Интегрирование по частям сложные примеры с решениями. Сложные интегралы

В этой теме мы подробно поговорим вычислении неопределённых интегралов с помощью так называемой "формулы интегрирования по частям". Нам понадобится таблица неопределенных интегралов и таблица производных . В первой части будут разобраны стандартные примеры, которые большей частью встречаются в типовых расчётах и контрольных работах. Более сложные примеры разобраны во второй части .

Постановка задачи в стандартном случае следующая. Допустим, под интегралом у нас расположены две функции разной природы : многочлен и тригонометрическая функция, многочлен и логарифм, многочлен и обратная тригонометрическая функция и так далее. В этой ситуации выгодно отделить одну функцию от другой. Грубо говоря, имеет смысл разбить подынтегральное выражение на части, - и разобраться с каждой частью по отдельности. Отсюда и название: "интегрирование по частям". Применение этого метода основано на следующей теореме:

Пусть функции $u(x)$ и $v(x)$ дифференцируемы на некотором промежутке, и на этом промежутке существует интеграл $\int v \; du$. Тогда на этом же промежутке существует и интеграл $\int u \; dv$, при этом верно следущее равенство:

\begin{equation} \int u \; dv=u\cdot v-\int v\; du \end{equation}

Формулу (1) и называют "формулой интегрирования по частям". Иногда, применяя вышеуказанную теорему, говорят о использовании "метода интегрирования по частям". Нам будет важна суть этого метода, которую и рассмотрим на примерах. Существует несколько стандартных случаев, в которых явно применима формула (1). Именно эти случаи и станут темой данной страницы. Пусть $P_n(x)$ - многочлен n-й степени. Введём два правила:

Правило №1

Для интегралов вида $\int P_n(x) \ln x \;dx$, $\int P_n(x) \arcsin x \;dx$, $\int P_n(x) \arccos x \;dx$, $\int P_n(x)\arctg x \;dx$, $\int P_n(x) \arcctg x \;dx$ принимаем $dv=P_n(x)dx$.

Правило №2

Для интегралов вида $\int P_n(x) a^x \;dx$ ($a$ - некоторое положительное число), $\int P_n(x) \sin x \;dx$, $\int P_n(x) \cos x \;dx$, $\int P_n(x)ch x \;dx$, $\int P_n(x) sh x \;dx$ принимаем $u=P_n(x)$.

Сразу отмечу, что указанные выше записи не нужно воспринимать буквально. Например, в интегралах вида $\int P_n(x) \ln x \;dx$ не обязательно будет стоять именно $\ln x$. Там могут быть расположены и $\ln 5x$, и $\ln (10x^2+14x-5)$. Т.е. запись $\ln x$ нужно воспринимать как своего рода обобщение.

Ещё один момент. Бывает, что формулу интегрирования по частям приходится применять несколько раз. Об этом поговорим подробнее в примерах №4 и №5. Теперь перейдём непосредственно к решению типичных задач. Решение задач, уровень которых чуть выше стандартных, разбирается во второй части .

Пример №1

Найти $\int (3x+4) \cos (2x-1) \; dx$.

Под интегралом расположен многочлен $3x+4$ и тригонометрическая функция $\cos (2x-1)$. Это классический случай для применения формулы , поэтому возьмём заданный интеграл по частям. Формула требует, чтобы интеграл $\int (3x+4) \cos (2x-1) \; dx$ был представлен в форме $\int u \; dv$. Нам нужно выбрать выражения для $u$ и для $dv$. Можно в качестве $u$ принять $3x+4$, тогда $dv=\cos (2x-1)dx$. Можно взять $u=\cos (2x-1)$, тогда $dv=(3x+4)dx$. Чтобы сделать правильный выбор обратимся к . Заданный интеграл $\int (3x+4) \cos (2x-1) \; dx$ подпадает под вид $\int P_n(x) \cos x \;dx$ (многочлен $P_n(x)$ в нашем интеграле имеет вид $3x+4$). Согласно нужно выбрать $u=P_n(x)$, т.е. в нашем случае $u=3x+4$. Так как $u=3x+4$, то $dv=\cos(2x-1)dx$.

Однако недостаточно просто выбрать $u$ и $dv$. Нам еще понадобятся значения $du$ и $v$. Так как $u=3x+4$, то:

$$ du=d(3x+4)=(3x+4)"dx=3dx.$$

Теперь разберёмся с функцией $v$. Так как $dv=\cos(2x-1)dx$, то согласно определению неопределённого интеграла имеем: $ v=\int \cos(2x-1)\; dx$. Чтобы найти нужный интеграл применим внесение под знак дифференциала :

$$ v=\int \cos(2x-1)\; dx=\frac{1}{2}\cdot \int \cos(2x-1)d(2x-1)=\frac{1}{2}\cdot \sin(2x-1)+C=\frac{\sin(2x-1)}{2}+C. $$

Однако нам нужно не всё бесконечное множество функций $v$, которое описывает формула $\frac{\sin(2x-1)}{2}+C$. Нам нужна какая-то одна функция из этого множества. Чтобы получить искомую функцию нужно вместо $C$ подставить какое-либо число. Проще всего, разумеется, подставить $C=0$, получив при этом $v=\frac{\sin(2x-1)}{2}$.

Итак, соберём всё вышеизложенное воедино. Мы имеем: $u=3x+4$, $du=3dx$, $dv=\cos(2x-1)dx$, $v=\frac{\sin(2x-1)}{2}$. Подставляя всё это в правую часть формулы будем иметь:

$$ \int (3x+4) \cos (2x-1) \; dx=(3x+4)\cdot\frac{\sin(2x-1)}{2}-\int \frac{\sin(2x-1)}{2}\cdot 3dx. $$

Осталось, по сути, только найти $\int\frac{\sin(2x-1)}{2}\cdot 3dx$. Вынося константу (т.е. $\frac{3}{2}$) за знак интеграла и применяя метод внесения под знак дифференциала , получим:

$$ (3x+4)\cdot \frac{\sin(2x-1)}{2}-\int \frac{\sin(2x-1)}{2}\cdot 3dx= \frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{2}\int \sin(2x-1) \;dx= \\ =\frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{4}\int \sin(2x-1) \;d(2x-1)= \frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{4}\cdot (-\cos (2x-1))+C=\\ =\frac{(3x+4)\cdot\sin(2x-1)}{2}+\frac{3}{4}\cdot \cos (2x-1)+C. $$

Итак, $\int (3x+4) \cos (2x-1) \; dx=\frac{(3x+4)\cdot\sin(2x-1)}{2}+\frac{3}{4}\cdot \cos (2x-1)+C$. В сокращенном виде процесс решения записывают так:

$$ \int (3x+4) \cos (2x-1) \; dx=\left | \begin{aligned} & u=3x+4; \; du=3xdx.\\ & dv=\cos(2x-1)dx; \; v=\frac{\sin(2x-1)}{2}. \end{aligned} \right |=\\ =(3x+4)\cdot\frac{\sin(2x-1)}{2}-\int \frac{\sin(2x-1)}{2}\cdot 3dx= \frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{2}\int \sin(2x-1) \;dx=\\ =\frac{(3x+4)\cdot\sin(2x-1)}{2}-\frac{3}{4}\cdot (-\cos (2x-1))+C= \frac{(3x+4)\cdot\sin(2x-1)}{2}+\frac{3}{4}\cdot \cos (2x-1)+C. $$

Неопределённый интеграл по частям найден, осталось лишь записать ответ.

Ответ : $\int (3x+4) \cos (2x-1) \; dx=\frac{(3x+4)\cdot\sin(2x-1)}{2}+\frac{3}{4}\cdot \cos (2x-1)+C$.

Полагаю, здесь не обойдётся без вопроса, поэтому попробую сформулировать его и дать ответ.

Почему мы приняли именно $u=3x+4$ и $dv=\cos(2x-1)dx$? Да, интеграл был решён. Но, может быть, если бы мы взяли $u=\cos (2x-1)$ и $dv=(3x+4)dx$ интеграл тоже был бы найден!

Нет, если принять $u=\cos (2x-1)$ и $dv=(3x+4)dx$, то ничего хорошего с этого не выйдет, - интеграл не упростится. Судите сами: если $u=\cos(2x-1)$, то $du=(\cos(2x-1))"dx=-2\sin(2x-1)dx$. Кроме того, так как $dv=(3x+4)dx$, то:

$$ v=\int (3x+4) \; dx=\frac{3x^2}{2}+4x+C.$$

Приняв $C=0$, получим $v=\frac{3x^2}{2}+4x$. Подставим теперь в формулу найденные значения $u$, $du$, $v$ и $dv$:

$$ \int (3x+4) \cos (2x-1) \; dx=\cos (2x-1)\cdot \left(\frac{3x^2}{2}+4x \right) - \int \left(\frac{3x^2}{2}+4x \right) \cdot (-2\sin(2x-1)dx)=\\ =\cos (2x-1)\cdot \left(\frac{3x^2}{2}+4x \right) +2\cdot\int \left(\frac{3x^2}{2}+4x \right) \sin(2x-1)\;dx $$

И к чему мы пришли? Мы пришли к интегралу $\int \left(\frac{3x^2}{2}+4x \right) \sin(2x-1)\;dx$, который явно сложнее нежели исходный интеграл $\int (3x+4) \cos (2x-1) \; dx$. Это говорит о том, что выбор $u$ и $dv$ был сделан неудачно. После применения формулы интегрирования по частям полученный интеграл должен быть проще исходного. Находя неопределенный интеграл по частям мы должны упрощать его, а не усложнять, поэтому если после применения формулы (1) интеграл усложнился, то выбор $u$ и $dv$ осуществлён некорректно.

Пример №2

Найти $\int (3x^4+4x-1) \ln 5x \; dx$.

Под интегралом расположен многочлен (т.е. $3x^4+4x-1$) и $\ln 5x$. Этот случай подпадает под , поэтому возьмём интеграл по частям. Заданный интеграл имеет такую же структуру, как и интеграл $\int P_n(x) \ln x\; dx$. Вновь, как и в примере №1, нам нужно выбрать какую-то часть подынтегрального выражения $(3x^4+4x-1) \ln 5x \; dx$ в качестве $u$, а какую-то часть - в качестве $dv$. Согласно , нужно выбрать $dv=P_n(x)dx$, т.е. в нашем случае $dv=(3x^4+4x-1)dx$. Если из выражения $(3x^4+4x-1) \ln 5x \; dx$ "изьять" $dv=(3x^4+4x-1)dx$, то останется $\ln 5x$ - это и будет функция $u$. Итак, $dv=(3x^4+4x-1)dx$, $u=\ln 5x$. Для применения формулы нам понадобятся также $du$ и $v$. Так как $u=\ln 5x$, то:

$$ du=d(\ln 5x)=(\ln 5x)"dx=\frac{1}{5x}\cdot 5 dx=\frac{1}{x}dx. $$

Теперь найдём функцию $v$. Так как $dv=(3x^4+4x-1)dx$, то:

$$ v=\int(3x^4+4x-1)\; dx=\frac{3x^5}{5}+2x^2-x+C. $$

Из всего найденного бесконечного множества функций $\frac{3x^5}{5}+2x^2-x+C$ нам нужно выбрать одну. А проще всего это сделать приняв $C=0$, т.е. $v=\frac{3x^5}{5}+2x^2-x$. Для применения формулы всё готово. Подставим в правую часть указанной формулы значения $u=\ln 5x$, $du=\frac{1}{x}dx$, $v=\frac{3x^5}{5}+2x^2-x$ и $dv=(3x^4+4x-1)dx$ будем иметь:

$$ \int (3x^4+4x-1) \ln 5x \; dx=\left | \begin{aligned} & u=\ln 5x; \; du=\frac{1}{x}dx.\\ & dv=(3x^4+4x-1)dx; \; v=\frac{3x^5}{5}+2x^2-x. \end{aligned} \right |=\\ =\ln 5x \cdot \left (\frac{3x^5}{5}+2x^2-x \right)-\int \left (\frac{3x^5}{5}+2x^2-x \right)\cdot \frac{1}{x}dx=\\ =\left (\frac{3x^5}{5}+2x^2-x \right)\cdot\ln 5x -\int \left (\frac{3x^4}{5}+2x-1 \right)dx=\\ =\left (\frac{3x^5}{5}+2x^2-x \right)\cdot\ln 5x - \left (\frac{3x^5}{25}+x^2-x \right)+C=\\ =\left (\frac{3x^5}{5}+2x^2-x \right)\cdot\ln 5x - \frac{3x^5}{25}-x^2+x+C. $$

Ответ : $\int (3x^4+4x-1) \ln 5x \; dx=\left (\frac{3x^5}{5}+2x^2-x \right)\cdot\ln 5x - \frac{3x^5}{25}-x^2+x+C$.

Пример №3

Найти $\int \arccos x \; dx$.

Этот интеграл имеет структуру $\int P_n(x) \arccos x \;dx$, подпадающую под . Понимаю, что сразу возникнет резонный вопрос: "а где в заданном интеграле $\int\arccos x \; dx$ спрятали многочлен $P_n(x)$? Там же нет никакого многочлена, только арккосинус и всё!". Однако на самом деле под интегралом расположен не только арккосинус. Я представлю интеграл $\int arccos x \; dx$ в таком виде: $\int 1\cdot\arccos x \; dx$. Согласитесь, что от домножения на единицу подынтегральное выражение не изменится. Вот эта единица и есть $P_n(x)$. Т.е. $dv=1\cdot dx=dx$. А в качестве $u$ (согласно ) принимаем $\arccos x$, т.е. $u=\arccos x$. Значения $du$ и $v$, кои учавствуют в формуле , найдём так же, как и в предыдущих примерах:

$$ du=(\arccos x)"dx=-\frac{1}{\sqrt{1-x^2}}dx;\\ v=\int 1\; dx=x+C. $$

Как и в предыдущих примерах, полагая $C=0$ получим $v=x$. Подставляя все найденные параметры в формулу , будем иметь следующее:

$$ \int \arccos x \; dx=\left | \begin{aligned} & u=\arccos x; \; du=-\frac{1}{\sqrt{1-x^2}}dx.\\ & dv=dx; \; v=x. \end{aligned} \right |=\\ =\arccos x \cdot x-\int x\cdot \left(-\frac{1}{\sqrt{1-x^2}}dx \right)= \arccos x \cdot x+\int \frac{xdx}{\sqrt{1-x^2}}=\\ =x\cdot\arccos x-\frac{1}{2}\cdot\int (1-x^2)^{-\frac{1}{2}}d(1-x^2)= =x\cdot\arccos x-\frac{1}{2}\cdot\frac{(1-x^2)^{\frac{1}{2}}}{\frac{1}{2}}+C=\\ =x\cdot\arccos x-\sqrt{1-x^2}+C. $$

Ответ : $\int\arccos x \; dx=x\cdot\arccos x-\sqrt{1-x^2}+C$.

Пример №4

Найти $\int (3x^2+x) e^{7x} \; dx$.

В этом примере формулу интегрирования по частям придётся применять два раза. Интеграл $\int (3x^2+x) e^{7x} \; dx$ имеет структуру $\int P_n(x) a^x \;dx$. В нашем случае $P_n(x)=3x^2+x$, $a=e$. Согласно имеем: $u=3x^2+x$. Соответственно, $dv=e^{7x}dx$.

$$ du=(3x^2+x)"=(6x+1)dx;\\ v=\int e^{7x}\;dx=\frac{1}{7}\cdot \int e^{7x}\;d(7x)=\frac{1}{7}\cdot e^{7x}+C=\frac{e^{7x}}{7}+C. $$

Опять-таки, как и в предыдущих примерах, полагая $C=0$, имеем: $v=\frac{e^{7x}}{7}$.

$$ \int (3x^2+x) e^{7x} \; dx=\left | \begin{aligned} & u=3x^2+x; \; du=(6x+1)dx.\\ & dv=e^{7x}dx; \; v=\frac{e^{7x}}{7}. \end{aligned} \right |=\\ =(3x^2+x)\cdot\frac{e^{7x}}{7}-\int \frac{e^{7x}}{7}\cdot (6x+1)dx= \frac{(3x^2+x)e^{7x}}{7}-\frac{1}{7}\cdot \int (6x+1) e^{7x}\;dx. $$

Мы пришли к интегралу $\int (6x+1) e^{7x}\;dx$, который вновь необходимо брать по частям. Приняв $u=6x+1$ и $dv=e^{7x}dx$ будем иметь:

$$ \frac{(3x^2+x)e^{7x}}{7}-\frac{1}{7}\cdot \int (6x+1) e^{7x}\;dx=\left | \begin{aligned} & u=6x+1; \; du=6dx.\\ & dv=e^{7x}dx; \; v=\frac{e^{7x}}{7}. \end{aligned} \right |=\\ =\frac{(3x^2+x)e^{7x}}{7}-\frac{1}{7}\cdot \left ((6x+1)\cdot\frac{e^{7x}}{7} - \int\frac{e^{7x}}{7}\cdot 6\;dx \right)=\\ =\frac{(3x^2+x)e^{7x}}{7} -\frac{(6x+1)e^{7x}}{49} +\frac{6}{49}\cdot\int\ e^{7x}\;dx=\\ =\frac{(3x^2+x)e^{7x}}{7} -\frac{(6x+1)e^{7x}}{49} +\frac{6}{49}\cdot\frac{e^{7x}}{7}+C=\\ =\frac{(3x^2+x)e^{7x}}{7} -\frac{(6x+1)e^{7x}}{49} +\frac{6\; e^{7x}}{343}+C. $$

Полученный ответ можно и упростить, раскрыв скобки и перегруппировав слагаемые:

$$ \frac{(3x^2+x)e^{7x}}{7} -\frac{(6x+1)e^{7x}}{49} +\frac{6\; e^{7x}}{343}+C=e^{7x}\cdot \left(\frac{3x^2}{7}+\frac{x}{49}-\frac{1}{343} \right)+C. $$

Ответ : $\int (3x^2+x) e^{7x} \; dx=e^{7x}\cdot \left(\frac{3x^2}{7}+\frac{x}{49}-\frac{1}{343} \right)+C$.

Пример №5

Найти $\int (x^2+5)\sin(3x+1) \; dx$.

Здесь, как и в предыдущем примере, интегрирование по частям применяется дважды. Подробные пояснения были даны ранее, поэтому приведу только решение:

$$ \int (x^2+5)\sin(3x+1) \; dx=\left | \begin{aligned} & u=x^2+5; \; du=2xdx.\\ & dv=\sin(3x+1)dx; \; v=-\frac{\cos(3x+1)}{3}. \end{aligned} \right |=\\ =(x^2+5)\cdot \left(-\frac{\cos(3x+1)}{3} \right)-\int\left(-\frac{\cos(3x+1)}{3} \right)\cdot 2xdx=\\ = -\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2}{3}\int x\cos(3x+1)dx= \left | \begin{aligned} & u=x; \; du=dx.\\ & dv=\cos(3x+1)dx; \; v=\frac{\sin(3x+1)}{3}. \end{aligned} \right |=\\ =-\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2}{3}\cdot \left(x\cdot\frac{\sin(3x+1)}{3}-\int\frac{\sin(3x+1)}{3}dx \right)=\\ =-\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}-\frac{2}{9}\cdot\int\sin(3x+1)dx=\\ =-\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}-\frac{2}{9}\cdot \left(-\frac{\cos(3x+1)}{3}\right)+C=\\ = -\frac{(x^2+5)\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}+\frac{2\cos(3x+1)}{27}+C=\\ =-\frac{x^2\cdot\cos(3x+1)}{3}-\frac{5\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}+\frac{2\cos(3x+1)}{27}+C=\\ =-\frac{x^2\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}-\frac{43\cos(3x+1)}{27}+C. $$

Ответ : $\int (x^2+5)\sin(3x+1) \; dx=-\frac{x^2\cdot\cos(3x+1)}{3} +\frac{2x\sin(3x+1)}{9}-\frac{43\cos(3x+1)}{27}+C$.

Применение метода интегрирования по частям в несколько нестандартных случаях, не подпадающих под действие правил №1 и №2, будет дано во

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями:


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Метод интегрирования по частям применяется, в основном, когда подынтегральная функция состоит из произведения двух сомножителей определенного вида. Формула интегрирования по частям имеет вид:

Она дает возможность свести вычисление заданного интеграла
к вычислению интеграла
, который оказывается более простым, чем данный.

Большую часть интегралов, вычисляемых методом интегрирования по частям, можно разбить на три группы:

1. Интегралы вида
,
,
, где
– многочлен,
– число, не равное нулю

В этом случае через обозначают многочлен

.

2. Интегралы вида
,
,
,
,
, где
– многочлен.

В этом случае через
обозначают
, а всю остальную часть подынтегрального выражения через:

3. Интегралы вида
,
, где
– числа.

В этом случае через обозначают
и применяют формулу интегрирования по частям дважды, возвращаясь в результате к исходному интегралу, после чего исходный интеграл выражается из равенства.

Замечание : В некоторых случаях для нахождения заданного интеграла формулу интегрирования по частям необходимо применять несколько раз. Также метод интегрирования по частям комбинируют с другими методами.

Пример 26.

Найти интегралы методом по частям: а)
; б)
.

Решение.

б)

3.1.4. Интегрирование дробно-рациональных функций

Дробно-рациональной функцией (рациональной дробью) называется функция, равная отношению двух многочленов:
, где
– многочлен степени
,
– многочлен степени .

Рациональная дробь называется правильной , если степень многочлена в числителе меньше степени многочлена в знаменателе, т.е.
, в противном случае (если
) рациональная дробь называется неправильной .

Любую неправильную рациональную дробь можно представить в виде суммы многочлена
и правильной рациональной дроби, разделив числитель на знаменатель по правилу деления многочленов:

,

где
– целая часть от деления,– правильная рациональная дробь,
– остаток от деления.

Правильные рациональные дроби вида:

I. ;

II.
;

III.
;

IV.
,

где ,,
,
,,,
– действительные числа и
(т.е. квадратный трехчлен в знаменателеIII и IV дробей не имеет корней – дискриминант отрицательный) называются простейшими рациональными дробями I, II, III и IV типов .

Интегрирование простейших дробей

Интегралы от простейших дробей четырех типов вычисляются следующим образом.

I)
.

II) ,
.

III) Для интегрирования простейшей дроби III типа в знаменателе выделяют полный квадрат, производят замену
. Интеграл после подстановки разбивают на два интеграла. Первый интеграл вычисляют выделением в числителе производной знаменателя, что дает табличный интеграл, а второй интеграл преобразовывают к виду
, так как
, что также дает табличный интеграл.

;

IV) Для интегрирования простейшей дроби IV типа в знаменателе выделяют полный квадрат, производят замену
. Интеграл после подстановки разбивают на два интеграла. Первый интеграл вычисляют подстановкой
, а второй с помощью рекуррентных соотношений.

Пример 27.

Найти интегралы от простейших дробей:

а)
; б)
; в)
.

Решение.

а)
.

Всякую правильную рациональную дробь, знаменатель которой может быть разложен на множители, можно представить в виде суммы простейших дробей. Разложение на сумму простейших дробей осуществляют методом неопределенных коэффициентов. Он заключается в следующем:


соответствует одна дробь вида;

– каждому множителю знаменателя
соответствует сумма дробей вида


соответствует дробь вида
;

– каждому квадратному множителю знаменателя
соответствует суммадробей вида

где – неопределенные коэффициенты.

Для нахождения неопределенных коэффициентов правую часть в виде суммы простейших дробей приводят к общему знаменателю и преобразовывают. В результате получается дробь с тем же знаменателем, что и в левой части равенства. Затем отбрасывают знаменатели и приравнивают числители. В результате получается тождественное равенство, в котором левая часть – многочлен с известными коэффициентами, а правая часть – многочлен с неопределенными коэффициентами.

Существует два способа определения неизвестных коэффициентов: метод неопределенных коэффициентов и метод частных значений.

Метод неопределенных коэффициентов.

Т.к. многочлены тождественно равны, то равны коэффициенты при одинаковых степенях . Приравнивая коэффициенты при одинаковых степеняхв многочленах левой и правой частей, получим систему линейных уравнений. Решая систему, определяем неопределенные коэффициенты.

Метод частных значений.

Т.к. многочлены тождественно равны, то, подставляя вместо в левую и правую части любое число, получим верное равенство, линейное относительно неизвестных коэффициентов. Подставляя столько значений, сколько неизвестных коэффициентов, получим систему линейных уравнений. Вместов левую и правую части можно подставлять любые числа, однако более удобно подставлять корни знаменателей дробей.

После нахождения значений неизвестных коэффициентов, исходная дробь записывается в виде суммы простейших дробей в подынтегральное выражение и осуществляется ранее рассмотренное интегрирование по каждой простейшей дроби.

Схема интегрирования рациональных дробей:

1. Если подынтегральная дробь неправильная, то необходимо представить ее в виде суммы многочлена и правильной рациональной дроби (т.е. разделить многочлен числителя на многочлен знаменателя с остатком). Если подынтегральная дробь правильная сразу переходим ко второму пункту схемы.

2. Разложить знаменатель правильной рациональной дроби на множители, если это возможно.

3. Разложить правильную рациональную дробь на сумму простейших рациональных дробей, используя метод неопределенных коэффициентов.

4. Проинтегрировать полученную сумму многочлена и простейших дробей.

Пример 28.

Найти интегралы от рациональных дробей:

а)
; б)
; в)
.

Решение.

а)
.

Т.к. подынтегральная функция неправильная рациональная дробь, то выделим целую часть, т.е. представим ее в виде суммы многочлена и правильной рациональной дроби. Разделим многочлен в числителе на многочлен в знаменателе уголком.

Исходный интеграл примет вид:
.

Разложим правильную рациональную дробь на сумму простейших дробей c помощью метода неопределенных коэффициентов:

, получаем:



Решая систему линейных уравнений, получим значения неопределенных коэффициентов: А = 1; В = 3.

Тогда искомое разложение имеет вид:
.

=
.

б)
.

.

Отбросим знаменатели и приравняем левую и правую части:

Приравнивая коэффициенты при одинаковых степенях , получаем систему:





Решая систему из пяти линейных уравнений, находим неопределенные коэффициенты:

.

Найдем исходный интеграл, учитывая полученное разложение:

.

в)
.

Разложим подынтегральную функцию (правильную рациональную дробь) на сумму простейших дробей с помощью метода неопределенных коэффициентов. Разложение ищем в виде:

.

Приведя к общему знаменателю, получим:

Отбросим знаменатели и приравняем левую и правую части:

Для нахождения неопределенных коэффициентов применим метод частных значений. Придадим частные значения , при которых множители обращаются в нуль, т. е. подставим эти значения в последнее выражение и получим три уравнения:


;
;


;
;


;
.

Тогда искомое разложение имеет вид:

Найдем исходный интеграл, учитывая полученное разложение:

Сложные интегралы

Данная статья завершает тему неопределенных интегралов, и в неё включены интегралы, которые я считаю достаточно сложными. Урок создан по неоднократным просьбам посетителей, которые высказывали пожелания, чтобы на сайте были разобраны и более трудные примеры.

Предполагается, что читатель сего текста хорошо подготовлен и умеет применять основные приемы интегрирования. Чайникам и людям, которые не очень уверенно разбираются в интегралах, следует обратиться к самому первому уроку – Неопределенный интеграл. Примеры решений , где можно освоить тему практически с нуля. Более опытные студенты могут ознакомиться с приемами и методами интегрирования, которые в моих статьях еще не встречались.

Какие интегралы будут рассмотрены?

Сначала мы рассмотрим интегралы с корнями, для решения которых последовательно используется замена переменной и интегрирование по частям . То есть, в одном примере комбинируются сразу два приёма . И даже больше.

Затем мы познакомимся с интересным и оригинальным методом сведения интеграла к самому себе . Данным способом решается не так уж мало интегралов.

Третьим номером программы пойдут интегралы от сложных дробей , которые пролетели мимо кассы в предыдущих статьях.

В-четвертых, будут разобраны дополнительные интегралы от тригонометрических функций . В частности, существуют методы, которые позволяют избежать трудоемкой универсальной тригонометрической подстановки .

(2) В подынтегральной функции почленно делим числитель на знаменатель.

(3) Используем свойство линейности неопределенного интеграла. В последнем интеграле сразу подводим функцию под знак дифференциала .

(4) Берём оставшиеся интегралы. Обратите внимание, что в логарифме можно использовать скобки, а не модуль, так как .

(5) Проводим обратную замену, выразив из прямой замены «тэ»:

Студенты-мазохисты могут продифференцировать ответ и получить исходную подынтегральную функцию, как только что это сделал я. Нет-нет, я-то в правильном смысле выполнил проверку =)

Как видите, в ходе решения пришлось использовать даже больше двух приемов решения, таким образом, для расправы с подобными интегралами нужны уверенные навыки интегрирования и не самый маленький опыт.

На практике, конечно же, чаще встречается квадратный корень, вот три примера для самостоятельного решения:

Пример 2

Найти неопределенный интеграл

Пример 3

Найти неопределенный интеграл

Пример 4

Найти неопределенный интеграл

Данные примеры однотипны, поэтому полное решение в конце статьи будет только для Примера 2, в Примерах 3-4 – одни ответы. Какую замену применять в начале решений, думаю, очевидно. Почему я подобрал однотипные примеры? Часто встречаются в своем амплуа. Чаще, пожалуй, только что-нибудь вроде .

Но не всегда, когда под арктангенсом, синусом, косинусом, экспонентой и др. функциями находится корень из линейной функции, приходится применять сразу несколько методов. В ряде случаев удается «легко отделаться», то есть сразу после замены получается простой интеграл, который элементарно берётся. Самым легким из предложенных выше заданий является Пример 4, в нём после замены получается относительно несложный интеграл.

Методом сведения интеграла к самому себе

Остроумный и красивый метод. Немедленно рассмотрим классику жанра:

Пример 5

Найти неопределенный интеграл

Под корнем находится квадратный двучлен, и при попытке проинтегрировать данный пример чайник может мучаться часами. Такой интеграл берётся по частям и сводится к самому себе. В принципе не сложно. Если знаешь как.

Обозначим рассматриваемый интеграл латинской буквой и начнем решение:

Интегрируем по частям:

(1) Готовим подынтегральную функцию для почленного деления.

(2) Почленно делим подынтегральную функцию. Возможно, не всем понятно, распишу подробнее:

(3) Используем свойство линейности неопределенного интеграла.

(4) Берём последний интеграл («длинный» логарифм).

Теперь смотрим на самое начало решения:

И на концовку:

Что произошло? В результате наших манипуляций интеграл свёлся к самому себе!

Приравниваем начало и конец:

Переносим в левую часть со сменой знака:

А двойку сносим в правую часть. В результате:

Константу , строго говоря, надо было добавить ранее, но приписал её в конце. Настоятельно рекомендую прочитать, в чём тут строгость:

Примечание: Более строго заключительный этап решения выглядит так:

Таким образом:

Константу можно переобозначить через . Почему можно переобозначить? Потому что всё равно принимает любые значения, и в этом смысле между константами и нет никакой разницы.
В результате:

Подобный трюк с переобозначением константы широко используется в дифференциальных уравнениях . И там я буду строг. А здесь такая вольность допускается мной только для того, чтобы не путать вас лишними вещами и акцентировать внимание именно на самом методе интегрирования.

Пример 6

Найти неопределенный интеграл

Еще один типовой интеграл для самостоятельного решения. Полное решение и ответ в конце урока. Разница с ответом предыдущего примера будет!

Если под квадратным корнем находится квадратный трехчлен, то решение в любом случае сводится к двум разобранным примерам.

Например, рассмотрим интеграл . Всё, что нужно сделать – предварительно выделить полный квадрат :
.
Далее проводится линейная замена, которая обходится «без всяких последствий»:
, в результате чего получается интеграл . Нечто знакомое, правда?

Или такой пример, с квадратным двучленом:
Выделяем полный квадрат:
И, после линейной замены , получаем интеграл , который также решается по уже рассмотренному алгоритму.

Рассмотрим еще два типовых примера на приём сведения интеграла к самому себе:
– интеграл от экспоненты, умноженной на синус;
– интеграл от экспоненты, умноженной на косинус.

В перечисленных интегралах по частям придется интегрировать уже два раза:

Пример 7

Найти неопределенный интеграл

Подынтегральная функция – экспонента, умноженная на синус.

Дважды интегрируем по частям и сводим интеграл к себе:


В результате двукратного интегрирования по частям интеграл свёлся к самому себе. Приравниваем начало и концовку решения:

Переносим в левую часть со сменой знака и выражаем наш интеграл:

Готово. Попутно желательно причесать правую часть, т.е. вынести экспоненту за скобки, а в скобках расположить синус с косинусом в «красивом» порядке.

Теперь вернемся к началу примера, а точнее – к интегрированию по частям:

За мы обозначили экспоненту. Возникает вопрос, именно экспоненту всегда нужно обозначать за ? Не обязательно. На самом деле в рассмотренном интеграле принципиально без разницы , что обозначать за , можно было пойти другим путём:

Почему такое возможно? Потому что экспонента превращается сама в себя (и при дифференцировании, и при интегрировании), синус с косинусом взаимно превращаются друг в друга (опять же – и при дифференцировании, и при интегрировании).

То есть, за можно обозначить и тригонометрическую функцию. Но, в рассмотренном примере это менее рационально, поскольку появятся дроби. При желании можете попытаться решить данный пример вторым способом, ответы обязательно должны совпасть.

Пример 8

Найти неопределенный интеграл

Это пример для самостоятельного решения. Перед тем как решать, подумайте, что выгоднее в данном случае обозначить за , экспоненту или тригонометрическую функцию? Полное решение и ответ в конце урока.

И, конечно, не забывайте, что большинство ответов данного урока достаточно легко проверить дифференцированием!

Примеры были рассмотрены не самые сложные. На практике чаще встречаются интегралы, где константа есть и в показателе экспоненты и в аргументе тригонометрической функции, например: . Попутаться в подобном интеграле придется многим, частенько путаюсь и я сам. Дело в том, что в решении велика вероятность появления дробей, и очень просто что-нибудь по невнимательности потерять. Кроме того, велика вероятность ошибки в знаках, обратите внимание, что в показателе экспоненты есть знак «минус», и это вносит дополнительную трудность.

На завершающем этапе часто получается примерно следующее:

Даже в конце решения следует быть предельно внимательным и грамотно разобраться с дробями:

Интегрирование сложных дробей

Потихоньку подбираемся к экватору урока и начинаем рассматривать интегралы от дробей. Опять же, не все они суперсложные, просто по тем или иным причинам примеры были немного «не в тему» в других статьях.

Продолжаем тему корней

Пример 9

Найти неопределенный интеграл

В знаменателе под корнем находится квадратный трехчлен плюс за пределами корня «довесок» в виде «икса». Интеграл такого вида решается с помощью стандартной замены.

Решаем:

Замена тут проста:

Смотрим на жизнь после замены:

(1) После подстановки приводим к общему знаменателю слагаемые под корнем.
(2) Выносим из-под корня.
(3) Числитель и знаменатель сокращаем на . Заодно под корнем я переставил слагаемые в удобном порядке. При определенном опыте шаги (1), (2) можно пропускать, выполняя прокомментированные действия устно.
(4) Полученный интеграл, как вы помните из урока Интегрирование некоторых дробей , решается методом выделения полного квадрата . Выделяем полный квадрат.
(5) Интегрированием получаем заурядный «длинный» логарифм.
(6) Проводим обратную замену. Если изначально , то обратно: .
(7) Заключительное действие направлено на прическу результата: под корнем снова приводим слагаемые к общему знаменателю и выносим из-под корня .

Пример 10

Найти неопределенный интеграл

Это пример для самостоятельного решения. Здесь к одинокому «иксу» добавлена константа, и замена почти такая же:

Единственное, что нужно дополнительно сделать – выразить «икс» из проводимой замены:

Полное решение и ответ в конце урока.

Иногда в таком интеграле под корнем может находиться квадратный двучлен, это не меняет способ решения, оно будет даже еще проще. Почувствуйте разницу:

Пример 11

Найти неопределенный интеграл

Пример 12

Найти неопределенный интеграл

Краткие решения и ответы в конце урока. Следует отметить, что Пример 11 является в точности биномиальным интегралом , метод решения которого рассматривался на уроке Интегралы от иррациональных функций .

Интеграл от неразложимого многочлена 2-й степени в степени

(многочлен в знаменателе)

Более редкий, но, тем не менее, встречающий в практических примерах вид интеграла.

Пример 13

Найти неопределенный интеграл

Но вернёмся к примеру со счастливым номером 13 (честное слово, не подгадал). Этот интеграл тоже из разряда тех, с которыми можно изрядно промучиться, если не знаешь, как решать.

Решение начинается с искусственного преобразования:

Как почленно разделить числитель на знаменатель, думаю, уже все понимают.

Полученный интеграл берётся по частям:

Для интеграла вида ( – натуральное число) выведена рекуррентная формула понижения степени:
, где – интеграл степенью ниже.

Убедимся в справедливости данной формулы для прорешанного интеграла .
В данном случае: , , используем формулу:

Как видите, ответы совпадают.

Пример 14

Найти неопределенный интеграл

Это пример для самостоятельного решения. В образце решения дважды последовательно использована вышеупомянутая формула.

Если под степенью находится неразложимый на множители квадратный трехчлен, то решение сводится к двучлену путем выделения полного квадрата, например:

Что делать, если дополнительно в числителе есть многочлен? В этом случае используется метод неопределенных коэффициентов, и подынтегральная функция раскладывается в сумму дробей. Но в моей практике такого примера не встречалось ни разу , поэтому я пропустил данный случай в статье Интегралы от дробно-рациональной функции , пропущу и сейчас. Если такой интеграл все-таки встретится, смотрите учебник – там всё просто. Не считаю целесообразным включать материал (даже несложный), вероятность встречи с которым стремится к нулю.

Интегрирование сложных тригонометрических функций

Прилагательное «сложный» для большинства примеров вновь носит во многом условный характер. Начнем с тангенсов и котангенсов в высоких степенях. С точки зрения используемых методов решения тангенс и котангенс – почти одно и тоже, поэтому я больше буду говорить о тангенсе, подразумевая, что продемонстрированный прием решения интеграла справедлив и для котангенса тоже.

На вышеупомянутом уроке мы рассматривали универсальную тригонометрическую подстановку для решения определенного вида интегралов от тригонометрических функций. Недостаток универсальной тригонометрической подстановки заключается в том, что при её применении часто возникают громоздкие интегралы с трудными вычислениями. И в ряде случаев универсальной тригонометрической подстановки можно избежать!

Рассмотрим еще один канонический пример, интеграл от единицы, деленной на синус:

Пример 17

Найти неопределенный интеграл

Здесь можно использовать универсальную тригонометрическую подстановку и получить ответ, но существует более рациональный путь. Я приведу полное решение с комментами к каждому шагу:

(1) Используем тригонометрическую формулу синуса двойного угла .
(2) Проводим искусственное преобразование: В знаменателе делим и умножаем на .
(3) По известной формуле в знаменателе превращаем дробь в тангенс.
(4) Подводим функцию под знак дифференциала.
(5) Берём интеграл.

Пара простых примеров для самостоятельного решения:

Пример 18

Найти неопределенный интеграл

Указание: Самым первым действием следует использовать формулу приведения и аккуратно провести аналогичные предыдущему примеру действия.

Пример 19

Найти неопределенный интеграл

Ну, это совсем простой пример.

Полные решения и ответы в конце урока.

Думаю, теперь ни у кого не возникнет проблем с интегралами:
и т.п.

В чём состоит идея метода? Идея состоит в том, чтобы с помощью преобразований, тригонометрических формул организовать в подынтегральной функции только тангенсы и производную тангенса . То есть, речь идет о замене: . В Примерах 17-19 мы фактически и применяли данную замену, но интегралы были настолько просты, что дело обошлось эквивалентным действием – подведением функции под знак дифференциала .

Аналогичные рассуждения, как я уже оговаривался, можно провести для котангенса.

Существует и формальная предпосылка для применения вышеуказанной замены:

Сумма степеней косинуса и синуса – целое отрицательное ЧЁТНОЕ число , например:

для интеграла – целое отрицательное ЧЁТНОЕ число.

! Примечание :если подынтегральная функция содержит ТОЛЬКО синус или ТОЛЬКО косинус, то интеграл берётся и при отрицательной нечётной степени (простейшие случаи – в Примерах №№17, 18).

Рассмотрим пару более содержательных заданий на это правило:

Пример 20

Найти неопределенный интеграл

Сумма степеней синуса и косинуса : 2 – 6 = –4 – целое отрицательное ЧЁТНОЕ число, значит, интеграл можно свести к тангенсам и его производной:

(1) Преобразуем знаменатель.
(2) По известной формуле получаем .
(3) Преобразуем знаменатель.
(4) Используем формулу .
(5) Подводим функцию под знак дифференциала.
(6) Проводим замену . Более опытные студенты замену могут и не проводить, но все-таки лучше заменить тангенс одной буквой – меньше риск запутаться.

Пример 21

Найти неопределенный интеграл

Это пример для самостоятельного решения.

Держитесь, начинаются чемпионские раунды =)

Зачастую в подынтегральной функции находится «солянка»:

Пример 22

Найти неопределенный интеграл

В этом интеграле изначально присутствует тангенс, что сразу наталкивает на уже знакомую мысль:

Искусственное преобразование в самом начале и остальные шаги оставлю без комментариев, поскольку обо всем уже говорилось выше.

Пара творческих примеров для самостоятельного решения:

Пример 23

Найти неопределенный интеграл

Пример 24

Найти неопределенный интеграл

Да, в них, конечно, можно понизить степени синуса, косинуса, использовать универсальную тригонометрическую подстановку, но решение будет гораздо эффективнее и короче, если его провести через тангенсы. Полное решение и ответы в конце урока

Интегрирование по частям. Примеры решений

И снова, здравствуйте. Сегодня на уроке мы научимся интегрировать по частям. Метод интегрирования по частям – это один из краеугольных камней интегрального исчисления. На зачете, экзамене студенту почти всегда предлагают решить интегралы следующих типов: простейший интеграл (см. статью ) либо интеграл на замену переменной (см. статью ) либо интеграл как раз на метод интегрирования по частям .

Как всегда, под рукой должны быть: Таблица интегралов и Таблица производных . Если у Вас до сих пор их нет, то, пожалуйста, посетите кладовку моего сайта: Математические формулы и таблицы . Не устану повторять – лучше всё распечатать. Весь материал я постараюсь изложить последовательно, просто и доступно, в интегрировании по частям нет особых трудностей.

Какую задачу решает метод интегрирования по частям? Метод интегрирования по частям решает очень важную задачу, он позволяет интегрировать некоторые функции, отсутствующие в таблице, произведение функций, а в ряде случаев – и частное. Как мы помним, нет удобной формулы:. Зато есть такая: – формула интегрирования по частям собственной персоной. Знаю, знаю, ты одна такая – с ней мы и будем работать весь урок (уже легче).

И сразу список в студию. По частям берутся интегралы следующих видов:

1) , , – логарифм, логарифм, умноженный на какой-нибудь многочлен.

2) , – экспоненциальная функция, умноженная на какой-нибудь многочлен. Сюда же можно отнести интегралы вроде – показательная функция, умноженная на многочлен, но на практике процентах так в 97, под интегралом красуется симпатичная буква «е». … что-то лирической получается статья, ах да… весна же пришла.

3) , , – тригонометрические функции, умноженные на какой-нибудь многочлен.

4) , – обратные тригонометрические функции («арки»), «арки», умноженные на какой-нибудь многочлен.

Также по частям берутся некоторые дроби, соответствующие примеры мы тоже подробно рассмотрим.

Интегралы от логарифмов

Пример 1

Классика. Время от времени данный интеграл можно встретить в таблицах, но пользоваться готовым ответом нежелательно, так как у преподавателя весенний авитаминоз и он сильно заругается. Потому что рассматриваемый интеграл отнюдь не табличный – он берётся по частям. Решаем:

Прерываем решение на промежуточные объяснения.

Используем формулу интегрирования по частям:

Формула применяется слева направо

Смотрим на левую часть: . Очевидно, что в нашем примере (и во всех остальных, которые мы рассмотрим) что-то нужно обозначить за , а что-то за .

В интегралах рассматриваемого типа за всегда обозначается логарифм.

Технически оформление решения реализуется следующим образом, в столбик записываем:

То есть, за мы обозначили логарифм, а за – оставшуюся часть подынтегрального выражения.

Следующий этап: находим дифференциал :

Дифференциал – это почти то же самое, что и производная, как его находить, мы уже разбирали на предыдущих уроках.

Теперь находим функцию . Для того чтобы найти функцию необходимо проинтегрировать правую часть нижнего равенства :

Теперь открываем наше решение и конструируем правую часть формулы: .
Вот кстати, и образец чистового решения с небольшими пометками:


Единственный момент, в произведении я сразу переставил местами и , так как множитель принято записывать перед логарифмом.

Как видите, применение формулы интегрирования по частям, по сути дела, свело наше решение к двум простым интегралам.

Обратите внимание, что в ряде случаев сразу после применения формулы, под оставшимся интегралом обязательно проводится упрощение – в рассматриваемом примере мы сократили подынтегральное выражение на «икс».

Выполним проверку. Для этого нужно взять производную от ответа:

Получена исходная подынтегральная функция, значит, интеграл решён правильно.

В ходе проверки мы использовали правило дифференцирования произведения: . И это не случайно.

Формула интегрирования по частям и формула – это два взаимно обратных правила.

Пример 2

Найти неопределенный интеграл.

Подынтегральная функция представляет собой произведение логарифма на многочлен.
Решаем.

Я еще один раз подробно распишу порядок применения правила, в дальнейшем примеры будут оформляться более кратко, и, если у Вас возникнут трудности в самостоятельном решении, нужно вернуться обратно к первым двум примерам урока.

Как уже говорилось, за необходимо обозначить логарифм (то, что он в степени – значения не имеет). За обозначаем оставшуюся часть подынтегрального выражения.

Записываем в столбик:

Сначала находим дифференциал :

Здесь использовано правило дифференцирования сложной функции . Не случайно, на самом первом уроке темы Неопределенный интеграл. Примеры решений я акцентировал внимание на том, что для того, чтобы освоить интегралы, необходимо «набить руку» на производных. С производными придется столкнуться еще не раз.

Теперь находим функцию , для этого интегрируем правую часть нижнего равенства :

Для интегрирования мы применили простейшую табличную формулу

Теперь всё готово для применения формулы . Открываем «звёздочкой» и «конструируем» решение в соответствии с правой частью :

Под интегралом у нас снова многочлен на логарифм! Поэтому решение опять прерывается и правило интегрирования по частям применяется второй раз. Не забываем, что за в похожих ситуациях всегда обозначается логарифм.

Хорошо бы, если к данному моменту простейшие интегралы и производные Вы умели находить устно.

(1) Не путаемся в знаках! Очень часто здесь теряют минус, также обратите внимание, что минус относится ко всей скобке , и эти скобки нужно корректно раскрыть.

(2) Раскрываем скобки. Последний интеграл упрощаем.

(3) Берем последний интеграл.

(4) «Причесываем» ответ.

Необходимость дважды (а то и трижды) применять правило интегрирования по частям возникает не так уж и редко.

А сейчас пара примеров для самостоятельного решения:

Пример 3

Найти неопределенный интеграл.

Этот пример решается методом замены переменной (или подведением под знак дифференциала)! А почему бы и нет – можете попробовать взять его по частям, получится забавная вещь.

Пример 4

Найти неопределенный интеграл.

А вот этот интеграл интегрируется по частям (обещанная дробь).

Это примеры для самостоятельного решения, решения и ответы в конце урока.

Вроде бы в примерах 3,4 подынтегральные функции похожи, а вот методы решения – разные! В этом-то и состоит основная трудность освоения интегралов – если неправильно подобрать метод решения интеграла, то возиться с ним можно часами, как с самой настоящей головоломкой. Поэтому чем больше вы прорешаете различных интегралов – тем лучше, тем легче пройдут зачет и экзамен. Кроме того, на втором курсе будут дифференциальные уравнения, а без опыта решения интегралов и производных делать там нечего.

По логарифмам, пожалуй, более чем достаточно. На закуску могу еще вспомнить, что студенты-технари логарифмами называют женскую грудь =). Кстати, полезно знать назубок графики основных элементарных функций: синуса, косинуса, арктангенса, экспоненты, многочленов третьей, четвертой степени и т.д. Нет, конечно, презерватив на глобус
я натягивать не буду, но теперь вы многое запомните из раздела Графики и функции =).

Интегралы от экспоненты, умноженной на многочлен

Общее правило:

Пример 5

Найти неопределенный интеграл.

Используя знакомый алгоритм, интегрируем по частям:


Если возникли трудности с интегралом , то следует вернуться к статье Метод замены переменной в неопределенном интеграле .

Единственное, что еще можно сделать, это «причесать» ответ:

Но если Ваша техника вычислений не очень хороша, то самый выгодный вариант оставить ответом или даже

То есть, пример считается решенным, когда взят последний интеграл. Ошибкой не будет, другое дело, что преподаватель может попросить упростить ответ.

Пример 6

Найти неопределенный интеграл.

Это пример для самостоятельного решения. Данный интеграл дважды интегрируется по частям. Особое внимание следует обратить на знаки – здесь легко в них запутаться, также помним, что – сложная функция.

Больше про экспоненту рассказывать особо нечего. Могу только добавить, что экспонента и натуральный логарифм взаимно-обратные функции, это я к теме занимательных графиков высшей математики =) Стоп-стоп, не волнуемся, лектор трезв.

Интегралы от тригонометрических функций, умноженных на многочлен

Общее правило: за всегда обозначается многочлен

Пример 7

Найти неопределенный интеграл.

Интегрируем по частям:

Хммм, …и комментировать нечего.

Пример 8

Найти неопределенный интеграл

Это пример для самостоятельного решения

Пример 9

Найти неопределенный интеграл

Еще один пример с дробью. Как и в двух предыдущих примерах за обозначается многочлен.

Интегрируем по частям:

Если возникли трудности или недопонимание с нахождением интеграла , то рекомендую посетить урок Интегралы от тригонометрических функций .

Пример 10

Найти неопределенный интеграл

Это пример для самостоятельного решения.

Подсказка: перед использованием метода интегрирования по частям следует применить некоторую тригонометрическую формулу, которая превращает произведение двух тригонометрических функций в одну функцию. Формулу также можно использовать и в ходе применения метода интегрирования по частям, кому как удобнее.

Вот, пожалуй, и всё в данном параграфе. Почему-то вспомнилась строчка из гимна физмата «А синуса график волна за волной по оси абсцисс пробегает»….

Интегралы от обратных тригонометрических функций.
Интегралы от обратных тригонометрических функций, умноженных на многочлен

Общее правило: за всегда обозначается обратная тригонометрическая функция .

Напоминаю, что к обратным тригонометрическим функциям относятся арксинус, арккосинус, арктангенс и арккотангенс. Для краткости записи я буду называть их «арками»