевидные головки.

Актин так же белок сократительных волокон мышц, гораздо меньший по разному чем миозин, и занимающий всего 15-20% от общей массы всех белков. Крепится к Z-диску.Представляет собой сплетенные две нитки в стержень, с канавками, в которых залегает двойная цепочка другово белка - тропомиозина . Основной его функцией является блокировка сцепления миозина с актином, в расслабленном состоянии мышц.

Сокращение длины саркомера происходит путем втягивания тонких нитей актина между толстыми нитями миозина. Скольжение нитей актина вдоль нитей миозина происходит благодаря наличию у нитей миозина боковых ответвлений. Головка миозинового мостика сцепляется с актином и изменяет угол наклона к оси нити, тем самым как бы продвигая нить миозина и актина относительно друг друга, затем отцепляется, сцепляется вновь и вновь совершает движение.

Перемещение миозиновых мостиков можно сравнить с гребками весел на галерах. Как перемещение галеры в воде происходит благодаря движению весел, так и скольжение нитей происходит благодаря гребковым движениям мостиков, существенное отличие состоит лишь в том, что движение мостиков не синхронное. При поступлении нервного импульса клеточная мембрана меняет полярность заряда, и из специальных цистерн (эндоплазматического ретикулума), расположенных вокруг каждой миофибриллы вдоль всей ее длины, в саркоплазму выбрасываются ионы кальция (Са++).
Под воздействием Са++ нить тропомиозина входит глубже в канавку и освобождает места для сцепления миозина с актином, мостики начинают цикл гребков. Сразу после высвобождения Са++ из цистерн он начинает закачиваться обратно, концентрация Са++ в саркоплазме падает, тропомиозин выдвигается из канавки и блокирует места сцепления мостиков – волокно расслабляется. Новый импульс опять выбрасывает Са++ в саркоплазму и все повторяется. При достаточной частоте импульсации (не менее 20 Гц) отдельные сокращения почти полностью сливаются, то есть достигается состояние устойчивого сокращения, называемое тетаническим сокращением.

Строение мышцы

Мышечное сокращение

АКТИН

один из осн. белков сократит. элементов мышечного волокна. Может существовать в виде мономера (Г-А., мол. м. ок. 42 тыс.) и в полимеризов. состоянии (Ф-А.).

Молекула Г-А. имеет глобулярную двухдоменную форму и связана с одной молекулой АТФ, к-рая превращается в аденозиндифосфат при полимеризации Г-А. В бессолевых водных р-рах Г-А. не полимеризуегся. В случае добавления КС1 или MgCl 2 процесс начинается при концентрации соотв. 0,1-0,15 или 0,01 М. Возможность полимеризации Г-А. в организме находится в зависимости от актинсвя-зывающих белков, напр. филамина, актинина.

Ф-А.-линейный полимер, образующий пологую спираль (ее нити полярны) с шагом 38 нм и диаметром субъединиц 5,5 нм. Один виток спирали содержит 13-14 молекул Г-А. Полимеризация мономера приводит к резкому повышению вязкости р-ра. Ф-А. образует комплекс с др. сократит. белком-миозином-и оказывает сильное активирующее влияние на его аденозинтрифосфатазную . Важное св-во Ф-А.-способность к координации обменных процессов, к-рая проявляется при его взаимод. с рядом ферментов (киназой фосфорилазы, алъдолазой, глицеральдегид-3-фосфат-дегидрогеназой и др.).

А. присутствует во всех клетках эукариотов (10-15% по массе от всех белков). В немышечных клетках он формирует "цитоскелет" (микрофиламенты цитоплазмы клеток).

Лит.: Основы биохимии, пер. с англ., т. 3, М., 1981, с. 1406-10. Б. Ф. Поглазов.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Синонимы :

Смотреть что такое "АКТИН" в других словарях:

    Актин белок, полимеризованная форма которого образует микрофиламенты один из основных компонентов цитоскелета эукариотических клеток. Вместе с белком миозином образует основные сократительные элементы мышц актомиозиновые… … Википедия

    Актин(ы) - * актын(ы) *actin(s) белок мышечных волокон с М. м. 42 кДа, существующий в двух формах фибриллярной (актин) и глобулярной (актин). А. имеет участки, комплементарные участкам молекул миозина (см.), и входит в состав актомиозина основного… … Генетика. Энциклопедический словарь

    Белок мышечных волокон. Мол. м. 42 000. Две формы: глобулярная (Г А.) и фибриллярная (Ф А.), к рая образуется при полимеризации Г А. в присутствии АТФ и ионов Mg+ + . На каждой молекуле А. имеются участки, комплементарные определённым участкам на … Биологический энциклопедический словарь

    Белок, фибриллярная форма которого образует с миозином основной сократительный элемент мышц актомиозин … Большой Энциклопедический словарь

    АКТИН, белок мышечных волокон, участвующий в сократительных процессах в клетке. Содержится преимущественно в клетках мускульных тканей; реагируя с миозином, образует АКТОМИОЗИН … Научно-технический энциклопедический словарь

    Сущ., кол во синонимов: 1 белок (99) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    актинідія - іменник жіночого роду … Орфографічний словник української мови

    актин - Периодически сокращающийся белок, находящийся внутри эукариотической клетки Тематики биотехнологии EN actin … Справочник технического переводчика

    Белок мышечных волокон. Молекулярная масса около 70 000. Существует в двух формах: глобулярной (Г актин) и фибриллярной (Ф актин), являющейся продуктом полимеризации Г актина. В покоящейся мышце А. находится в форме Ф актина, образуя с… … Большая советская энциклопедия

    Белок, фибриллярная форма которого образует с миозином основной сократительный элемент мышц актомиозин. * * * АКТИН АКТИН, белок, фибриллярная форма которого образует с миозином основной сократительный элемент мышц актомиозин … Энциклопедический словарь

    Actin актин. Белок мышечных волокон (молекулярная масса 42 кД), существует в двух формах фибриллярной и глобулярной, имеет участки, комплементарные участкам молекул миозина , и входит в состав актомиозина … … Молекулярная биология и генетика. Толковый словарь.

Реснички и жгутики

Реснички и жгутики — органеллы специалъного значения, учасйвующие в процессах движения, — представляют собой выросты цитоплазмы, основу которых составляет картс из микротрубочек, называемй осевой нитью, или аксонемой (от греч. axis — ось и nema — нить). Длина ресничек равна 2-10 мкм, а их количество на поверхности одной реснитчатой клетки может достигать нескольких сотен. В единственном типе клеток человека, имеюпщх жгутик – спермиях – содержится только по одному жгутику длиноп 50-70 мкм. Аксонема образована 9 периферическими парами микротрубочек одной центрально расположенной парой; такое строение описьшается формулой (9 х 2) + 2 (рис. 3-16). Внутри каждой периферической пары за счет частичного слияния микротрубочек одна из них (А) полная, вторая (В) – неполная (2-3 димера обшие с микротрубочкой А).

Центральная пара микротрубочек окружена центральной оболоч-кой, от которой к периферическим дублетам расходятся радиальные сггицы- Периферические дублеты связаны друг с другом мостиками нексина, а от микротрубочки А к микротрубочке В соседнего дублета отходят "ручки" из белка динеина (см. рис. 3-16), который обладает активностью АТФазы.

Биение реснички и жгутика обусловлено скольжением соседних дублетов в аксонеме, которое опосредуется движением динеиновых ручек. Мутации, вызывающие изменения белков, входящих в состав ресничек и жгутиков, приводят к различным нарушениям функции соответствуюших клеток. При синдроме Картагенера (синдроме неподвижных ресничек), обычно обусловленном отсутствием динеиновых ручек; больные страдают хроническими заболеваниями дыхательной системы (связанными с нарушением функции очищения поверхности респираторного эпителия) и бесплодием (вследствие неподвижности спермиев).

Базальное тельце, по своему строению сходное с центриолью, лежит в основании каждой реснички или жгутика. На уровне апикального конца тельца микротрубочка С триплета заканчивается, а микротрубочки А и В продолжаются в соответствующие микротрубочки аксонемы реснички или жгутика. При развитии ресничек или жгутика базальное тельце играет роль матрицы, на которой поисходит сборка компонентов аксонемы.

Микрофиламенты — тонкие белковые нити диаметром 5-7 нм, лежащие в цитоплазме поодиночке, в виде септей или пучками. В скелетной мышце тонкие микрофиламенты образуют упорядоченные пучки, Взаимодействуя с более толстыми миозиновыми филаментами.

Кортикольноя (терминальная) сеть — зона сгущения микрофиламентов под плазмолеммой, характерная для болышнства клеток. В этой сети микрофиламенты переплетены между собой и "сшиты" друг с другом с помощью особых белков, самым распространенным из которых является филамин. Кортикальная сеть препятствует резкой и внезапной деформацш клетки при механических воздействиях и обеспечивает плавные изменения ее формы путем перестройки, которая облегчается актин-ростворяющими (преобразующими) ферментами.

Прикрепление микрофиламентов к плазмолемме осуществляется благодаря их связи с ее интегральными ("якорными") белками интегринами) — непосредственно или через ряд промежуточных белков талин, винкулин и α-актинин (см. рис. 10-9). Помимо этого, актиновые микрофиламенты прикрепляются к трансмембранным белкам в особых участках плазмолеммы, называемых адгезионными соединениями или, фокальными контактами, которые связывают клетки друг с другом или клетки с компонентами межклеточного вещества.

Актин — основной белок микроиламентов — встречается в мономерной форме (G-, или глобулярный актин), которая способна в присутствии цАМФ и Са2+ полимеризоваться в длишые цепи (F-, или фибриллярный актин). Обычно молекула актина имеет вид двух спирально скрученных нитей (см. рис. 10-9 и 13-5).

В микрофиламентах актин взаимодействует с рядом актин-связывающих белков (до нескольких десятков видов), выполняющих различные функции. Некоторые из них регулируют степень полимеризации актина, другие (например, филамин в кортикальной сети или фимбрин и виллин в микроворсинке) способствуют связьшанию отдельных микрофиламентов в системы. В немышечных клетках на актин приходится примерно 5-10% содержания белка, лишь около половины его организовано в филаменты. Микрофиламенты более устойчивы к физическим и химическим воздействиям, чем микротрубочки.

Функции микрофиламентов:

(1) обеспечение сократимости мышечных клеток (при взаимодействиис миозином);

(2) обеспечение функций, связанных с кортикальным слоем цитоплазмы и плазмолеммой (экзо- и эндоцитоз, образование псевдоподий и миграция клетки);

(3) перемещение внутри цитоплазмы органелл, транспортных пузырьков и других структур благодаря взаимодействию с некоторьай белками (минимиозином), связанными с поверхностью этих структур;

(4) обеспечение определенной жесткости клетки за счет наличия кортикальной сети, которая препятствует действию деформаций, но сама, перестраиваясь, способствует изменениям клеточной формы;

(5) формирование сократимой перетяжки при цитотомии, завершающей клеточное деление;

(6) образование основы ("каркаса") некоторых органелл (микроворсинок, стереоцилий);

(7) участие в организации структуры межклеточных соединений (опоясывающих десмосом).

Микроворсинки – пальцевидные выросты цитоплазмы клетки диаметром 0.1 мкм и длиной 1 мкм, основу которых образуют актиновые микрофиламенты. Микроворсинки обеспечивают многократное увеличение площади поверхности клетки, на которой происходит расщепление и всасывание веществ. На апикальной поверхности некоторых клеток, активно участвуюхщх в указанных процессах (в эпителии тонкой кишки и почечных канальцев) имеется до нескольких тысяч микроворсинок, образующих в совокупности щеточную каемку.

Рис. 3-17. Схема ультраструктурной организации микроворсинки. АМФ – актиновые микрофиламенты, АВ – аморфное вещество (апикальной части микроворсинки), Ф, В – фимбрин и виллин (белки, образующие поперечные сшивки в пучке АМФ), мм – молекулы минимиозина (прикрепляющие пучок АМФ к плазмолемме микроворсинки), ТС – терминальная сеть АМФ, С – спектриновые мостики (прикрепляют ТС к плазмолемме), МФ – миозиновые филаменты, ПФ – промежуточные филаменты, ГК – гликокаликс.

Каркас каждой микроворсинки образован пучком, содержащим около 40 микрофиламентов, лежащих вдоль ее длинной оси (рис. 3-17). В апикалъной части микроворсинки этот пучок закреплен в аморфном веществе. Его жесткость обусловлена поперечными сшивками из белков фимбрина и виллина, изнутри пучок прикрешюн к плазмолемме микроворсинки особыми белковыми мостиками (молекулами минимиозина. У основания микроворсинки микрофиламенты пучка вплетаются в терминальную сеть, среди элементов которой имеются миозиновые филаменты. Взаимодействие актиновых и миозиновых филаментов терминальной сети, вероятно, обусловливает тонус и конфигурацию микроворсинки.

Стереоцилии – видоизмененные длинные (в некоторых клетках – ветвяшиеся) микроворсинки – выявляются значительно реже, чем микроворсинки и, подобно последним, содержат пучок микрофиламентов.

⇐ Предыдущая123

Читайте также:

Микрофиламенты, микротрубочки и промежуточные филаменты как основные компоненты цитоскелета.

Актиновые микрофиламенты — структура, функции

Актиновые микрофиламенты представляют собой полимерные нитевидные образования диаметром 6-7 нм, состоящие из белка актина. Эти структуры обладают высокой динамичностью: на конце микрофиламента, обращенном к плазматической мембране (плюс-конец), идет полимеризация актина из его мономеров в цитоплазме, тогда как на противоположном (минус-конец) происходит деполимеризация.
Микрофиламенты , таким образом, обладают структурной полярностью: рост нити идет с плюс-конца, укорочение - с минус-конца.

Организация и функционирование актинового цитоскелета обеспечиваются целым рядом актинсвязывающих белков, которые регулируют процессы полимеризации -деполимеризации микрофиламентов, связывают их друг с другом и придают контрактильные свойства.

Среди таких белков особое значение имеют миозины.

Взаимодействие одного из их семейства - миозина II с актином лежит в основе мышечного сокращения, а в немышечных клетках придает актиновым микрофиламентам контрактильные свойства - способность к механическому напряжению. Эта способность играет исключительно важную роль во всех адгезионных взаимодействиях.

Формирование новых актиновых микрофиламентов в клетке происходит путем их ответвления от предшествующих нитей.

Чтобы новый микрофиламент смог образоваться, необходима своеобразная «затравка». В ее формировании ключевую роль играет белковый комплекс Аф 2/3, включающий два белка, весьма сходных с актиновыми мономерами.

Будучи активированным , комплекс Аф 2/3 прикрепляется к боковой стороне предсуществующего актинового микрофиламента и изменяет свою конфигурацию, приобретая способность присоединить к себе еще один мономер актина.

Так возникает «затравка», инициирующая быстрый рост нового микрофиламента, отходящего в виде ответвления от боковой стороны старой нити под углом около 70°, тем самым в клетке формируется разветвленная сеть новых микрофиламентов.

Рост отдельных нитей вскоре заканчивается, нить разбирается на отдельные АДФ-содержащие мономеры актина, которые после замены в них АДФ на АТФ вновь вступают в реакцию полимеризации.

Актиновый цитоскелет играет ключевую роль в прикреплении клеток к внеклеточному матриксу и друг к другу, в формировании псевдоподий, с помощью которых клетки могут распластываться и направленно перемещаться.

— Вернуться в раздел « онкология»

  1. Метилирование генов-супрессоров как причина гемобластозов — опухолей крови
  2. Теломераза — синтез, функции
  3. Теломера — молекулярная структура
  4. Что такое теломерный эффект положения?
  5. Альтернативные способы удлинения теломер у человека — иммортализация
  6. Значение теломеразы в диагностике опухолей
  7. Методы лечения рака влиянием на теломеры и теломеразу
  8. Теломеризация клеток — не ведет к злокачественной трансформации
  9. Адгезия клеток — последствия нарушения адгезивных взаимодействий
  10. Актиновые микрофиламенты — структура, функции

Микрофиламенты (тонкие филаменты) - компонент цитоскелета эукариотических клеток. Они тоньше микротрубочек и по строению представляют собой тонкие белковые нити диаметром около 6 нм.

Основным белком, входящим в их состав, является актин . Также в клетках может встречаться миозин. В связке актин и миозин обеспечивают движение, хотя в клетке это может делать и один актин (например, в микроворсинках).

Каждый микрофиламент представляет собой две перекрученные цепочки, каждая из которых состоит из молекул актина и других белков в меньших количествах.

В некоторых клетках микрофиламенты образуют пучки под цитоплазматической мембраной, разделяют подвижную и неподвижную часть цитоплазмы, участвуют в эндо- и экзоцитозе.

Также функциями являются обеспечение движения всей клетки, ее компонентов и др.

Промежуточные филаменты (встречаются не во всех клетках эукариот, их нет у ряда групп животных и всех растений) отличаются от микрофиламентов большей толщиной, которая составляет около 10 нм.

Микрофиламенты, их состав и функции

Они могут строиться и разрушаться с любого конца, в то время как тонкие филаменты полярны, их сборка идет с «плюс»-конца, а разборка - с «минус» (также как у микротрубочек).

Существуют различные типы промежуточных филаментов (отличаются по белковому составу), один из которых содержится в клеточном ядре.

Белковые нити, формирующие промежуточный филамент, антипараллельны.

Этим объясняется отсутствие полярности. На концах филамента находятся глобулярные белки.

Образуют своеобразное сплетение около ядра и расходятся к периферии клетки. Обеспечивают клетке возможность противостоять механическим нагрузкам.

Основной белок- актин.

Актиновые микрофиламенты.

Микрофиламенты в общем.

Встречаются во всех клетках эукариот.

Расположение

Микрофиламенты образуют пучки в цитоплазме подвижных клеток животных и образую кортикальный слой (под плазматической мембраной).

Основной белок- актин.

  • Неоднородный белок
  • Встречается в разных изоформах, кодируется разными генами

У млекопитающих 6 актинов: один в скелетных мышцах, один –в сердечной, два типа в гладких, два немышечных (цитоплазматических) актина=универсальный компонент любых клеток млекопитающих.

Все изоформы близки по аминокислотным последовательностям, вариантны лишь концевые участки.(они определяют скорость полимеризации, НЕ влияют на сокращение)

Свойства актина:

  • М=42 тыс;
  • в мономерной форме имеет вид глобулы, содержащей молекулу АТФ (G-актин);
  • полимеризация актина => тонкая фибрилла (F-актин, представляет пологую спиральную ленту);
  • актиновые МФ полярны по своим свойствам;
  • при достаточной концентрации G-актин начинает самопроизвольно полимеризоваться;
  • очень динамические структуры, которые легко разбираются и собираются.

При полимеризации (+) конец нити микрофиламента быстро связывается с G-актином => растет быстрее

(–) конца.

Малая концентрация G-актина=> F-актин начинает разбираться.

Критическая концентрация G-актина=>динамическое равновесие (микрофиламент имеет постоянную длину)

На растущий конец прикрпеляются мономеры с АТФ, в процессе полимеризации происходит гидролиз АТФ, мономеры стаются связанными с АДФ.

Молекулы актина+атф прочнее взаимодействуют друг с другом, чем мономеры, связанные с АДФ.

Стабильность фибриллярной системы поддерживается:

  • белком тропомиозином (придает жесткость);
  • филамином и альфа-актинином.

Микрофиламенты

Образуют поперечные скрепки между нитями f-актина=>сложная трехмерная сеть(придает гелеобразное состояние цитоплазме);

  • Белки, прикрепляющиеся к концам фибрилл, предотвращающие разборку;
  • Фимбрин (связывают филаменты в пучки);
  • Комплекс с миозинами= акто-миозиновый комплекс, способный к сокращению при расщеплении АТФ.

Функции микрофиламентов в немышечных клетках:

Быть частью сократительного аппарата;