Конечная часть слухового анализатора. Анатомия: строение и функции слухового анализатора

14.3. Слуховой анализатор

Слуховой анализатор представляет собой совокупность механиче­ских, рецепторных и нервных структур, воспринимающих и анализи­рующих звуковые колебания. Периферический отдел слухового ана­лизатора представлен слуховым органом, состоящим из наружного, среднего и внутреннего уха (рис. 58).

Наружное ухо состоит из ушной раковины и наружного слухового прохода.

Основу ушной раковины составляет эластичный хрящ, дополнен­ный кожной складкой - мочкой, заполненной жировой тканью. Уш­ная ракбвина у новорожденного уплощена, хрящ ее мягкий, кожа тонкая, мочка имеет небольшие размеры. Наиболее быстро ушная ра­ковина растет в течение первых двух лет и после 10 лет. В длину она растет быстрее, чем в ширину. Свободный край раковины завернут внутрь в форме завитка, а с ее дна поднимается противозавиток. Ме- диальнее последнего располагается полость раковины, в глубине ко­торой находится отверстие наружного слухового прохода. Спереди от него располагается козелок, сзади - противокозелок.

Наружный слуховой проход имеет длину 24 мм и оканчивается бара­банной перепонкой. Первая треть слухового прохода является хряще­вым продолжением раковины, остальные две трети костные и распо­лагаются в пирамиде височной кости. Наружный слуховой проход

у новорожденного узкий и длинный (15 мм), круто изогнут, имеет су­жение, медиальный и латеральный отделы его расширены. Стенки наружного слухового прохода хрящевые, за исключением барабанно­го кольца. Длина слухового прохода у ребенка 1 года составляет 20 мм, а 5 лет - 22 мм. Слуховой проход выстлан кожей с тонкими волокна­ми и видоизмененными потовыми железками, выделяющими ушную серу. Все это защищает барабанную перепонку от неблагоприятных воздействий внешней среды. Барабанная перепонка отделяет наруж­ное ухо от среднего. Она состоит из коллагеновых волокон, снаружи покрыта эпидермисом, а внутри - слизистой оболочкой. Барабанная перепонка у новорожденного хорошо развита. Ее высота равна 9 мм, ширина - 8 мм, как у взрослого человека, и образует угол в 35-40°.

Среднее ухо состоит из барабанной полости, слуховых косточек и слуховой трубы.

На передней стенке барабанной полости располагается отверстие слуховой трубы, через которое она заполняется воздухом. На задней стенке полости открываются ячейки сосцевидного отростка, а на ме­диальной размещаются окно преддверия и окно улитки, которые ведут во внутреннее ухо. Барабанная полость у новорожденного по разме­рам такая же, как у взрослого. Слизистая оболочка утолщена, и поэто­му барабанная полость заполнена жидкостью. С началом дыхания она поступает через слуховую трубу в глотку и проглатывается. Стенки ба­рабанной полости тонкие, особенно верхняя. Задняя стенка имеет широкое отверстие, ведущее в сосцевидную полость. Сосцевидные ячейки у грудных детей отсутствуют из-за слабого развития сосцевид­ного отростка. Окно улитки затянуто вторичной барабанной пере­понкой.

В среднем ухе располагаются три слуховые косточки: молоточек, наковальня и стремя. Молоточек соединяется с одной стороны с бара­банной перепонкой, а с другой - с телом наковальни. Длинный от­росток последней сочленяется с головкой стремени. Основание стре­мени прилегает к окну преддверия. Слуховые косточки у новорож­денного имеют размеры, близкие к таковым у взрослого. Все три косточки соединяют барабанную перепонку с внутренним ухом.

Слуховая труба - это длинный (3,5 см) и узкий (2 мм) хрящевой канал, который переходит в костный со стороны пирамиды. Труба служит для выравнивания давления воздуха на барабанную перепон­ку. Отверстие трубы в глотке находится в спавшемся состоянии и воз­дух в барабанную полость поступает лишь при глотании или зевании.

Слуховая труба у новорожденного прямая, широкая и короткая, дли­ной 17-18 мм. В течение первого года жизни она растет медленно (20 мм), на втором году быстрее (30 мм). В 5 лет длина ее составляет 35 мм, у взрослого человека - 35-38 мм. Просвет слуховой трубы су­живается от 2,5 мм в 6 месяцев до 2 мм в 2 года и 1 -2 мм в 6 лет.

Внутреннее ухо, или лабиринт, имеет двойные стенки: перепонча­тый лабиринт вставлен в костный. Между ними находится прозрач­ная жидкость - перилимфа, а внутри перепончатого - эндолимфа.

Костный лабиринт состоит из преддверия, улитки и трех полу­кружных каналов. Преддверие представляет собой овальную полость, соединяющуюся с барабанной полостью с помощью перегородки с двумя окнами: овальным (окно преддверия) и круглым (окно улит­ки). В преддверие открываются отверстия трех полукружных каналов и спиральный канал улитки. Строение полукружных каналов будет рассмотрено при описании вестибулярного анализатора. Костная улитка представляет собой спиральный канал, имеющий два с поло­виной оборота вокруг стержня улитки. От стержня отходит костная спиральная пластинка, не доходящая до наружной стенки канала. От свободного конца спиральной пластинки до противоположной стен­ки улитки натянуты две мембраны - спиральная и вестибулярная, которые ограничивают улитковый проток. Улитковый проток делит улитку на две части, или лестницы. Верхняя часть, или лестница пред­дверия, начинается от овального окна преддверия и идет до вершины улитки, где через маленькое отверстие сообщается с нижним каналом, или барабанной лестницей. Она располагается от верхушки улитки до круглого окна улитки. Вестибулярная и барабанная лестницы запол­нены перилимфой, а просвет улиткового протока - эндолимфой. Внутреннее ухо у новорожденного развито хорошо, его размеры близ­ки к таковым у взрослого человека. Костные стенки полукружных ка­налов тонкие, постепенно утолщаются за счет окостенения в пирами­де височной кости.

На спиральной мембране лежит спиральный орган, состоящий из опорных и рецепторных клеток. На опорных клетках цилиндриче­ской формы лежат рецепторные волосковые клетки, которые имеют на своей верхней части выросты, представленные крупными микро­ворсинками (стереоцилиями). Волосковые клетки бывают наружны­ми, располагающимися в три ряда, и внутренними, образующими только один ряд. Между наружными и внутренними волосковыми клетками лежит кортиев туннель, выстланный столбчатыми клетками.

Реснички наружных и внутренних волосковых клеток соприкасаются с покровной (текториальной) мембраной. Эта мембрана представляет собой однородную желеобразную массу, прикрепленную к клеткам эпителия. Спиральная мембрана неодинакова по ширине: у человека вблизи овального окна ее ширина составляет 0,04 мм, а затем по на­правлению к вершине улитки, постепенно расширяясь, она достигает в конце 0,5 мм. В базальной части спирального органа располагаются рецепторные клетки, воспринимающие более высокие частоты, а в апи­кальной части (на вершине улитки) - клетки, воспринимающие только низкие частоты.

Базальные части рецепторных клеток контактируют с нервными волокнами, которые проходят в базальной мембране, а затем выходят в канал спиральной пластинки. Далее они идут к нейронам спираль­ного ганглия, лежащего в костной улитке, где и начинается провод­никовый отдел слухового анализатора. Аксоны нейронов спирально­го узла образуют волокна слухового нерва, который входит в мозг между нижними ножками мозжечка и мостом и направляется в по­крышку моста, где имеет место первый перекрест волокон и образуется латеральная петля. Часть ее волокон оканчивается на клетках нижнего двухолмия, где находится первичный слуховой центр. Другие волокна латеральной петли в составе ручки нижнего двухолмия подходят к ме­диальному коленчатому телу. Отростки клеток последнего образуют слуховую лучистость, оканчивающуюся в коре верхней височной из­вилины (корковый отдел слухового анализатора).

Механизм образования звука

Кортиев орган, расположенный на основной мембране, содержит рецепторы, которые превращают механические колебания в электри­ческие потенциалы, возбуждающие волокна слухового нерва. При действии звука основная мембрана начинает колебаться, волоски ре- цепторных клеток деформируются, что вызывает генерацию электри­ческих потенциалов, которые через синапсы достигают волокон слу­хового нерва. Частота этих потенциалов соответствует частоте звуков, а амплитуда зависит от интенсивности звука.

В результате возникновения электрических потенциалов происхо­дит возбуждение волокон слухового нерва, для которых характерна спонтанная активность даже в тишине (100 имп./с). При звуке частота импульсации в волокнах нарастает в течение всего времени действия раздражителя. Для каждого волокна нерва существует оптимальная частота звука, которая дает наибольшую частоту разрядов и мини­мальный порог реакции. Эта оптимальная частота определяется ме­стом на основной мембране, где расположены рецепторы, связанные с данным волокном. Таким образом, для волокон слухового нерва ха­рактерна частотная избирательность, обусловленная возбуждением разных клеток спирального органа. При повреждении спирального органа у основания выпадают высокие тона, у вершины - низкие тона. Разрушение среднего завитка приводит к выпадению тонов средней частоты диапазона.

Существует два механизма различения высоты тона: пространст­венное и временное кодирование. Пространственное кодирование основано на неодинаковом расположении возбужденных рецептор- ных клеток на основной мембране. При низких и средних тонах осу­ществляется и временное кодирование. Информация в этом случае передается в определенные группы волокон слухового нерва, частота соответствует частоте воспринимаемых улиткой звуковых колебаний.

Для всех слуховых нейронов характерно наличие частотно-поро­говых показателей. Эти показатели отражают зависимость порогово­го звука, необходимого для возбуждения клетки, от его частоты. В обе стороны от оптимальной частоты порог реакции нейрона возрастает, т.е. нейрон оказывается настроенным на звуки лишь определенной частоты.

Все это подтвердило гипотезу Г. Гельмгольца (1863) о механизме различения в кортиевом органе звуков по их высоте. Согласно этой гипотезе, поперечные волокна основной мембраны короткие в ее уз­кой части - у основания улитки и в 3-4 раза длиннее в ее широкой части - у вершины. Они настроены как струны музыкальных инстру­ментов. Колебание отдельных групп волокон вызывает на соответст­вующих участках основной мембраны раздражение соответствующих рецепторных клеток. Эти предположения Г. Гельмгольца подтверди­лись и были частично модифицированы и развиты в работах амери­канского физиолога Д. Бекеши (1968).

Сила звука кодируется числом возбужденных нейронов. При сла­бых раздражителях в реакцию вовлекается лишь небольшое число наиболее чувствительных нейронов, а при усилении звука возбужда­ется все больше дополнительных нейронов. Это связано с тем, что нейроны слухового анализатора резко отличаются друг от друга по по­рогу возбуждения. Порог различен у внутренних и наружных клеток (для внутренних клеток он значительно выше), поэтому в зависимо­сти от силы звука изменяется соотношение числа возбужденных на­ружных и внутренних клеток.

Человек воспринимает звуки с частотой от 16 до 20 ООО Гц. Этот диапазон соответствует 10-11 октавам. Границы слуха зависят от воз­раста: чем человек старше, тем чаще он не слышит высоких тонов. Различение частоты звуков характеризуется той минимальной разни­цей по частоте двух звуков, которую человек улавливает. Человек спо­собен заметить разницу в 1-2 Гц.

Абсолютная слуховая чувствительность - это минимальная сила звука, слышимого человеком в половине случаев его звучания. В об­ласти от 1000 до 4000 Гц слух человека обладает максимальной чувст­вительностью. В этой зоне лежат и речевые поля. Верхний предел слышимости возникает, когда увеличение силы звука неизменной частоты вызывает неприятное чувство давления и боли в ухе. Едини­цей громкости звука является бел. В быту обычно используют в каче­стве единицы громкости децибел, т.е. 0,1 бела. Максимальный уро­вень громкости, когда звук вызывает боль, равен 130-140 дБ над порогом слышимости.

Если на ухо долго действует тот или иной звук, то чувствитель­ность слуха падает, т.е. наступает адаптация. Механизм адаптации связан с сокращением мышц, идущих к барабанной перепонке и стре­мени (при их сокращении изменяется интенсивность звуковой энергии, передающейся на улитку), и с нисходящим влиянием ретикулярной формации среднего мозга.

Слуховой анализатор обладает двумя симметричными половинами (бинауральный слух), т.е. для человека характерен пространственный слух - способность определять положение источника звука в про­странстве. Острота такого слуха велика. Человек может определить расположение источника звука с точностью до 1°. Это связано с тем, что, если источник звука находится в стороне от средней линии голо­вы, звуковая волна приходит на одно ухо раньше и с большей силой, чем на другое. Кроме того, на уровне задних холмов четверохолмия найдены нейроны, реагирующие лишь на определенное направление движения источника звука в пространстве.

Слух в онтогенезе

Несмотря на раннее развитие слухового анализатора, орган слуха у новорожденного еще не вполне сформирован. У него имеет место от­носительная глухота, которая связана с особенностями строения уха. Полость среднего уха у новорожденных заполнена амниотической жидкостью, что затрудняет колебание слуховых косточек. Амниоти- ческая жидкость постепенно рассасывается, и в полость уха из носо­глотки через евстахиеву трубу проникает воздух.

Новорожденный реагирует на громкие звуки вздрагиванием, прекра­щением плача, изменением дыхания. Вполне отчетливым слух у детей становится к концу 2-го - началу 3-го месяца. На 2-м месяце жизни ребенок дифференцирует качественно различные звуки, в 3-4 месяца различает высоту в пределах от 1 до 4 октав, в 4-5 месяцев звуки ста­новятся условными раздражителями, хотя условные пищевые и обо­ронительные рефлексы на звуковые раздражители вырабатываются уже с 3-5-недельного возраста. К 1-2 годам дети дифференцируют звуки, разница между которыми составляет 1 тон, а к 4 годам - даже 3/4 и 1/2 тона.

Острота слуха определяется наименьшей силой звука, которая мо­жет вызвать звуковое ощущение (порог слышимости). У взрослого че­ловека порог слышимости лежит в пределах 10-12 дБ, удетей 6-9 лет - 17-24 дБ, 10-12-лет- 14-19 дБ. Наибольшая острота звука достига­ется к среднему и старшему школьному возрасту. Низкие тоны дети воспринимают лучше, чем высокие. В развитии слуха у детей большое значение имеет общение со взрослыми. Развивает слух у детей слуша­ние музыки, обучение игре на музыкальных инструментах.

Строение слухового анализатора - тема нашей статьи. Как взаимосвязаны его строение и функции? Какое значение имеет слух для человека? Давайте разберемся вместе.

Что такое сенсорные системы

Каждую секунду наш организм воспринимает информацию из окружающей среды и соответствующим образом реагирует на нее. Это возможно благодаря сенсорным, или анализаторным системам. Строение слухового анализатора аналогично другим подобным структурам.

Всего в организме человека различают пять сенсорных систем. Кроме слуховой к ним относятся зрительная, обонятельная, осязательная, вкусовая. Ученые утверждают, что человек обладает еще и шестым чувством. Речь идет об интуиции - умении предвидеть события. Но структура, которая отвечает за формирование этого чувства, пока неизвестна.

Принцип работы анализаторов

Если описать строение слухового анализатора кратко, то можно назвать три его отдела. Они называются периферический, проводниковый и центральный. Такой план строения имеют все сенсорные системы.

Периферический отдел представлен рецепторами. Это чувствительные образования, которые воспринимают различные виды раздражений и преобразуют их в импульсы. Нервные волокна, которые представляют проводниковый отдел, передают информацию головной мозг. Здесь происходит ее анализ и формирование ответной реакции на раздражение.

Строение и функции слухового анализатора: кратко

Как происходит восприятие звуковых колебаний? Строение слухового анализатора подобно всем остальным. Его периферический отдел представлен ухом. Проводниковый - это слуховой нерв. По нему нервные импульсы продвигаются к центральной части. Это слуховая зона коры конечного мозга.

Способность к адаптации

Общим свойством для всех сенсорных систем является их способность приспосабливать уровень своей чувствительности к интенсивности силы действия раздражителя. Это свойство еще называют адаптацией. И строение слухового анализатора человека - не исключение.

В чем же заключается суть процесса адаптации? Дело в том, что чувствительность слуховых рецепторов может регулироваться в зависимости от степени воздействия раздражителя. Если сигнал сильный, уровень восприятия снижается, и наоборот. К примеру, вспомните, как мы постепенно начинаем различать тихие звуки через определенное время.

Для организма человека адаптация имеет защитное значение. Также она повышает функциональные возможности анализаторов путем длительных повторений. Так происходит тренировка слуха у профессиональных музыкантов. Люди, которые продолжительное время работают в условиях интенсивного шума или живут рядом с железной дорогой, через определенный период перестают его замечать. Это также проявление адаптации.

Как и все сенсорные системы, слуховая компенсируется функционированием остальных. Ярким примером этого является величайший композитор Людвиг Бетховен. Он был признанным мастером уже в молодом возрасте, а к тридцати годам его глухота начала быстро прогрессировать. Но даже когда Бетховен полностью лишился слуха, он продолжал сочинять музыкальные шедевры. Он помещал в рот небольшую деревянную палочку и прижимал ее к музыкальному инструменту. Таким образом осязательная сенсорная система компенсировала слуховой анализатор. А отсутствие зрения частично заменяется развитым слухом и обонянием.

Значение слуха

Возможно ли жить глухим? Естественно, людей с нарушениями слуха огромное количество. Несмотря на то, что больше всего информации человек воспринимает с помощью зрения, восприятие звуков также имеет большое значение.

Основные принципы строения слухового анализатора делают его работу непрерывной. Мы слышим даже во время сна. Слух позволяет воспринимать информацию на расстоянии, передавать опыт в поколениях, является средством общения.

Что такое звуковое давление

Все ли звуки мы способны воспринимать? Далеко нет. В процессе эволюции сенсорные системы приспособились к анализу информации только определенного диапазона. Это является защитой мозга от перегрузок.

Звуки формируются из колебаний воздуха. Строение слухового анализатора обеспечивает их превращение в нервные импульсы, которые анализируются в головном мозге. Амплитуту таких колебаний называют звуковым давлением. Ее единицей измерения является децибел. При обычном разговоре эта величина равна 60 дБ.

Частоту звуковых колебаний измеряют в герцах. Мы воспринимаем очень узкий диапазон - от 16 до 20 кГц. Другие колебания мы не способны слышать. Если частота колебаний ниже 16 Гц, они называются инфразвуком. В природе его используют для общения киты и слоны.

Ультразвук возникает при частоте колебаний более 20 кГц. Летучие мыши используют его для ориентации в ночное время суток. Они издают звуки, которые отражаются от предметов. Такой способ называется эхолокацией.

Орган слуха

Слуховой анализатор, строение и функции которого мы рассматриваем в нашей статье, состоит из трех отделов. Периферический представлен ухом. А правильнее сказать, органом слуха. Далее следует проводниковый отдел. Это слуховой нерв. Он передает информацию в центральный отдел, представленный слуховой зоной коры конечного мозга.

Внешнее ухо

В чем заключаются особенности анатомического строения периферического отдела слухового анализатора? Прежде всего в том, что он также состоит из трех частей. Это внешнее, среднее и внутреннее ухо.

Элементами первой части яляются ушная раковина и внешний слуховой проход. Они улавливают и направляют звуковые колебания к внутренним отделам. Ушная раковина образована эластичной хрящевой тканью, которая формирует характерные завитки.

Внешний слуховой проход имеет длину около 2,5 см, заканчиваясь барабанной перепонкой. Его кожа богата видоизмененными потовыми железами. Они выделяют особое вещество - ушную серу. Вместе с волосками она задерживает пыль и микроорганизмы.

Слуховые косточки

Строение органа слуха и слухового анализатора продолжает среднее ухо. Звуковые колебания передаются на барабанную перепонку, вызывая ее вибрацию. Чем выше звук, тем колебания интенсивнее.

Место нахождения среднего уха - черепа. Его границами являются две перепонки - барабанная и овального окна. Здесь колебания передаются на слуховые косточки. Они имеют характерную форму, которая определяет их названия: молоточек, стремя и наковальня. Слуховые косточки анатомически соединены между собой. Молоточек узкой частью крепится к наковальне. Последняя подвижно соединена со стременем. Колебания барабанной перепонки через слуховые косточки поступают к перепонке овального окна.

В этом отделе среднее ухо анатомически соединяется с носоглоткой при помощи евстахиевой, или слуховой трубы. Такое строение позволяет проникать сюда воздуху из окружающей среды. Поэтому давление на барабанную перепонку одинаково с обеих сторон.

Внутреннее ухо

Уже много сказано о строении и функциях слухового анализатора, а о самих рецепторах - ни слова. Это не ошибка. Их содержит внутреннее ухо. Его месторасположением является височная кость. Это сложная система извитых канальцев и полостей. Они заполнены специальной жидкостью.

От овального окна строение слухового анализатора продолжает канал, состоящий из 2,5 оборотов. Это улитка, в которой находятся слуховые рецепторы, или волосковые клетки. В улитке различают основную и покровную мембраны. Первая образована из поперечных волокон, имеющих разную длину. Их очень много - до 24 тысяч. Покровная мембрана нависает над волосковыми клетками. В результате образуется звуковоспринимающий аппарат, который называется кортиев орган. Он состоит из мембран и слуховых рецепторов.

Механизм действия

Когда перепонка овального окна начинает колебаться, это раздражение передается жидкости улитки. В результате возникает явление резонанса. Начинаются колебания волокон разной длины и слуховых рецепторов.

Этот процесс имеет свои закономерности. Сильный звук вызывает большой размах колебательных движений волокон. При высоком тоне звука начинают резонировать короткие волокна.

Далее механическая энергия колебательных движений превращается в электрическую. Так возникают нервные импульсы. Их дальнейшее передвижение происходит уже с помощью нейронов и их отростков. Они поступают в слуховую зону коры конечного мозга, который находится в височной доле.

Анализ звука - также важная функция слухового анализатора. Головной мозг определяет силу звука, его характер, высоту, направление в пространстве. Воспринимается также интонация слов. В результате формируется звуковой образ.

Даже с закрытыми глазами мы можем определить, из какого направления слышен сигнал. Благодаря чему это возможно? Если звук поступает в оба уха, мы воспринимает звук посредине. А точнее - спереди и сзади. Если же в одно ухо звук попадает раньше, чем в другое, то звук воспринимается справа или слева.

Приходилось ли вам замечать, что один и тот же звук люди воспринимают по-разному? Для одного телевизор работает слишком тихо, другой же ничего не слышит. Оказывается, каждый человек имеет свой порог слуховой чувствительности. От чего зависит данный показатель? Он определяется не только строением, функциями и возрастными особенностями слухового анализатора. Наиболее острым восприятием звуков обладают люди в возрасте от 15 до 20 лет. Далее острота слуха постепенно понижается.

Существует также такое понятие, как порог слышимости. Это самая маленькая сила звука, при которой он начинает восприниматься. Данный показатель также определяется индивидуальными особенностями.

Процесс формирования слухового анализатора

Когда человек начинает воспринимать звуки? Сразу после рождения. Ответной реакцией на звуки в этот период является проявление условных рефлексов. Это продолжается около двух месяцев. Теперь организм уже реагирует условнорефлекторно. К примеру, мамин голос становится знаком о кормлении.

На третьем месяце малыш уже различает тон, тембр, высоту и направления звуков. К году, как правило, ребенок уже понимает смысловую окраску слов.

Гигиена слуха

Строение слухового анализатора хотя и совершенно от природы, но требует постоянного внимания. Самые элементарные правила гигиены позволят вам надолго сохранить возможность восприятия звуков.

Самая простая причина ухудшения звука - накопление серы в наружном слуховом проходе. Если не удалять это вещество, могут образоваться так называемые пробки. Чтобы предупредить это, серу нужно периодически удалять.

Серьезно нужно отнестись и к последствиям вирусных заболеваний. Самый элементарный ринит, ангина или грипп могут привести к воспалению в среднем ухе. Такое заболевание называется отит. В среднее ухо опасные микроорганизмы проникают из носоглотки через слуховую трубу.

Нарушение слуха может быть вызвано и чисто механическими причинами. Одна из них - повреждение барабанной перепонки. Оно может быть вызвано и действием острого предмета, и чрезмерно громким звуком. К примеру, взрывом. Если вы ожидаете, что это может произойти, необходимо открыть рот. Такое действие делает одинаковым давление по обе стороны от барабанной перепонки.

Но вернемся к ежедневной жизни. Мы не задумываемся, что систематическое использование наушников, постоянный бытовой и транспортный шум постепенно снижают эластичность барабанной перепоки. В результате острота слуха значительно падает. А ведь процесс этот является необратимым. Только представьте, что пневматическая дрель работает с интенсивностью звука до 100 децибел, а дискотека - 110!

Итак, слуховая сенсорная система человека состоит из трех отделов, таких как:

  • Периферический . Представлен органом слуха: внешним, средним и внутренним ухом. Завитки ушной раковины направляют колебания воздуха в наружный слуховой проход, оттуда - на специализированные косточки (молоточек, стемя и наковальню), перепонку овального окна и улитку. В последней структуре находятся волосковые клетки. Это слуховые рецепторы, которые преобразуют механические колебания в нервные импульсы.
  • Проводниковый . Это слуховой нерв, по которому передаются импульсы.
  • Центральный . Находится в коре большого мозга. Здесь информация анализируется, благодаря чему формируются звуковые ощущения.

ВСПОМНИТЕ

Вопрос 1. Какое значение для человека имеет слух?

С помощью слуха человек воспринимает звуки. Слух дает возможность воспринимать информацию на значительном расстоянии. Со слуховым анализатором связана членораздельная речь. Человек, глухой от рождения или потерявший слух в раннем детстве, теряет способность произносить слова.

Вопрос 2. Каковы основные части любого анализатора?

Любой анализатор состоит из трех основных звеньев: рецепторов (периферическое воспринимающее звено), нервных путей (проводниковое звено) и мозговых центров (центральное обрабатывающее звено). Высшие отделы анализаторов расположены в коре больших полушарий, причем каждый из них занимает определенную область.

ВОПРОСЫ К ПАРАГРАФУ

Вопрос 1. Каково строение слухового анализатора?

Слуховой анализатор включает в себя орган слуха, слуховой нерв и центры мозга, анализирующие слуховую информацию.

Вопрос 2. Какие расстройства слуха вам известны и каковы их основные причины?

Иногда в наружном слуховом проходе скапливается слишком много ушной серы и образуется пробка, снижающая остроту слуха. Удалять такую пробку нужно очень осторожно, так как можно повредить барабанную перепонку. Из носоглотки в полость среднего уха могут проникать различные виды возбудителей, способные вызывать воспаление среднего уха - отит. При правильном и своевременном лечении отит быстро проходит и не отражается на чувствительности слуха. Также к нарушению слуха могут привести механические травмы - ушибы, удары, воздействия сверхсильных звуковых раздражителей.

1. Докажите, что «орган слуха» и «слуховой анализатор» - разные понятия.

Органом слуха является ухо, которое состоит из трех отделов: наружного, среднего и внутреннего уха. Слуховой анализатор включает в себя слуховой рецептор (он находится во внутреннем ухе), слуховой нерв и слуховую зону коры больших полушарий, находящуюся в височной доле.

2. Сформулируйте основные правила гигиены слуха.

Чтобы не допустить снижение остроты слуха и защитить органы слуха от вредного влияния внешней среды, проникновения вирусов и развития опасных заболеваний, придерживаться основных правил гигиены органов слуха и следить за состоянием своих ушей, чистотой и состоянием слуха нужно постоянно и обязательно.

Гигиена органов слуха говорит о том, что уши необходимо чистить не чаще двух раз в неделю, если они сильно не загрязнены. Слишком тщательно от серы, что находится в слуховом канале, избавляться не нужно: она защищает организм человека от проникновения в него болезнетворных микроорганизмов, выводит мусор (чешуйки кожи, пыль, грязь), увлажняет кожу.

ПОДУМАЙТЕ!

Какие особенности слухового анализатора позволяют человеку определить расстояние до источника звука и направление на него?

Важным свойством слухового анализатора является его способность определять направление звука, получившая название ототопики. Ототопика возможна только при наличии нормально слышащих двух ушей, т. е. при хорошем бинауральном слухе. Определение направления звука обеспечивается следующими условиями: 1) разницей в силе звука, воспринимаемой ушами, поскольку ухо, которое находится ближе к источнику звука, воспринимает его более громким. Здесь имеет значение и то, что одно ухо оказывается в звуковой тени; 2) восприятием минимальных промежутков времени между поступлением звука к одному и другому уху. У человека порог этой способности различать минимальные промежутки времени равен 0,063 мс. Способность локализовать направление звука пропадает, если длина звуковой волны меньше двойного расстояния между ушами, которое равно в среднем 21 см. Поэтому ототопика высоких звуков затруднена. Чем больше расстояние между приемниками звука, тем точнее определение его направления; 3) способность воспринимать разность фаз звуковых волн, поступающих в оба уха.

В горизонтальной плоскости человек различает направление звука наиболее точно. Так, направление резких ударных звуков, например выстрелов, определяется с точностью до 3-4°. Ориентация в определении направления источника звука в сагиттальной плоскости зависит в определенной мере от ушных раковин.

Слуховой анализатор представляет собой совокупность механических, рецепторных и нервных структур, воспринимающих и анализирующих звуковые колебания. Периферический отдел слухового анализатора представлен слуховым органом, состоящим из наружного, среднего и внутреннего уха. Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина у новорожденного уплощена, хрящ ее мягкий, кожа тонкая, мочка имеет небольшие размеры. Наиболее быстро ушная раковина растет в течение первых двух лет и после 10 лет. В длину она растет быстрее, чем в ширину. Барабанная перепонка отделяет наружное ухо от среднего. Среднее ухо состоит из барабанной полости, слуховых косточек и слуховой трубы.

Барабанная полость у новорожденного по размерам такая же, как у взрослого. В среднем ухе располагаются три слуховые косточки: молоточек, наковальня и Внутреннее ухо, или лабиринт, имеет двойные стенки: перепончатый лабиринт вставлен в костный. Костный лабиринт состоит из преддверия, улитки и трех полукружных каналов. Улитковый проток делит улитку на две части, или лестницы. Внутреннее ухо у новорожденного развито хорошо, его размеры близки к таковым у взрослого человека. Базальные части рецепторных клеток контактируют с нервными волокнами, которые проходят в базальной мембране, а затем выходят в канал спиральной пластинки. Далее они идут к нейронам спирального ганглия, лежащего в костной улитке, где и начинается проводниковый отдел слухового анализатора. Аксоны нейронов спирального узла образуют волокна слухового нерва, который входит в мозг между нижними ножками мозжечка и мостом и направляется в покрышку моста, где имеет место первый перекрест волокон и образуется латеральная петля. Часть ее волокон оканчивается на клетках нижнего двухолмия, где находится первичный слуховой центр. Другие волокна латеральной петли в составе ручки нижнего двухолмия подходят к медиальному коленчатому телу. Отростки клеток последнего образуют слуховую лучистость, оканчивающуюся в коре верхней височной извилины (корковый отдел слухового анализатора).

Кортиев орган- периферическая часть слухового анализатора. Возрастные особенности

Кортиев орган, расположенный на основной мембране, содержит рецепторы, которые превращают механические колебания в электрические потенциалы, возбуждающие волокна слухового нерва. При действии звука основная мембрана начинает колебаться, волоски рецепторных клеток деформируются, что вызывает генерацию электрических потенциалов, которые через синапсы достигают волокон слухового нерва. Частота этих потенциалов соответствует частоте звуков, а амплитуда зависит от интенсивности звука. В результате возникновения электрических потенциалов происходит возбуждение волокон слухового нерва, для которых характерна спонтанная активность даже в тишине (100 имп./с). При звуке частота импульсации в волокнах нарастает в течение всего времени действия раздражителя. Для каждого волокна нерва существует оптимальная частота звука, которая дает наибольшую частоту разрядов и минимальный порог реакции. При повреждении спирального органа у основания выпадают высокие тона, у вершины - низкие тона. Разрушение среднего завитка приводит к выпадению тонов средней частоты диапазона. Существует два механизма различения высоты тона: пространственное и временное кодирование. Пространственное кодирование основано на неодинаковом расположении возбужденных рецепторных клеток на основной мембране. При низких и средних тонах осуществляется и временное кодирование. Человек воспринимает звуки с частотой от 16 до 20 О О О Гц. Этот диапазон соответствует 10-11 октавам. Границы слуха зависят от возраста: чем человек старше, тем чаще он не слышит высоких тонов. Различение частоты звуков характеризуется той минимальной разницей по частоте двух звуков, которую человек улавливает. Человек способен заметить разницу в 1-2 Гц. Абсолютная слуховая чувствительность - это минимальная сила звука, слышимого человеком в половине случаев его звучания. В области от 1000 до 4000 Гц слух человека обладает максимальной чувствительностью. В этой зоне лежат и речевые поля. Верхний предел слышимости возникает, когда увеличение силы звука неизменной частоты вызывает неприятное чувство давления и боли в ухе. Единицей громкости звука является бел. В быту обычно используют в качестве единицы громкости децибел, т.е. 0,1 бела. Максимальный уровень громкости, когда звук вызывает боль, равен 130-140 дБ над порогом слышимости. Слуховой анализатор обладает двумя симметричными половинами(бинауральный слух), т.е. для человека характерен пространственный слух - способность определять положение источника звука в пространстве. Острота такого слуха велика. Человек может определить расположение источника звука с точностью до 1°.

Слух в онтогенезе

Несмотря на раннее развитие слухового анализатора, орган слуха у новорожденного еще не вполне сформирован. У него имеет место относительная глухота, которая связана с особенностями строения уха. Новорожденный реагирует на громкие звуки вздрагиванием, прекращением плача, изменением дыхания. Вполне отчетливым слух у детей становится к концу 2-го - началу 3-го месяца. На 2-м месяце жизни ребенок дифференцирует качественно различные звуки, в 3-4 месяца различает высоту в пределах от 1 до 4 октав, в 4-5 месяцев звуки становятся условными раздражителями, хотя условные пищевые и оборонительные рефлексы на звуковые раздражители вырабатываются уже с 3-5-недельного возраста. К 1-2 годам дети дифференцируют звуки, разница между которыми составляет 1 тон, а к 4 годам - даже 3/4 и 1/2 тона. Острота слуха определяется наименьшей силой звука, которая может вызвать звуковое ощущение (порог слышимости). У взрослого человека порог слышимости лежит в пределах 10-12 дБ, у детей 6-9 лет -17-24 дБ, 10-12-лет- 14-19 дБ. Наибольшая острота звука достигается к среднему и старшему школьному возрасту.

87 вопрос. Профилактика Миопии или близорукость, астигматизм, тугоухость. Миопия-это нарушение зрения, при котором человек плохо видит предметы, находящиеся далеко и отлично рассматривает близкие объекты. Болезнь очень распространена, ею страдает треть всего населения Земли. Миопия обычно проявляется в возрасте 7_15 лет, может усугубляться или оставаться на прежнем уровне без изменений на протяжении всей жизни.

Профилактика миопии: Правильное освещение позволит снизить нагрузки на глаза, поэтому следует позаботиться о правильной организации рабочего места, настольной лампе. Не рекомендуется работать при лампе дневного света. Соблюдение режима зрительных нагрузок, чередуя их с физическими нагрузками. Правильное, сбалансированное питание должно содержать комплекс необходимых витаминов и минералов: цинк, магний, витамин А и др. Укрепление организма с помощью закаливания, физических нагрузок, массажа, контрастного душа. Следить за правильной осанкой ребенка. Эти простые меры предосторожности позволяют свести к минимуму вероятность снижения зрения вдаль, то есть развития миопии. Важно все это учесть родителям, ребенок которых имеет наследственную склонность к заболеванию.

Детский астигматизм - такой оптический дефект, когда в глазу существуют одновременно два оптических фокуса, причем, ни один из них не находится там, где он должен быть. Это связано с тем, что роговица по одной оси лучи преломляет сильнее, чем по другой.

Профилактика.

Зачастую дети просто не замечают, что у них понижается зрение. Значит, даже если нет жалоб, лучше показывать ребенка врачу-офтальмологу один раз в год. Тогда заболевание будет выявлено во время, а также начато лечение. Упражнения для глаз при астигматизме довольно полезны. Так, Р.С.Агарвал советует делать большие повороты 100 раз, перемещать взгляд по строкам с мелким шрифтом таблицы для зрения, сочетая их с морганиями на каждой строчке.

Тугоухость - понижение слуха разной степени выраженности, при котором восприятие речи затруднено, но возможно при создании определенных условий (приближение говорящего или динамика к уху, применение звукоусиливающей аппаратуры). При сочетании патологии слуха и речи (глухонемота) дети не способны воспринимать и воспроизводить речь. Профилактика тугоухости и глухоты у детей является важнейшим путем решения проблемы тугоухости. Ведущую роль в предупреждении наследственно обусловленных форм тугоухости. Все беременные должны проходить обследование с целью выявления болезней почек и печени, сахарного диабета и других заболеваний. Необходимо ограничить назначение ототоксических антибиотиков беременным и детям, особенно младшего детского возраста. С первых же дней жизни ребенка профилактика приобретенных форм тугоухости должна сочетаться с предупреждениями заболеваний слухового аппарата, особенно инфекционно-вирусной этиологии. При обнаружении первых признаков нарушений слуха следует проконсультировать ребенка у оториноларинголога.

Слуховой анализатор (слуховая сенсорная система) – второй по значению дистантный анализатор человека. Слух играет важнейшую роль именно у человека в связи с возникновением членораздельной речи. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего, сенсорная информация передаётся в слуховую область коры большого мозга (височный отдел) через ряд последовательных структур.

Орган слуха (ухо) – это периферический отдел слухового анализатора, в котором расположены слуховые рецепторы. Строение и функции уха представлены в табл. 12.2, рис. 12.10.

Таблица 12.2.

Строение и функции уха

Часть уха

Строение

Функции

Наружное ухо

Ушная раковина, наружный слуховой проход, барабанная перепонка

Защитная (выделение серы). Улавливает и проводит звуки. Звуковые волны колеблют барабанную перепонку, а она – слуховые косточки.

Среднее ухо

Полость, заполненная воздухом, в которой находятся слуховые косточки (молоточек, наковальня, стремечко) и евстахиева (слуховая) труба

Слуховые косточки проводят и усиливают звуковые колебания в 50 раз. Евстахиева труба, соединённая с носоглоткой, обеспечивает выравнивание давления на барабанную перепонку

Внутреннее ухо

Орган слуха: овальное и круглое окна, улитка с полостью, заполненной жидкостью, и кортиев орган – звуковоспринимающий аппарат

Слуховые рецепторы, находящиеся в кортиевом органе, преобразуют звуковые сигналы в нервные импульсы, которые передаются на слуховой нерв, а затем в слуховую зону коры больших полушарий

Орган равновесия (вестибулярный аппарат): три полукруглых канала, отолитовый аппарат

Воспринимает положение тела в пространстве и передаёт импульсы в продолговатый мозг, затем в вестибулярную зону коры больших полушарий; ответные импульсы помогают поддерживать равновесие тела

Рис . 12.10. Органы слуха и равновесия . Наружное, среднее и внутреннее ухо, а также отходящие от рецепторных элементов органа слуха (кортиев орган) и равновесия (гребешки и пятна) слуховая и преддверная (вестибулярная) ветви преддверно–улиткового нерва (VIII пара черепных нервов).

Механизм передачи и восприятия звука. Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться в соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участии мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым органом. При этом волосковые клетки своими волосками касаются покровной (текториальной) мембраны, и вследствие механического раздражения в них возникает возбуждение, которое передаётся далее на волокна преддверно-улиткового нерва (рис. 12.11).

Рис . 12.11. Перепончатый канал и спиральный (кортиев) орган . Канал улитки разделён на барабанную и вестибулярную лестницы и перепончатый канал (средняя лестница), в котором расположен кортиев орган. Перепончатый канал отделён от барабанной лестницы базилярной мембраной. В её составе проходят периферические отростки нейронов спирального ганглия, образующие синаптические контакты с наружными и внутренними волосковыми клетками.

Расположение и структура рецепторных клеток кортиевого органа. На основной мембране расположены два вида рецепторных волосковых клеток: внутренние и наружные, отделённые друг от друга кортиевыми дугами.

Внутренние волосковые клетки располагаются в один ряд; общее число их по всей длине перепончатого канала достигает 3 500. Наружные волосковые клетки располагаются в 3-4 ряда; их общее число 12 000-20 000. Каждая волосковая клетка имеет удлинённую форму; один её полюс фиксирован на основной мембране, второй находится в полости перепончатого канала улитки. На конце этого полюса есть волоски, или стереоцилии . Их число на каждой внутренней клетке составляет 30-40 и они очень короткие – 4-5 мкм; на каждой наружной клетке число волосков достигает 65-120, они тоньше и длиннее. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной (текториальной) мембраной, которая по всему ходу перепончатого канала расположена над волосковыми клетками.

Механизм слуховой рецепции. При действии звука основная мембрана начинает колебаться, наиболее длинные волоски рецепторных клеток (стереоцилии) касаются покровной мембраны и несколько наклоняются. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей (микрофиламентов), связывающих между собой верхушки соседних волосков данной клетки. Это натяжение чисто механически открывает от 1 до 5 ионных каналов в мембране стереоцилии. Через открытый канал в волосок начинает течь калиевый ионный ток. Сила натяжения нити, необходимая для открытия одного канала, ничтожна, около 2·10 -13 ньютон. Ещё более удивительным кажется то, что наиболее слабые из ощущаемых человеком звуков растягивают вертикальные нити, связывающие верхушки соседних стереоцилий, на расстояние, вдвое меньшее, чем диаметр атома водорода.

Тот факт, что электрический ответ слухового рецептора достигает максимума уже через 100-500 мкс (микросекунд), означает, что ионные каналы мембраны открываются непосредственно механическим стимулом без участия вторичных внутриклеточных посредников. Это отличает механорецепторы от значительно медленнее работающих фоторецепторов.

Деполяризация пресинаптического окончания волосковой клетки приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает генерацию возбуждения постсинаптического потенциала и далее генерацию распространяющихся в нервных центрах импульсов.

Открытие всего нескольких ионных каналов в мембране одной стереоцилии явно мало для возникновения рецепторного потенциала достаточной величины. Важным механизмом усиления сенсорного сигнала на рецепторном уровне слуховой системы является механическое взаимодействие всех стереоцилий (около 100) каждой волосковой клетки. Оказалось, что все стереоцилии одного рецептора связаны между собой в пучок тонкими поперечными нитями. Поэтому, когда сгибается один или несколько более длинных волосков, они тянут за собой все остальные волоски. В результате этого открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала.

Бинауральный слух. Человек и животные обладают пространственным слухом, т.е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии двух симметричных половин слухового анализатора (бинауральный слух).

Острота бинаурального слуха у человека очень высока: он способен определять расположение источника звука с точностью порядка 1 углового градуса. Физиологической основой этого служит способность нейронных структур слухового анализатора оценивать интерауральные (межушные) различия звуковых стимулов по времени их прихода на каждое ухо и по их интенсивности. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и большей силы, чем на другое. Оценка удалённости звука от организма связана с ослаблением звука и изменением его тембра.