Калькулятор для вычисления определителя 4 порядка. Вычисление определителей

Лекция 6

Матрицы

6.1. Основные понятия

Определение 1. Матрицей называется прямоугольная таблица чисел.

Для обозначения матрицы используются круглые скобки или сдвоенные вертикальные линии:

Числа, составляющие матрицу, называются ее элементами , элементматрицырасположен в ее-й строке и-м столбце.

Числа и(число строк и столбцов матрицы) называются ее порядками.

Говорят также, что - матрица размером
.

Если
, матрицаназываетсяквадратной .

Для краткой записи используется также обозначение
(или
) и далее указывается, в каких пределах изменяютсяи, например,
,
,
. (Запись читается так: матрицас элементами,изменяется отдо,- отдо.)

Среди квадратных матриц отметим диагональные матрицы , у которых все элементы с неравными индексами (
) равны нулю:

.

Будем говорить, что элементы
расположены на главной диагонали.

Диагональная матрица вида

называется единичной матрицей.

В дальнейшем будут встречаться матрицы вида

и
,

которые называются треугольными матрицами, а также матрицы, состоящие из одного столбца:

и одной строки:

(матрица-столбец и матрица-строка ).

Матрица, все элементы которой равны нулю, называется нулевой.

6.2. Определители порядка n

Пусть дана квадратная матрица порядка :

. (6.1)

Составим всевозможные произведения элементов матрицы, расположенных в разных строках и разных столбцах, т.е. произведения вида

. (6.2)

Число произведений вида (6.2) равно (примем этот факт без доказательства).

Будем считать все эти произведения членами определителя порядка , соответствующего матрице (6.1).

Вторые индексы множителей в (6.2) составляют перестановку первых натуральных чисел
.

Говорят, что числа ив перестановке составляютинверсию , если
, а в перестановкерасположено раньше.

Пример 1. В перестановке шести чисел,
, числаи,и,и,и,исоставляют инверсии.

Перестановка называется четной , если число инверсий в ней четно, инечетной , если число инверсий в ней нечетно.

Пример 2. Перестановка
- нечетная, а перестановка
- четная (инверсий).

Определение 2. Определителем порядка , соответствующим матрице (6.1), называется алгебраическая сумма членов , составленная следующим образом : членами определителя служат всевозможные произведения элементов матрицы , взятых по одному из каждой строки и каждого столбца , причем слагаемое берется со знаком "+", если множество вторых индексов является четной перестановкой чисел
, и со знаком "–", если нечетной.

Обозначать определитель матрицы (6.1) принято так:

.

Замечание. Определение 2 для
и
приводит к уже знакомым нам определителям 2-го и 3-го порядка:

,

Транспонированием вокруг главной диагонали матрицыназывается переход к матрице
, для которой строки матрицыявляются столбцами, а столбцы - строками:

.

Будем говорить, что определитель
получен транспонированием определителя.

Свойства определителя порядка п:

1.
(определитель не меняется при транспонировании вокруг главной диагонали).

2. Если одна из строк определителя состоит из нулей, определитель равен нулю.

3. От перестановки двух строк определитель меняет лишь знак.

4. Определитель, содержащий две одинаковые строки, равен нулю.

5. Если все элементы некоторой строки определителя умножить на число , определитель умножится на.

6. Определитель, содержащий две пропорциональные строки, равен нулю.

7. Если все элементы -й строки определителя представлены в виде суммы
, то определитель равен сумме двух определителей, у которых все строки, кроме-й, такие же, как в исходном определителе, а-я строка в одном определителе состоит из, а в другом - из.

Определение 3. -я строка определителя называется линейной комбинацией остальных его строк , если такие , что, умножая -ю строку на, а затем складывая все строки , кроме , получаем -ю строку.

8. Если одна из строк определителя является линейной комбинацией остальных его строк, определитель равен нулю.

9. Определитель не изменится, если к элементам одной его строки прибавить соответствующие элементы другой, умноженные на одно и то же число.

Замечание. Мы сформулировали свойства определителя для строк. В силу свойства 1 (
) они справедливы и для столбцов.

Все приведенные свойства были доказаны на практических занятиях для
; для произвольногопримем их без доказательства.

Если в определителе порядкавыбрать элементи вычеркнуть столбец и строку, на пересечении которых расположен, оставшиеся строки и столбцы образуют определитель порядка
, который называетсяминором определителя, соответствующим элементу.

Пример 3. В определителе

минором элемента
является определитель
.

Определение 4. Алгебраическим дополнением элементаопределителяназывается его минор , умноженный на
, где - номер строки , - номер столбца , в которых расположен выбранный элемент .

Пример 4. В определителе

алгебраическое дополнение
.

Теорема 1 (о разложении по строке). Определитель равен сумме произведений всех элементов любой строки на их алгебраические дополнения.

Теорема 1 позволяет свести вычисление определителя порядка к вычислениюопределителей порядка
.

Пример 5 . Вычислить определитель четвертого порядка:

.

Воспользуемся теоремой 1 и разложим определитель по 4-й строке:

Замечание. Можно вначале упростить определитель, воспользовавшись свойством 9, а затем использовать теорему 1. Тогда вычисление определителя порядкасведется к вычислениювсего одного определителя порядка
.

Пример 6. Вычислить

.

Прибавим первый столбец ко второму и первый столбец, умноженный на (
), к третьему, в результате получим

.

Теперь применим теорему 1 и разложим по последней строке:

,

вычисление определителя 4-го порядка свелось к вычислению всего одного определителя 3-го порядка.

,

вычисление определителя третьего порядка свелось к вычислению всего одного определителя второго порядка.

Пример 7. Вычислить определитель порядка:

.

Первую строку прибавим ко второй, третьей и т.д. -й строке. Придем к определителю

.

Получен определитель треугольного вида.

Применим
раз теорему 1 (разложим по первому столбцу) и получим

.

Замечание. Определитель треугольного вида равен произведению элементов главной диагонали.

6.3. Основные операции над матрицами

Определение 5. Две матрицы
,
,
, и
,
,
, будем называть равными, если
.

Краткая запись:
.

Таким образом, две матрицы считаются равными, если они имеют одинаковые порядки и их соответствующие элементы равны.

Определение 6. Суммой двух матриц
,
,
, и
,
,
, называется такая матрица
,
,
, что
.

Иначе говоря, складывать можно только матрицы одних и тех же порядков, причем сложение осуществляется поэлементно.

Пример 8. Найти сумму матриц

и
.

В соответствии с определением 6 найдем

.

Правило сложения матриц распространяется на сумму любого конечного числа слагаемых.

Определение 7. Произведением матрицы
,
,
, на вещественное число называется такая матрица
,
,
, для которой
.

Иными словами, чтобы умножить матрицу на число, нужно умножить на это число все ее элементы и оставить полученные произведения на прежних местах.

Пример 9. Найти линейную комбинацию
матриц

и
.

Пользуясь определением 7, получаем

,
,

.

Свойства операций сложения матриц

и умножения на число:

1. Сложение коммутативно:
.

2. Сложение ассоциативно:.

3. Существует нулевая матрица
, удовлетворяющая условию
для всехА .

4. Для любой матрицы А существует противоположная матрицаВ , удовлетворяющая условию
.

Для любых матриц А иВ и любых действительных чисел
имеют место равенства:

5.
.

6.
.

7.
.

8.
.

Проверим свойство 1. Обозначим
,
. Пусть
,

,
. Имеем

и так как равенство доказано для произвольного элемента, в соответствии с определением 5
. Свойство 1 доказано.

Аналогично доказывается свойство 2.

В качестве матрицы возьмем матрицу порядка
, все элементы которой равны нулю.

Сложив с любой матрицейпо правилу, данному в определении 6, мы матрицуне изменим, и свойство 3 справедливо.

Проверим свойство 4. Пусть
. Положим
. Тогда
, следовательно, свойство 4 справедливо.

Проверку свойств 5 - 8 опустим.

Определение 8. Произведением матрицы
,
,
, на матрицу
,
,
, называется матрица
,
,
, с элементами
.

Краткая запись:
.

Пример 10. Найти произведение матриц

и
.

В соответствии с определением 8 найдем

Пример 11. Перемножить матрицы

и
.

Замечание 1. Число элементов в строке матрицыравно числу элементов в столбце матрицы(число столбцов матрицыравно числу строк матрицы).

Замечание 2. В матрице
строк столько же, сколько в матрице, а столбцов столько же, сколько в.

Замечание 3. Вообще говоря,
(умножение матриц некоммутативно).

Чтобы обосновать замечание 3, достаточно привести хотя бы один пример.

Пример 12. Перемножим в обратном порядке матрицыииз примера 10.

таким образом, в общем случае
.

Отметим, что в частном случае равенство
возможно.

Матрицы и, для которых выполняется равенство
, называютсяперестановочными, иликоммутирующими .

Упражнения.

1. Найти все матрицы, перестановочные с данной:

а)
; б)
.

2. Найти все матрицы второго порядка, квадраты которых равны нулевой матрице.

3. Доказать, что
.

Свойства умножения матриц:

    Умножение дистрибутивно.

Методы их вычисления

Определение . Выражение

называется определителем четвертого порядка. Этот определитель можно записать в виде:

где - минор элемента, стоящего на пересечении i-ой строки и j-го столбца, -алгебраическое дополнение этого элемента.

Формулу (6) можно записать с помощью значка суммирования :

, (7)

где i=1,2,3,4.

Формула (7) называется разложением определителя по элементам

i-ой строки. Можно записать и разложение определителя по элементам j-го столбца:

(8)

где j=1,2,3,4.

Метод понижения порядка определителя основан на обращении всех, кроме одного, элементов строки или столбца определителя в нуль с помощью свойств определителей.

Пример 11. Вычислить определитель

.

Решение . Прибавим элементы первой строки к элементам второй строки:

.

Элементы первой строки умножим на (-2) и прибавим к элементам третьей строки:

.

Элементы первой строки умножим на (-1) и прибавим к элементам четвертой строки:

.

Разложим полученный определитель по элементам первого столбца

Переставим первые две строки, при этом знак определителя изменится на противоположный, одновременно вынесем общий множитель 3 элементов третьего столбца за знак определителя:

.

Умножим элементы первой строки на (-2) и прибавим к элементам второй строки:

.

Полученный определитель разложим по элементам второй строки

Пример 12. Вычислить определитель .

Решение . Поменяем местами первую и вторую строки, при этом по свойству 2 знак определителя изменится на противоположный:

.

Сначала элементы первой строки умножим на (-2) и прибавим к элементам второй и четвертой строк, а затем элементы первой строки умножим на (-3) и прибавим к элементам третьей строки, получим:

.

Элементы второй строки прибавим к элементам четвертой строки:

.

Элементы третьей строки умножим на (-1) и прибавим к элементам четвертой строки:

.

Получим определитель треугольного вида, значение которого равно произведению элементов главной диагонали .

Пример 13 . Вычислить определитель

.

Решение. Разложим определитель по элементам третьей строки



Полученные определители третьего порядка вычислим по правилу треугольника

Задания для самостоятельного решения.

1.Вычислить определители:

2. Решить уравнения:

3. Решить неравенства:

4. Вычислить определители:

Ответы: 1. а)7; б)26; в)0; г)0; д)30. 2 . а)5; б)2; в)2;

г) 3 . а) б) в) г)[-1;7]. 4 . а)-24; б)-40; в)-9; г)57; д)-5; е)1; ж)1; з)55; и)30; к)48; л)0; м)-1004; н)150.

Матрицы

Основные понятия

Определение . Матрицей называется прямоугольная таблица чисел, содержащая m строк одинаковой длины и n столбцов одинаковой длины, которая записывается в виде

(9)

или, сокращенно, , где , (т.е. ) – номер строки, (т.е. ) – номер столбца, числа называются элементами матрицы. Матрицу называют матрицей размера и пишут . Например. , .

Определение . Две матрицы и равны между собой, если их размеры совпадают, а их соответствующие элементы равны, т.е. , если , где .

Например. Так как размеры матриц совпадают и соответствующие элементы равны, поэтому матрицы и равны, т.е.

Определение . Матрица, у которой число строк равно числу столбцов, называется квадратной. Квадратную матрицу размера называют матрицей n-го порядка.

Например. т.е. дана матрица второго порядка.

Определение . Квадратная матрица, у которой все элементы, кроме элементов главной диагонали, равны нулю, называются диагональной.

Матрица - диагональная.

Определение . Диагональная матрица, у которой каждый элемент главной диагонали равен единице, называется единичной. Обозначается буквой .

или .

Определение . Квадратная матрица называется треугольной, если все элементы, расположенные над главной диагональю (или под главной диагональю), равны нулю.

или - треугольные матрицы.

Важной характеристикой квадратной матрицы порядка n является ее определитель (или детерминант), который обозначается или . .

Определение. Квадратная матрица, у которой определитель отличен от нуля, т.е. , называется невырожденной. В противном случае матрица называется вырожденной.

Например,

Матрица А – вырожденная.

Матрица В – невырожденная.

Определение . Матрица, все элементы которой равны нулю, называется нулевой и обозначается буквой О.

В матричном исчисление матрицы О и Е играют роль чисел 0 и 1 в арифметике.

Определение . Матрица, содержащая одну строку, называется матрицей-строкой

Матрица размера , состоящая из одного числа, отождествляется с этим числом, т.е. есть 3.

Определение . Матрица, полученная из данной заменой каждой ее строки столбцом с тем же номером, называется матрицей транспонированной к данной. Обозначается .

Если , то , если , то .

Транспонированная матрица обладает следующим свойством: .

Пусть имеется квадратная матрица A размером n x n .
Определение. Определителем называется алгебраическая сумма всевозможных произведений элементов, взятых по одному из каждого столбца и каждой строки матрицы A . Если в каждом таком произведении (члене определителя) множители расположены в порядке следования столбцов (т.е. вторые индексы элементов a ij в произведении расположены в порядке возрастания), то со знаком (+) берутся те произведения, у которых перестановка первых индексов чётная, а со знаком (-) – те, ­ у которых она нечетная.
.
Здесь - число инверсий в перестановке индексов i 1 , i 2 , …, i n .

Методы нахождения определителей

  1. Определитель матрицы разложением по строкам и столбцам через миноры.
  2. Определитель методом приведения к треугольному виду (методом Гаусса)

Свойство определителей

  1. При транспонировании матрицы её определитель не меняется.
  2. Если поменять местами две строки или два столбца определителя, то определитель изменит знак, а по абсолютной величине не изменится.
  3. Пусть C = AB где A и B квадратные матрицы. Тогда detC = detA ∙ detB .
  4. Определитель с двумя одинаковыми строками или с двумя одинаковыми столбцами равен 0. Если все элементы некоторой строки или столбца равны нулю, то и сам определитель равен нулю.
  5. Определитель с двумя пропорциональными строками или столбцами равен 0.
  6. Определитель треугольной матрицы равен произведению диагональных элементов. Определитель диагональной матрицы равен произведению элементов стоящих на главной диагонали.
  7. Если все элементы строки (столбца) умножить на одно и то же число, то определитель умножится на это число.
  8. Если каждый элемент некоторой строки (столбца) определителя представлен в виде суммы двух слагаемых, то определитель равен сумме двух определителей, у которых все строки (столбцы) кроме данной, прежние, а в данной строке (столбце) в первом определителе стоят первые, а во втором - вторые слагаемые.
  9. Теорема Якоби: Если к элементам некоторого столбца определителя прибавить соответствующие элементы другого столбца, умноженные на произвольный множитель λ, то величина определителя не изменится.
Таким образом, определитель матрицы остается без изменения, если:
  • транспонировать матрицу;
  • прибавить к какой-либо строке другую строку, умноженную на любое число.

Задание 1 . Вычислить определитель, разлагая его по строке или столбцу.
Решение :xml :xls
Пример 1 :xml :xls

Задание 2 . Вычислить определитель двумя способами: а) по правилу «треугольников»; б) разложением по строке.

Решение .
а) Слагаемые, входящие в со знаком «минус», строятся таким же образом относительно побочной диагонали.

2 2 1
-1 0 4
-2 2 0
=
= 2 0 0 - 2 4 2 - (-1) 2 0 + (-1) 1 2 + (-2) 2 4 - (-2) 1 0 = -34
б) Запишем матрицу в виде:
A =
2 2 1
-1 0 4
-2 2 0

Главный определитель:
∆ = 2 (0 0-2 4)-(-1 (2 0-2 1))+(-2 (2 4-0 1)) = -34

Задание 3 . Укажите, чему равен определитель квадратной матрицы A четвертого порядка, если ее ранг r(A)=1.
Ответ: det(A) = 0.

В ходе решения задач по высшей математике очень часто возникает необходимость вычислить определитель матрицы . Определитель матрицы фигурирует в линейной алгебре, аналитической геометрии, математическом анализе и других разделах высшей математики. Таким образом, без навыка решения определителей просто не обойтись. Также для самопроверки Вы можете бесплатно скачать калькулятор определителей , он сам по себе не научит решать определители, но очень удобен, поскольку всегда выгодно заранее знать правильный ответ!

Я не буду давать строгое математическое определение определителя, и, вообще, буду стараться минимизировать математическую терминологию, большинству читателей легче от этого не станет. Задача данной статьи – научить Вас решать определители второго, третьего и четвертого порядка. Весь материал изложен в простой и доступной форме, и даже полный (пустой) чайник в высшей математике после внимательного изучения материала сможет правильно решать определители.

На практике чаще всего можно встретить определитель второго порядка, например: , и определитель третьего порядка, например: .

Определитель четвертого порядка тоже не антиквариат, и к нему мы подойдём в конце урока.

Надеюсь, всем понятно следующее: Числа внутри определителя живут сами по себе, и ни о каком вычитании речи не идет! Менять местами числа нельзя!

(Как частность, можно осуществлять парные перестановки строк или столбцов определителя со сменой его знака, но часто в этом нет никакой необходимости – см. следующий урок Свойства определителя и понижение его порядка)

Таким образом, если дан какой-либо определитель, то ничего внутри него не трогаем!

Обозначения : Если дана матрица , то ее определитель обозначают . Также очень часто определитель обозначают латинской буквой или греческой .

1) Что значит решить (найти, раскрыть) определитель? Вычислить определитель – это значит НАЙТИ ЧИСЛО. Знаки вопроса в вышерассмотренных примерах – это совершенно обыкновенные числа.

2) Теперь осталось разобраться в том, КАК найти это число? Для этого нужно применить определенные правила, формулы и алгоритмы, о чём сейчас и пойдет речь.

Начнем с определителя «два» на «два» :

ЭТО НУЖНО ЗАПОМНИТЬ, по крайне мере на время изучения высшей математики в ВУЗе.

Сразу рассмотрим пример:

Готово. Самое главное, НЕ ЗАПУТАТЬСЯ В ЗНАКАХ.

Определитель матрицы «три на три» можно раскрыть 8 способами, 2 из них простые и 6 - нормальные.

Начнем с двух простых способов

Аналогично определителю «два на два», определитель «три на три» можно раскрыть с помощью формулы:

Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок».
Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:


Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс».
Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:

Пример:

Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

Теперь рассмотрим шесть нормальных способов для вычисления определителя

Почему нормальных? Потому что в подавляющем большинстве случаев определители требуется раскрывать именно так.

Как Вы заметили, у определителя «три на три» три столбца и три строки.
Решить определитель можно, раскрыв его по любой строке или по любому столбцу .
Таким образом, получается 6 способов, при этом во всех случаях используется однотипный алгоритм.

Определитель матрицы равен сумме произведений элементов строки (столбца) на соответствующие алгебраические дополнения. Страшно? Все намного проще, будем использовать ненаучный, но понятный подход, доступный даже для человека, далекого от математики.

В следующем примере будем раскрывать определитель по первой строке .
Для этого нам понадобится матрица знаков: . Легко заметить, что знаки расположены в шахматном порядке.

Внимание! Матрица знаков – это мое собственное изобретение. Данное понятие не научное, его не нужно использовать в чистовом оформлении заданий, оно лишь помогает Вам понять алгоритм вычисления определителя.

Сначала я приведу полное решение. Снова берем наш подопытный определитель и проводим вычисления:

И главный вопрос: КАК из определителя «три на три» получить вот это вот:
?

Итак, определитель «три на три» сводится к решению трёх маленьких определителей, или как их еще называют, МИНОРОВ . Термин рекомендую запомнить, тем более, он запоминающийся: минор – маленький.

Коль скоро выбран способ разложения определителя по первой строке , очевидно, что всё вращается вокруг неё:

Элементы обычно рассматривают слева направо (или сверху вниз, если был бы выбран столбец)

Поехали, сначала разбираемся с первым элементом строки, то есть с единицей:

1) Из матрицы знаков выписываем соответствующий знак:

2) Затем записываем сам элемент:

3) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит первый элемент:

Оставшиеся четыре числа и образуют определитель «два на два», который называется МИНОРОМ данного элемента (единицы).

Переходим ко второму элементу строки.

4) Из матрицы знаков выписываем соответствующий знак:

5) Затем записываем второй элемент:

6) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит второй элемент:

Ну и третий элемент первой строки. Никакой оригинальности:

7) Из матрицы знаков выписываем соответствующий знак:

8) Записываем третий элемент:

9) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит третий элемент:

Оставшиеся четыре числа записываем в маленький определитель.

Остальные действия не представляют трудностей, поскольку определители «два на два» мы считать уже умеем. НЕ ПУТАЕМСЯ В ЗНАКАХ!

Аналогично определитель можно разложить по любой строке или по любому столбцу. Естественно, во всех шести случаях ответ получается одинаковым.

Определитель «четыре на четыре» можно вычислить, используя этот же алгоритм.
При этом матрица знаков у нас увеличится:

В следующем примере я раскрыл определитель по четвертому столбцу :

А как это получилось, попробуйте разобраться самостоятельно. Дополнительная информация будет позже. Если кто захочет прорешать определитель до конца, правильный ответ: 18. Для тренировки лучше раскрыть определитель по какому-нибудь другому столбцу или другой строке.

Потренироваться, раскрыть, провести расчёты – это очень хорошо и полезно. Но сколько времени вы потратите на большой определитель? Нельзя ли как-нибудь быстрее и надёжнее? Предлагаю ознакомиться с эффективными методами вычисления определителей на втором уроке – Свойства определителя. Понижение порядка определителя .

БУДЬТЕ ВНИМАТЕЛЬНЫ!


Понятие определителя является одним из основных в курсе линейной алгебры. Это понятие присуще ТОЛЬКО КВАДРАТНЫМ МАТРИЦАМ, этому понятию и посвящена данная статья. Здесь мы будем говорить об определителях матриц, элементами которых являются действительные (или комплексные) числа. В этом случае определитель есть действительное (или комплексное) число. Все дальнейшее изложение будет ответом на вопросы как вычислять определитель, и какими свойствами он обладает.

Сначала дадим определение определителя квадратной матрицы порядка n на n как сумму произведений перестановок элементов матрицы. На основании этого определения запишем формулы для вычисления определителей матриц первого, второго, третьего порядков и подробно разберем решения нескольких примеров.

Далее перейдем к свойствам определителя, которые будем формулировать в виде теорем без доказательства. Здесь будет получен метод вычисления определителя через его разложение по элементам какой-либо строки или столбца. Этот метод позволяет свести вычисление определителя матрицы порядка n на n к вычислению определителей матриц порядка 3 на 3 или меньшего. Обязательно покажем решения нескольких примеров.

В заключении остановимся на вычислении определителя методом Гаусса. Этот метод хорош при нахождении значений определителей матриц порядка выше 3 на 3 , так как требует меньших вычислительных усилий. Также разберем решение примеров.

Навигация по странице.

Определение определителя матрицы, вычисление определителя матрицы по определению.

Напомним несколько вспомогательных понятий.

Определение.

Перестановкой порядка n называется упорядоченный набор чисел, состоящий из n элементов.

Для множества, содержащего n элементов, существует n! (n факториал) перестановок порядка n . Перестановки отличаются друг от друга лишь порядком следования элементов.

Например, рассмотрим множество, состоящее из трех чисел: . Запишем все перестановки (всего их шесть, так как ):

Определение.

Инверсией в перестановке порядка n называется всякая пара индексов p и q , для которой p-ый элемент перестановки больше q-ого .

В предыдущем примере инверсией перестановки 4 , 9 , 7 является пара p=2 , q=3 , так как второй элемент перестановки равен 9 и он больше третьего, равного 7 . Инверсией перестановки 9 , 7 , 4 будут три пары: p=1 , q=2 (9>7 ); p=1 , q=3 (9>4 ) и p=2 , q=3 (7>4 ).

Нас будет больше интересовать количество инверсий в перестановке, а не сама инверсия.

Пусть - квадратная матрица порядка n на n над полем действительных (или комплексных) чисел. Пусть – множество всех перестановок порядка n множества . Множество содержит n! перестановок. Обозначим k–ую перестановку множества как , а количество инверсий в k-ой перестановке как .

Определение.

Определитель матрицы А есть число, равное .

Опишем эту формулу словами. Определителем квадратной матрицы порядка n на n является сумма, содержащая n! слагаемых. Каждое слагаемое представляет собой произведение n элементов матрицы, причем в каждом произведении содержится элемент из каждой строки и из каждого столбца матрицы А . Перед k-ым слагаемым появляется коэффициент (-1) , если элементы матрицы А в произведении упорядочены по номеру строки, а количество инверсий в k-ой перестановке множества номеров столбцов нечетно.

Определитель матрицы А обычно обозначается как , также встречается обозначение det(A) . Также можно услышать, что определитель называют детерминантом.

Итак, .

Отсюда видно, что определителем матрицы первого порядка является элемент этой матрицы .

Вычисление определителя квадратной матрицы второго порядка - формула и пример.

порядка 2 на 2 в общем виде.

В этом случае n=2 , следовательно, n!=2!=2 .

.

Имеем

Таким образом, мы получили формулу для вычисления определителя матрицы порядка 2 на 2 , она имеет вид .

Пример.

порядка .

Решение.

В нашем примере . Применяем полученную формулу :

Вычисление определителя квадратной матрицы третьего порядка - формула и пример.

Найдем определитель квадратной матрицы порядка 3 на 3 в общем виде.

В этом случае n=3 , следовательно, n!=3!=6 .

Оформим в виде таблицы необходимые данные для применения формулы .

Имеем

Таким образом, мы получили формулу для вычисления определителя матрицы порядка 3 на 3 , она имеет вид

Аналогично можно получить формулы для вычисления определителей матриц порядка 4 на 4 , 5 на 5 и более высоких. Они будут иметь очень громоздкий вид.

Пример.

Вычислите определитель квадратной матрицы порядка 3 на 3 .

Решение.

В нашем примере

Применяем полученную формулу для вычисления определителя матрицы третьего порядка:

Формулы для вычисления определителей квадратных матриц второго и третьего порядков очень часто применяются, так что рекомендуем их запомнить.

Свойства определителя матрицы, вычисление определителя матрицы с использованием свойств.

На основании озвученного определения справедливы следующие свойства определителя матрицы .

    Определитель матрицы А равен определителю транспонированной матрицы А Т , то есть, .

    Пример.

    Убедитесь, что определитель матрицы равен определителю транспонированной матрицы.

    Решение.

    Воспользуемся формулой для вычисления определителя матрицы порядка 3 на 3 :

    Транспонируем матрицу А :

    Вычислим определитель транспонированной матрицы:

    Действительно, определитель транспонированной матрицы равен определителю исходной матрицы.

    Если в квадратной матрице все элементы хотя бы одной из строк (одного из столбцов) нулевые, определитель такой матрицы равен нулю.

    Пример.

    Проверьте, что определитель матрицы порядка 3 на 3 равен нулю.

    Решение.


    Действительно, определитель матрицы с нулевым столбцом равен нулю.

    Если переставить местами две любые строки (столбца) в квадратной матрице, то определитель полученной матрицы будет противоположен исходному (то есть, изменится знак).

    Пример.

    Даны две квадратные матрицы порядка 3 на 3 и . Покажите, что их определители противоположны.

    Решение.

    Матрица В получена из матрицы А заменой третьей строки на первую, а первой на третью. Согласно рассмотренному свойству определители таких матриц должны отличаться знаком. Проверим это, вычислив определители по известной формуле.

    Действительно, .

    Если в квадратной матрице хотя бы две строки (два столбца) одинаковы, то ее определитель равен нулю.

    Пример.

    Покажите, что определитель матрицы равен нулю.

    Решение.

    В данной матрице второй и третий столбцы одинаковы, так что согласно рассмотренному свойству ее определитель должен быть равен нулю. Проверим это.

    На самом деле определитель матрицы с двумя одинаковыми столбцами есть ноль.

    Если в квадратной матрице все элементы какой-либо строки (столбца) умножить на некоторое число k , то определитель полученной матицы будет равен определителю исходной матрицы, умноженному на k . Например,

    Пример.

    Докажите, что определитель матрицы равен утроенному определителю матрицы .

    Решение.

    Элементы первого столбца матрицы В получены из соответствующих элементов первого столбца матрицы А умножением на 3 . Тогда в силу рассмотренного свойства должно выполняться равенство . Проверим это, вычислив определители матриц А и В .

    Следовательно, , что и требовалось доказать.

    ОБРАТИТЕ ВНИМАНИЕ.

    Не путайте и не смешивайте понятия матрицы и определителя! Рассмотренное свойство определителя матрицы и операция умножения матрицы на число это далеко не одно и то же.
    , но .

    Если все элементы какой-либо строки (столбца) квадратной матрицы представляют собой сумму s слагаемых (s – натуральное число, большее единицы), то определитель такой матрицы будет равен сумме s определителей матриц, полученных из исходной, если в качестве элементов строки (столбца) оставить по одному слагаемому. Например,

    Пример.

    Докажите, что определитель матрицы равен сумме определителей матриц .

    Решение.

    В нашем примере , поэтому в силу рассмотренного свойства определителя матрицы должно выполняться равенство . Проверим его, вычислив соответствующие определители матриц порядка 2 на 2 по формуле .

    Из полученных результатов видно, что . На этом доказательство завершено.

    Если к элементам некоторой строки (столбца) матрицы прибавить соответствующие элементы другой строки (столбца), умноженные на произвольное число k , то определитель полученной матрицы будет равен определителю исходной матрицы.

    Пример.

    Убедитесь, что если к элементам третьего столбца матрицы прибавить соответствующие элементы второго столбца этой матрицы, умноженные на (-2) , и прибавить соответствующие элементы первого столбца матрицы, умноженные на произвольное действительное число , то определитель полученной матрицы будет равен определителю исходной матрицы.

    Решение.

    Если отталкиваться от рассмотренного свойства определителя, то определитель матрицы, полученной после всех указанных в задаче преобразований, будет равен определителю матрицы А .

    Сначала вычислим определитель исходной матрицы А :

    Теперь выполним необходимые преобразования матрицы А .

    Прибавим к элементам третьего столбца матрицы соответствующие элементы второго столбца матрицы, предварительно умножив их на (-2) . После этого матрица примет вид:

    К элементам третьего столбца полученной матрицы прибавим соответствующие элементы первого столбца, умноженные на :

    Вычислим определитель полученной матрицы и убедимся, что он равен определителю матрицы А , то есть, -24 :

    Определитель квадратной матрицы равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения .

    Здесь - алгебраическое дополнение элемента матрицы , .

    Это свойство позволяет вычислять определители матриц порядка выше чем 3 на 3 путем сведения их к сумме нескольких определителей матриц порядка на единицу ниже. Иными словами – это рекуррентная формула вычисления определителя квадратной матрицы любого порядка. Рекомендуем ее запомнить в силу достаточно частой применимости.

    Разберем несколько примеров.

    Пример.

    порядка 4 на 4 , разложив его

    • по элементам 3-ей строки,
    • по элементам 2-ого столбца.

    Решение.

    Используем формулу разложения определителя по элементам 3-ей строки

    Имеем

    Так задача нахождения определителя матрицы порядка 4 на 4 свелась к вычислению трех определителей матриц порядка 3 на 3 :

    Подставив полученные значения, приходим к результату:

    Используем формулу разложения определителя по элементам 2-ого столбца


    и действуем аналогично.

    Не будем подробно расписывать вычисление определителей матриц третьего порядка.

    Пример.

    Вычислите определитель матрицы порядка 4 на 4 .

    Решение.

    Можно разложить определитель матрицы по элементам любого столбца или любой строки, однако выгоднее выбирать строку или столбец, содержащую наибольшее количество нулевых элементов, так как это поможет избежать лишних вычислений. Разложим определитель по элементам первой строки:

    Вычислим полученные определители матриц порядка 3 на 3 по известной нам формуле:

    Подставляем результаты и получаем искомое значение

    Пример.

    Вычислите определитель матрицы порядка 5 на 5 .

    Решение.

    В четвертой строке матрицы наибольшее количество нулевых элементов среди всех строк и столбцов, поэтому целесообразно разложить определитель матрицы именно по элементам четвертой строки, так как в этом случае нам потребуется меньше вычислений.

    Полученные определители матриц порядка 4 на 4 были найдены в предыдущих примерах, так что воспользуемся готовыми результатами:

    Пример.

    Вычислите определитель матрицы порядка 7 на 7 .

    Решение.

    Не следует сразу бросаться раскладывать определитель по элементам какой либо строки или столбца. Если внимательно посмотреть на матрицу, то можно заметить, что элементы шестой строки матрицы можно получить умножением соответствующих элементов второй строки на двойку. То есть, если к элементам шестой строки прибавить соответствующие элементы второй строки, умноженные на (-2) , то определитель не изменится в силу седьмого свойства, а шестая строка полученной матрицы будет состоять из нулей. Определитель такой матрицы равен нулю по второму свойству.

    Ответ:

    Следует отметить, что рассмотренное свойство позволяет вычислить определители матриц любых порядков, однако приходится выполнять массу вычислительных операций. В большинстве случаев определитель матриц порядка выше третьего выгоднее находить методом Гаусса, который мы рассмотрим ниже.

    Сумма произведений элементов какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующих элементов другой строки (столбца) равна нулю.

    Пример.

    Покажите, что сумма произведений элементов третьего столбца матрицы на алгебраические дополнения соответствующих элементов первого столбца равна нулю.

    Решение.


    Определитель произведения квадратных матриц одного порядка равен произведению их определителей, то есть, , где m – натуральное число большее единицы, A k , k=1,2,…,m – квадратные матрицы одного порядка.

    Пример.

    Убедитесь, что определитель произведения двух матриц и равен произведению их определителей.

    Решение.

    Найдем сначала произведение определителей матриц А и В :

    Сейчас выполним умножение матриц и вычислим определитель получившейся матрицы:

    Таким образом, , что и требовалось показать.

Вычисление определителя матрицы методом Гаусса.

Опишем суть этого метода. Матрица А с помощью элементарных преобразований приводится к такому виду, чтобы в первом столбце все элементы, кроме стали нулевыми (это сделать всегда возможно, если определитель матрицы А отличен от нуля). Эту процедуру опишем чуть позже, а сейчас поясним, для чего это делается. Нулевые элементы получаются для того, чтобы получить самое простое разложение определителя по элементам первого столбца. После такого преобразования матрицы А , учитывая восьмое свойство и , получим

где - минор (n-1)-ого порядка , получающийся из матрицы А вычеркиванием элементов ее первой строки и первого столбца.

С матрицей, которой соответствует минор , проделывается такая же процедура получения нулевых элементов в первом столбце. И так далее до окончательного вычисления определителя.

Теперь осталось ответить на вопрос: «Как получать нулевые элементы в первом столбце»?

Опишем алгоритм действий.

Если , то к элементам первой строки матрицы прибавляются соответствующие элементы k-ой строки, в которой . (Если все без исключения элементы первого столбца матрицы А нулевые, то ее определитель равен нулю по второму свойству и не нужен никакой метод Гаусса). После такого преобразования «новый» элемент будет отличен от нуля. Определитель «новой» матрицы будет равен определителю исходной матрицы в силу седьмого свойства.

Теперь мы имеем матрицу, у которой . При к элементам второй строки прибавляем соответствующие элементы первой строки, умноженные на , к элементам третьей строки – соответствующие элементы первой строки, умноженные на . И так далее. В заключении к элементам n-ой строки прибавляем соответствующие элементы первой строки, умноженные на . Так будет получена преобразованная матрица А , все элементы первого столбца которой, кроме , будут нулевыми. Определитель полученной матрицы будет равен определителю исходной матрицы в силу седьмого свойства.

Разберем метод при решении примера, так будет понятнее.

Пример.

Вычислить определитель матрицы порядка 5 на 5 .

Решение.

Воспользуемся методом Гаусса. Преобразуем матрицу А так, чтобы все элементы ее первого столбца, кроме , стали нулевыми.

Так как изначально элемент , то прибавим к элементам первой строки матрицы соответствующие элементы, например, второй строки, так как :

Знак « ~ » означает эквивалентность.

Теперь прибавляем к элементам второй строки соответствующие элементы первой строки, умноженные на , к элементам третьей строки – соответствующие элементы первой строки, умноженные на , и аналогично действуем вплоть до шестой строки:

Получаем

С матрицей проводим ту же процедуру получения нулевых элементов в первом столбце:

Следовательно,

Сейчас выполняем преобразования с матрицей :

Замечание.

На некотором этапе преобразования матрицы по методу Гаусса может возникнуть ситуация, когда все элементы нескольких последних строк матрицы станут нулевыми. Это будет говорить о равенстве определителя нулю.

Подведем итог.

Определителем квадратной матрицы, элементы которой есть числа, является число. Мы рассмотрели три способа вычисления определителя:

  1. через сумму произведений сочетаний элементов матрицы;
  2. через разложение определителя по элементам строки или столбца матрицы;
  3. методом приведения матрицы к верхней треугольной (методом Гаусса).

Были получены формулы для вычисления определителей матриц порядка 2 на 2 и 3 на 3 .

Мы разобрали свойства определителя матрицы. Некоторые из них позволяют быстро понять, что определитель равен нулю.

При вычислении определителей матриц порядка выше 3 на 3 целесообразно использовать метод Гаусса: выполнить элементарные преобразования матрицы и привести ее к верхней треугольной. Определитель такой матрицы равен произведению всех элементов, стоящих на главной диагонали.