Экспрессивность и пенетрантность мутаций. Понятие «пенетрантность» и экспрессивность генов Пенетрантность и экспрессивность в проявлении признаков

K (П) = х 100%, где К (П)– пенетрантность, n – количество потомков, у которых проявился признак, N – общее количество потомков.

Экспрессивность – это степень фенотипического проявления признака, контролируемого данным геном. Например, интенсивность пигментации кожи у человека, увеличивающейся при возрастании числа доминантных аллелей (А 1 , А 2 , А 3 , А 4) в системе полимерных генов: доминантные аллели, определяющие развитие черной кожи - А 1 , А 2 , А 3 , А 4 , рецессивные аллели белой кожи - а 1 ,а 2 ,а 3 ,а 4 Белый – а 1 а 1 а 2 а 2 , А 1 а 1 а 2 а 2 - светлокожий мулат, А 1 А 1 а 2 а 2 - мулат смуглый,

А 1 А 1 А 2 а 2 - тёмный мулат, А 1 А 1 А 2 А 2 - негр чёрнокожий.

Влияние средовых факторов выражается усилением степени пигментации кожи у человека с одним генотипом - А 1 а 1 а 2 а 2 под действием ультрафиолетовых лучей.

Доза гена отражает развитие шизофрении - у гомозигот равна 100% пенетрантности, а у гетерозигот – 20%. Течение, развитие патологических состояний могут наблюдаться в виде лёгких и тяжелых проявлений – гипертонии, сахарного диабета и других признаков.

Серповидно-клеточная анемия - это наследственная гемоглобинопатия, наследуется по аутосомно-рецессивному типу. Причиной заболевания служит патологический ген «s», формирующий аномальный гемоглобин (HbS), в молекуле которого вместо глутаминовой кислоты в 6-м положении ß-цепи находится валин. Генетический дефект - точечная генная мутация, происходит в структурном гене ДНК, кодирующим ß-цепи гемоглобина. Патологический гемоглобин получил название своё название S - гемоглобин от слова «sicsle» - серп, потому что эритроцит, несущий этот аномальный белок приобретает серповидную форму.

Под микроскопом дефектные клетки крови имеют форму усечённого круга или форму полумесяца, в отличие от нормальных округлых клеток. За что эта форма гемоглобинопатии получила название серповидно-клеточной анемии. Серповидные эритроциты вызывают увеличение вязкости крови, создают механическую преграду в мелких артериолах и капиллярах. Они не способны сгибаться и проходить сквозь крошечные узкие сосуды, из-за чего некоторые ткани и органы не до получают необходимые вещества и кислород. Кроме того, серповидные эритроциты менее устойчивы к механическим воздействиям, что приводит к их гемолизу. Массивное разрушение клеток активирует систему свёртывания крови. Повышается тромбообразование. Тромбоз в различных органах, в т.ч. в селезенке, которая постепенно атрофируется после гипертрофии.

Имеется более 26 вариантов замещений в альфа цепи и 31 вариант - в бета цепи. Замещение хотя бы одной аминокислоты меняет первичную структуру белка, пространственное расположение его частей и соответственно функцию гемоглобина. Полиморфизм гемоглобинов видимо, имеет приспособительное значение.


Взаимодействие аллелей определяющих развитее гемоглобинопатияй определяется разными формами взаимодействия аллельных генов (неполным доминированием, свердоминированием и кодоминированием).

По типу неполного доминирования проявляют себя гетерозиготные Ss носители гена гемоглобина НbS (НbAНbS).

а) При изменении внешних условий среды на уровне моря гетерозиготы имеют нормальную форму эритроцитов и нормальную концентрацию гемоглобина в крови (полное доминирование S над s).

б) На больших высотах (более 2,5-3 тыс. м) у гетерозигот концентрация гемоглобина понижена, появляются эритроциты серповидной формы (неполное доминирование S над s) наблюдается клиническое проявление анемии. Этот пример показывает, что доминантность может зависеть не только от генотипа, но и от условий среды.

Сверхдоминантность наблюдаются, у гетерозигот Ss с формами гемоглобина НbAНbS, они менее подвержены малярии и характеризуются устойчивостью к малярии, гомозиготы с формами гемоглобина НbАНbА подвержены малярии в большей степени. В тропической Африке и других районах, где распространена малярия, в популяциях человека постоянно присутствуют все три генотипа - SS, Ss и ss (20-40% населения гетерозиготы - Ss). Оказалось, что сохранение в популяциях человека летальной (смертельной) аллели (s) обусловлено тем, что гетерозиготы (Ss) более устойчивы к малярии и анемия на имеет клинического проявления, чем гомозиготы по нормальному гену их генотип – SS, форма гемоглобина – HbA / HbA - восприимчивы к малярии (тяжёлое заболевание часто заканчивается смертельным исходом), и, следовательно, обладают отборным преимуществом. Особи имеющие HbS/HbS гемоглобин и генотип ss (летальны – тяжёлая форма анемии). Таким образом, получают приоритет особи имеющие эритроциты HbА /HbS – генотип Ss:

HbА/HbА < HbА /HbS > HbS/HbS .

Наконец, в эритроцитах носителей НbАНbS в равных количествах присутствуют оба варианта бета-глобиновых цепей - нормальный А и мутантный S , то есть наблюдается кодоминирование.

Талассемия - это также наследственное нарушение крови, относится к аутосомно рецессивной мутации. Организм человека с талассемией не может вырабатывать достаточно гемоглобина, содержащегося в эритроцитах и переносящего кислород по всему организму. Если в эритроцитах недостаточно гемоглобина, кислород не достигает всех частей организма. Органам начинает не хватать кислорода и они не могут нормально функционировать. Существует два типа талассемии - альфа и бета, - названные так по двум белковым цепям, из которых состоит нормальный гемоглобин. Как альфа так и бета талассемии имеют острую и неострую формы. Рецессивные гомозиготы по талассемии летальны, а гетерозиготы жизнеспособны. Относится как и серповидноклеточная анемия к гемоглобинопатиям

НЕАЛЛЕЛЬНЫЕ ГЕНЫ – это гены, расположенные в разных локусах (местах) гомологичных и негомологичных хромосом . Неаллельные гены обозначаются разными буквами (А, В, С).


Пенетрантность (penetrance, лат. penetrantis - проникающий, достигающий) - частота или вероятность проявления аллеля определенного гена у разных особей родственной группы организмов (степень проявления аллеля у отдельной особи называют экспрессивностью). Различают полную (аллель проявляется у всех особей) и неполную пенетрантность (аллель проявляется у части особей). Большинство мутантных аллелей характеризуется неполной пенетрантностью. Пенетрантность выражается в % (полная пенетрантность - 100 %). Термин «Пенетрантность» предложен Н. В. Тимофеевым-Ресовским в 1927 г.

Существующие определения этого термина неоднозначны, и их часто путают. В медицине пенетрантность - это доля людей с данным генотипом, имеющих хотя бы один симптом заболевания (иными словами, пенетрантность определяет вероятность заболевания, но не его тяжесть). Некоторые считают, что пенетрантность изменяется с возрастом, например при болезни Гентингтона , однако обычно различия в возрасте начала заболевания приписывают изменчивой экспрессивности . Иногда пенетрантность зависит от факторов окружающей среды, например при недостаточности Г-6-ФД .

Пенетрантность может иметь важное значение при медико-генетическом консультировании в случае аутосомно-доминантных заболеваний . Здоровый человек, у которого один из родителей страдает подобным заболеванием, с точки зрения классического наследования не может быть носителем мутантного гена. Однако если учитывать возможность неполной пенетрантности, то картина совсем иная: внешне здоровый человек может иметь непроявляющийся мутантный ген, передать его детям.

Методы генодиагностики позволяют определить, есть ли у человека мутантный ген, и отличить нормальный ген от непроявляющегося мутантного гена.

На практике определение пенетрантности часто зависит от качества методов исследования, например, с помощью МРТ можно обнаружить симптомы болезни, которые раньше не выявляли.

С точки зрения медицины ген считают проявившимся даже при бессимптомном заболевании, если выявлены функциональные отклонения от нормы. С точки зрения биологии ген считают проявившимся, если он нарушает функции организма.

Хотя обычно говорят о пенетрантности и экспрессивности аутосомно-доминантных болезней , эти же принципы применимы при хромосомных , аутосомно-рецессивных , Х-сцепленных и полигенных болезнях .

Пенетрантностью аллеля называют частоту его проявления в популяции. Экспрессивностью аллеля называют выраженность его проявления у одной особи. При полной пенетрантности аллеля признак наблюдается у всех особей популяции. При неполной пенетрантности признак наблюдается не у всех особей.

Пенетрантность в генетике - это доля лиц с данным генотипом, у которых он фенотипически проявляется. Если болезнь проявляется не у всех лиц соответствующего генотипа, говорят о неполной пенетрантности гена.

Оба понятия ввел в 1926 г. О. Фогт для описания варьирования мутантных фенотипов.

Экспрессивность – это степень проявления мутантного признака в фенотипе. Например, мутация eyeless у дрозофилы вызывает редукцию глаза, степень которой неодинакова у разных особей.

Пенетрантность – это частота, или вероятность проявления мутантного фенотипа среди всех особей, несущих данную мутацию. Например, 100%-ная пенетрантность рецессивной мутации означает, что у всех гомозиготных особей она проявляется в фенотипе. Если же фенотипически она обнаруживается только у половины особей, то пенетрантность мутации равна 50%.

Условные мутации

Эти мутации проявляются только при выполнении определенных условий.

Температуро-чувствительные мутации . Мутанты этого типа живут и развиваются нормально при одной (пермиссивной ) температуре и обнаруживают отклонения при другой (рестриктивной ). Например, у дрозофилы выделяют холодочувствительные (при 18°С) ts –мутации (temperature sensitive) и теплочувствительные (при 29°С) ts –мутации. При 25°С сохраняется нормальный фенотип.

Мутации чувствительности к стрессу . В данном случае мутанты развиваются и внешне выглядят нормально, если их не подвергать каким-либо стрессирующим воздействиям. Так, мутанты sesB (stress sensitive) дрозофилы в обычных условиях не проявляют каких-либо отклонений.

Однако если резко встряхнуть пробирку, у мух начинаются судороги и они не способны двигаться.

Ауксотрофные мутации у бактерий . Они выживают только на полной среде или же на минимальной, но с добавкой того или иного вещества (аминокислоты, нуклеотида и т. д.).

Методы учета мутаций

Особенности методов учета мутаций . Методы обнаружения мутаций должны быть разными в зависимости от способа размножения организма. Видимые морфологические изменения учитываются легко; сложнее определить физиологические и биохимические изменения у многоклеточных организмов. Легче всего обнаруживаются видимые доминантные мутации, которые могут проявляться в гетерозиготном состоянии в первом же поколении, труднее анализировать рецессивные мутации , их необходимо переводить в гомозиготное состояние .

Для хорошо изученных в генетическом отношении объектов (дрозофила, кукуруза, ряд микроорганизмов) изучение новой мутации проводить довольно легко. Например , для дрозофилы разработаны специальные методики учета частоты мутаций.

Метод СlВ . Мёллер создал линию дрозофил СlВ (Си Эль Би ) у которой одна из Х -хромосом маркирована доминантным геном Bar (В) и инверсией , названной С . Эта инверсия препятствует кроссинговеру и обладает рецессивным летальным эффектом l . Поэтому линия и названа СlВ .

Самок этой линии-анализатора скрещивают с самцами из исследуемой выборки. Если самцы взяты из природной популяции , то можно оценить частоту леталей в ней. Или же берут самцов, обработанных мутагеном . В этом случае оценивается частота летальных мутаций, вызванных этим мутагеном.

В F 1 отбирают самок СlВ /+, гетерозиготных по мутации Bar , и скрещивают индивидуально (каждую самку в отдельной пробирке с самцом дикого типа). Если в проверяемой хромосоме нет мутации , то в потомстве будет два класса самок и один класс самцов (B + ), поскольку самцы СlВ гибнут из-за наличия летали l , т.е. общее расщепление по полу будет 2:1 (см. рисунок).

Если же в опытной хромосоме естьлетальная мутация l m , то в F 2 будут только самки , так как самцы обоих классов погибнут – в одном случае из-за наличия летали в Х -хромосоме СlВ , в другом – из-за наличия летали l m в опытной Х -хромосоме (см. рисунок). Определяя отношение числа Х -хромосом (пробирок с индивидуальными скрещиваниями), в которых возникла леталь, к общему числу изученных Х -хромосом (пробирок), подсчитывают частоту летальных мутаций в определенной группе.

Мёллер неоднократно модифицировал свой метод выявления леталей в Х -хромосоме дрозофилы, в результате чего появились такие линии - анализаторы , как Mu-5 , а позднее – линии - балансеры Basc , Binsn и др.

Метод Cy L/Pm . Для учета летальных мутаций в аутосомах дрозофилы используют линии сбалансированных леталей . Для проявления рецессивной летальной мутации в аутосоме тоже необходимо, чтобы она оказалась в гомозиготном состоянии . Для этого необходимо поставить два скрещивания, а учет потомков вести в F 3 . Для обнаружения леталей во второй хромосоме используют линию Cy L/Pm (Сай Эл Пи Эм) (см. рисунок).

У мух этой линии во второй хромосоме расположены две доминантные мутации Cy (Curly – загнутые крылья) и L (Lobe – маленькие дольковидные глаза) , каждая из которых в гомозиготном состоянии вызывает летальный эффект. Мутации представляют собой протяженные инверсии в разных плечах хромосомы. Обе они «запирают » кроссинговер. В гомологичной хромосоме также присутствует доминантная мутация – инверсия Pm (Plum – коричневые глаза). Анализируемого самца скрещивают с самкой из линии CyL/Pm (на рисунке показаны не все классы потомков).

В F 1 отбирают самцов Cy L/Pm + и индивидуально скрещивают их с самками исходной линии Cy L/Pm . В F 2 отбирают самцов и самок Cy L , у которых гомологичная хромосома является испытуемой. В результате скрещивания их между собой получается три класса потомков. Один из них погибает из-за гомозиготности по мутациям Cy и L , еще один класс потомков – это гетерозиготы Cy L/Pm + , а также класс гомозигот по испытуемой хромосоме. В итоге получаются мухи Cy L и Cy + L + в соотношении 2:1 .

Если в испытуемой хромосоме произошла летальная мутация , в потомстве от последнего скрещивания будут только мухи Cy L . С помощью такого метода можно учитывать частоту рецессивных летальных мутаций во второй хромосоме дрозофилы.

Учет мутаций у других объектов . Аналогичные методы обнаружения мутаций разработаны и для других объектов. В основу их положены те же принципы:

1) обнаружить рецессивную мутацию можно, переводя ее в гомо- или гемизиготное состояние,

2) учесть точно частоту возникающих мутаций можно лишь при условии отсутствия кроссинговера у гетерозиготных особей.

Для млекопитающих (мышь, кролик, собака, свинья и др.) разработана методика учета частоты возникновения доминантных летальных мутаций. О частоте мутаций судят по разнице между числом желтых тел в яичнике и развивающихся эмбрионов у вскрытой беременной самки.

Учет частоты возникновения мутаций у человека очень затруднен, однако генеалогический анализ , т.е. анализ родословных, позволяет установить возникновение новых мутаций. Если в родословной супругов в течение нескольких поколений не встречался какой-то признак, а у одного из детей он появился и стал передаваться следующим поколениям, значит мутация возникла в гамете одного из этих супругов.

Учет мутаций у микроорганизмов . Изучать мутации у микроорганизмов очень удобно, так как все гены у них в единственном числе и мутации проявляются уже в первом поколении .

Мутантов легко обнаружить методом отпечатков , или реплик , который предложили супруги Э. и Дж. Ледерберги .

Для выявления у Е. сoli мутаций устойчивости к бактериофагу Т1 бактерии высевают на питательный агар, чтобы образовались отдельные колонии. Затем при помощи бархатной реплики эти колонии перепечатывают на чашки с нанесенной суспензией частиц фага Т1. Большая часть клеток исходной чувствительной (TonS ) культуры не будет образовывать колоний, поскольку их лизирует бактериофаг. Вырастут лишь отдельные мутантные колонии (TonR ), устойчивые к фагу. Подсчитывая число колоний в контрольном и опытном (например, после облучения ультрафиолетовым светом) вариантах, легко определить частоту индуцированных мутаций.

Рассматривая действие гена, его аллелей, учитывают не только генные взаимодействия, но и действие генов-модификаторов и модифицирующее действие среды, в которой развивается организм.

У примулы окраска цветков розовая (Р_) и белая (рр ) наследуется по моногибридной схеме, если растение развивается в интервале t - 15-25 °С. Если растение F 2 вырастить при / = 30-35 °С, то все цветки у него окажутся белыми. При выращивании растений F 2 в условиях температуры, колеблющейся около 30 °С, можно получить разнообразные соотношения от 3 Р_ : 1 рр до 100 % растений с белыми цветками. Такое взаимоотношение генов зависит от условий внешней среды и условий генотипической среды. С.С. Четвериковым оно названо варьирующей пенетрантностью. Это понятие подразумевает возможность проявления или непроявления признаков у организмов, одинаковых по исследуемым генотипическим факторам. Беляев добился рождения живых щенков лис (см. рис. 2.5), гомозиготных по доминантному аллелю, платиновой окраски, варьируя длину дня для беременных самок. В связи с этим может быть ликвидирована пенетрантность проявления летального эффекта.

Пенетрантность выражается долей особей, проявляющих исследуемый признак, среди всех особей одинакового генотипа по изучаемому гену.

От внешней среды и генов-модификаторов может зависеть степень выраженности признака. Дрозофила гомозиготная по аллелю зачаточности крыльев более контрастно проявляет этот признак при понижении температуры окружающей среды. Другой признак дрозофилы - отсутствие глаз - варьирует от 0 до 50 % в зависимости от числа фасеток, характерного для данного типа мух.

Степень проявления варьирующего признака называется экспрессивностью. Экспрессивность выражают количественно, в зависимости от уклонения признака от дикого типа.

Понятия пенетрантность и экспрессивность введены в генетику в 1925 г. Тимофеевым-Ресовским для описания варьирующего проявления генов. Факт проявления или непроявления признака особей данного генотипа в зависимости от условий говорит о том, что это результат взаимодействия генов в конкретных условиях существования организма. Способность генотипа так или иначе проявляться в различных условиях среды отражает норму его реакции - способность реагировать на варьирующие условия развития. Этот факт учитывают при экспериментах и при введении новых форм хозяйственно ценных организмов. Отсутствие изменений говорит о том, что используемое воздействие не влияет на данную норму реакции, а гибель организма - на то, что оно за пределами нормы реакции.

Селекция растений, животных, микроорганизмов представляет собой отбор организмов с узкой и специализированной нормой реакции на внешние воздействия: удобрение, обильное кормление, характер (и технологию) выращивания.

Искусственное сужение или сдвиг нормы реакции используют для маркирования жизненно важных генов. Этим методом были исследованы гены, контролирующие воспроизведение ДНК, синтез белка у бактерий и дрожжей, гены, контролирующие развитие дрозофилы. Во всех случаях получали мутантов, нежизнеспособных при повышенной температуре культивирования, т. е. условно летальных.

Генотип представляет собой систему взаимодействующих генов, которые проявляются фенотипически в зависимости от условий генотипической среды и условий существования. Благодаря принципам менделев- ского анализа можно любую сложную систему условно разложить на элементарные признаки-фены и тем самым идентифицировать отдельные дискретные единицы генотипа - гены.

Контрольные вопросы и задания:

  • 1. Дайте понятие терминов доминантность и рецессивность.
  • 2. Что такое моногибридное скрещивание?
  • 3. Как происходит расщепление по признакам? Назовите гены - носители наследственности.
  • 4. Объясните, как происходит независимое комбинирование (дигибрид- ное скрещивание).
  • 5. Объясните расщепление признаков при тригибридном скрещивании. Расскажите о множественных аллелях.
  • 6. Назовите виды взаимодействия генов.
  • 7. Объясните явления пенетрантности и экспрессивности.
  • 8. Что такое комплементарное взаимодействие генов?
  • 9. Какие типы взаимодействия генов, приводящие к отклонению от мен- делевских закономерностей, вы знаете?
  • 10. В чем отличие доминирования от эпистаза?
  • 11. Влияют ли внешние условия на проявление действия гена?
  • 12. Приведите примеры полимерного и плейотропного действия гена.

М

Николай Владимирович Тимофеев-Ресовский

ежгенные взаимодействия, межаллельные взаимодействия, сложность и разветвлённость метаболических процессов, в которых участвуют кодируемые генами белки (ферменты), обусловливают сложную специфику фенотипического проявления признака.Степень выраженности признака в фенотипе получила название экспрессивности (термин введён Н.В. Тимофеевым-Ресовским в 1927 году). Под ней понимают степень фенотипического проявления аллеля у разных особей. При отсутствии вариантов проявления признака говорят о постоянной экспрессивности. Например, аллели систем группы крови АВ0 у человека имеют практически постоянную экспрессивность, а аллели, определяющие окраску глаз у человека - изменчивую экспрессивность. Классическим примером изменчивой экспрессивности рассматривают проявление рецессивной мутации, уменьшающей число фасеток глаза у дрозофилы: у разных особей может формироваться разное число фасеток вплоть до полного исчезновения.

Экспрессивность выражают количествен­но. Частота встречаемости данного признака в поколении называется пенетрантностью (термин предложен Н.В.Тимофеевым-Рессовским в 1927 году). Количественно её выражают в процентах. Пенетрантность бывает полной (100% встречаемость признака) и неполной (встречаемость признака менее 100%). Например, у человека пенетрантность врождённого вывиха бедра составляет 25%, а пенетрантность дефекта глаза «колобомы» - около 50%.

Знание механизмов и характера экспрессивности имеет значение в ме­дико-генетическом консультировании и определении возможного генотипа фенотипически «здоровых» людей, родственники которых имели наследс­твенные заболевания. Явления экспрессивности указывают, что доминированием (проявлением доминантного аллельного гена) можно управлять, обоснованно осуществляя поиск средств, предотвращающих развитие наследственных аномалий и патологически отягощённой наследственности у человека. Тот факт, что один и тот же генотип может явиться источником развития различных фенотипов, имеет существенное значение для медицины. Это означает, что отягощённая наследственность не обязательно должна проявиться в развивающемся организме. В ряде случаев развитие болезни можно предотвратить, в частности диетой или лекарственными препаратами.

Известны одинаковые изменения фенотипа, обусловленные изменениями аллелей различных генов - генокопии. Их возникновение - следствие контроля признака многими генами. Поскольку биосинтез молекул в клетке, как правило, осуществляется многоэтапно, мутации разных генов, контролирующих различные этапы одного биохимического пути, могут приводить к одинаковому результату - отсутствию конечного продукта цепи реакций и, следовательно, одинаковому изменению фенотипа. Так, у человека известно несколько форм глухоты, вызываемых мутантными аллеля­ми трёх аутосомных генов и одного гена Х-хромосомы. Однако в различных случаях глухота сопровождается либо пигментным ретинитом, либо зо­бом, или же аномалиями функции сердца. Проблема генокопий актуальна также в медицинской генетике для прогноза возможного проявления наследственных заболеваний у потомков, если родители имели сходные болезни или аномалии развития.