Конъюгация в какой фазе мейоза. Хромосомы в мейозе

В результате двух мейотических делений диплоидной клетки образуются четыре клетки. При образовании мужских половых клеток получается четыре спермия примерно одинаковых размеров. При образовании же яйцеклеток деление цитоплазмы происходит очень неравномерно: одна клетка остается крупной, тогда как остальные три настолько малы, что их почти целиком занимает ядро. Эти мелкие клетки, т.н. полярные тельца, служат лишь для размещения избытка хромосом, образовавшихся в результате мейоза. Основная часть цитоплазмы, необходимой для зиготы, остается в одной клетке – яйцеклетке. Конъюгация и кроссинговер . Во время конъюгации хроматиды гомологичных хромосом могут разрываться и затем соединяться в новом порядке, обмениваясь участками следующим образом: Этот обмен участками гомологичных хромосом называется кроссинговером (перекрестом). Как показано выше, кроссинговер ведет к возникновению новых комбинаций аллелей сцепленных генов. Так, если исходные хромосомы имели комбинации АВ и ab , то после кроссинговера они будут содержать Ab и aB . Этот механизм появления новых генных комбинаций дополняет эффект независимой сортировки хромосом, происходящей в ходе мейоза. Различие состоит в том, что кроссинговер разделяет гены одной и той же хромосомы, тогда как независимая сортировка разделяет только гены разных хромосом. ЧЕРЕДОВАНИЕ ПОКОЛЕНИЙ В принципе, и гаплоидные, и диплоидные клетки способны размножаться посредством митоза и давать начало взрослым особям. Однако у большинства животных, включая человека, только диплоидные клетки, возникшие в результате деления зиготы, формируют взрослую особь. У наземных растений такую функцию выполняют и гаплоидные, и диплоидные клетки. Поскольку при этом гаплоидное поколение чередуется с диплоидным, данное явление получило название чередования поколений. У мхов и мохообразных (Bryophyta) доминантным является гаплоидное поколение, хотя диплоидное тоже довольно хорошо развито и обычно паразитирует на гаплоидном. У высших наземных растений (Tracheophyta) диплоидное поколение доминирует, а гаплоидное очень редуцировано и представлено пыльцой и семяпочками. ПРИМИТИВНЫЕ КЛЕТКИ: ПРОКАРИОТЫ Все изложенное выше относится к клеткам растений, животных, простейших и одноклеточных водорослей, в совокупности называемых эукариотами. Эукариоты эволюционировали из более простой формы – прокариотов, которые в настоящее время представлены бактериями, включая архебактерий и цианобактерий (последних раньше называли синезелеными водорослями). В сравнении с клетками эукариотов прокариотические клетки мельче и имеют меньше клеточных органелл. У них есть клеточная мембрана, но отсутствует эндоплазматический ретикулум, а рибосомы свободно плавают в цитоплазме. Митохондрии отсутствуют, но окислительные ферменты обычно прикреплены к клеточной мембране, которая таким образом становится эквивалентом митохондрий. Прокариоты лишены также хлоропластов, а хлорофилл, если он имеется, присутствует в виде очень мелких гранул.

Прокариоты не имеют окруженного мембраной ядра, хотя место расположения ДНК можно выявить по его оптической плотности. Эквивалентом хромосомы служит цепочка ДНК, обычно кольцевая, с намного меньшим количеством прикрепленных белков. Цепочка ДНК в одной точке прикрепляется к клеточной мембране. Митоз у прокариотов отсутствует. Его заменяет следующий процесс: ДНК удваивается, после чего клеточная мембрана начинает расти между соседними точками прикрепления двух копий молекулы ДНК, которые в результате этого постепенно расходятся. В конечном итоге клетка делится между точками прикрепления молекул ДНК, образуя две клетки, каждая со своей копией ДНК.

ДИФФЕРЕНЦИРОВКА КЛЕТКИ Многоклеточные растения и животные эволюционировали из одноклеточных организмов, клетки которых после деления оставались вместе, образуя колонию. Изначально все клетки были идентичными, но дальнейшая эволюция породила дифференцировку. В первую очередь дифференцировались соматические клетки (т.е. клетки тела) и половые клетки. Далее дифференцировка усложнялась – возникало все больше различных клеточных типов. Онтогенез – индивидуальное развитие многоклеточного организма – повторяет в общих чертах этот эволюционный процесс (филогенез ).

Физиологически клетки дифференцируются отчасти за счет усиления той или иной особенности, общей для всех клеток. Например, в мышечных клетках усиливается сократительная функция, что может быть результатом совершенствования механизма, осуществляющего амебоидное или иного типа движение в менее специализированных клетках. Аналогичный пример – тонкостенные клетки корня с их отростками, т.н. корневыми волосками, которые служат для всасывания солей и воды; в той или иной степени эта функция присуща любым клеткам. Иногда специализация связана с приобретением новых структур и функций – примером может служить развитие локомоторного органа (жгутика) у сперматозоидов.

Дифференцировка на клеточном или тканевом уровне изучена довольно подробно. Мы знаем, например, что иногда она протекает автономно, т.е. один тип клетки может превращаться в другой независимо от того, к какому типу клеток относятся соседние. Однако часто наблюдается т.н. эмбриональная индукция – явление, при котором один тип ткани стимулирует клетки другого типа дифференцироваться в заданном направлении.

В общем случае дифференцировка необратима, т.е. высокодифференцированные клетки не могут превращаться в клетки другого типа. Тем не менее это не всегда так, в особенности у растительных клеток.

Различия в структуре и функциях в конечном счете определяются тем, какие типы белков синтезируются в клетке. Поскольку синтезом белков управляют гены, а набор генов во всех клетках тела одинаков, дифференцировка должна зависеть от активации или инактивации тех или иных генов в различных типах клеток. Регуляция активности генов происходит на уровне транскрипции, т.е. образования информационной РНК с использованием ДНК в качестве матрицы. Только транскрибированные гены производят белки. Синтезируемые белки могут блокировать транскрипцию, но иногда и активируют ее. Кроме того, поскольку белки являются продуктами генов, одни гены могут контролировать транскрипцию других генов. В регуляции транскрипции участвуют также гормоны, в частности стероидные. Очень активные гены могут многократно дуплицироваться (удваиваться) для производства большего количества информационной РНК.

Развитие злокачественных образований часто рассматривалось как особый случай клеточной дифференцировки. Однако появление злокачественных клеток является результатом изменения структуры ДНК (мутации), а не процессов транскрипции и трансляции в белок нормальной ДНК.

См. также РАК.

В ходе профазы мейоза I синаптонемный комплекс удерживает параллельно расположенные гомологичные хромосомы почти до момента их построения на экваторе клетки в метафазу I. Хромосомы соединяются с помощью синаптонемного комплекса на некоторое время (от 2ч удрожжей до 2-3сутоку человека), втечение которого между гомологичными хромосомами совершается обмен гомологичными участками ДНК -- кроссинговер. Образуется синаптонемальный комплекс в результате конъюгации гомологичных хромосом.

Конъюгация или синапсис - попарный контакт параллельно расположенных и слабо конденсированных гомологичных хромосом. Конъюгация и формирование синаптонемального комплекса (СК) отсутствует у низшего гриба Aspergillusnidulans, дрожжей Sc. Pombe и у самцов некоторых мух, например Drosophilamelanogaster.

Рисунок 2. Строение синаптонемального комплекса

После премейотическойS-фазы две сестринские хроматиды хромосомы формируют общий осевой элемент. Осевые элементы гомологичных хромосом включаются в виде латеральных (боковых) элементов в СК. Формируется синаптонемный комплекс (СК) - из белковых осей двух гомологичных хромосом и центрального элемента. Ширина боковых элементов составляет 30-60 нм, ширина центрального элемента - 60-120 нм. Боковые элементы состоят из мейоз-специфичных белков. Между ними формируются белковые перемычки. Первым специфическим белком СК (появляется еще в интерфазу) является белок REC8. ДНК гомологичных хромосом в виде петель отходят от боковых (латеральных) элементов СК. Большая часть ДНК локализована вне СК, лишь 0,5% геномной ДНК входит в СК, прочно связываясь с белками. Небольшое количество ДНК проходит через центральное пространство СК. ДНК СК состоит их уникальных и умеренно повторяющихся последовательностей, которые могут взаимодействовать с белками СК и белками, участвующими в рекомбинации и сегрегации гомологичных хромосом.

На 90% СК состоит из белков. Выделяют 5-10 мажорных белков с молекулярной массой от 26 до 190 кДа. У млекопитающих хорошо изучены 3 белка СК - SCP1, SCP2, CSP3 (synaptonemalcomplexprotein). Белки СК дрожжей назвали Zip1, Zip2, Red1, Hop1.

Белок SCP1 - основной белок поперечных филаментов СК. С-концы этого белка «заякорены» на латеральных элементах СК и взаимодействуют здесь с ДНК, N-концы достигают центрального пространства СК и соединяют противоположные латеральные элементы СК с помощью белок-белковых взаимодействий.

У дрожжей белок Zip1 является основным белком поперечных филаментов СК. Белок Zip2 действует как инициатор синапсиса, образуя центры полимеризации белка Zip1.

Белки SCP2, SCP3- белки латеральных элементов СК. Совместно локализуются вдоль осевых элементов хромосом и латеральных элементов СК. После диплотены концентрируются в центромерах хромосом, хотя небольшое их количество обнаруживается вдоль плеч хромосом. Т.о. эти белки участвуют в сцеплении - когезии сестринских хроматид. К белкам когезинам относятся и митоз-специфические белки - Smc1p, Smc3p, Scc1p, Scc3p.

У дрожжей белок Red1 образует центры формирования осевых элементов. Он взаимодействует с белком Hop1, который тоже является компонентом латеральных элементов СК у дрожжей.

Основа протяженных латеральных элементов-- комплекс из четырех белков когезинов. Накануне мейоза в хромосомах появляется специфичный белок когезин Rec8, который заменяет соматический когезин Rad21. Затем к нему присоединяются три других белка-когезина, присутствующие и в соматических клетках, новместо соматического когезина SMC1 появляется специфический для мейоза белок SMC1b (его N-конец на 50% отличается от N-конца соматического белка SMC1). Этот когезиновый комплекс располагается внутри хромосомы между двумя сестринскими хроматидами, удерживая их вместе. Скомплексом когезинов связываются мейоз-специфичные белки, которые становятся мажорными белками хромосомных осей и превращают их в латеральные элементы синаптонемного комплекса.

Регуляция сборки белков в СК происходит с помощью фосфорилирования-дефосфорилирования. Многие белки СК содержат по несколько сайтов фосфорилирования протеин-киназой р34.

В составе СК выделяют рекомбинационные узелки: ранние - на стадии лептотены и зиготены, локализуются в боковых элементах СК на участках инициации рекомбинации. В состав ранних рекомбинационных узелков входят ферменты, которые необходимы для инициации двунитевых разрывов в ДНК и формирования однонитевых концов. Например белок Spo11p (топоизомераза) - основная мейоз-специфичная эндонуклеаза, которая осуществляет двойные разрывы в ДНК. Поздние рекомбинационные узелки обнаружены на стадии пахитены, локализуются в центральном элементе СК. Обнаружена связь между числом и распределением поздних рекомбинационных узелков и числом и распределением хиазм в биваленте. Таким образом, поздние узелки - мультиферментные комплексы, катализирующие кроссинговер.

Инициация формирования СК у дрожжей и растений происходит в нескольких точках по всей длине бивалента (6 сайтов инициации у кукурузы, до 36 у лилии); у животных формирование СК начинается с теломер и распространяется по типу застежки «молнии». Завершение формирования СК - пахитена, его разрушение - диплотена.

Функции СК: - удерживает гомологичные хромосомы строго напротив друг друга;

препятствует слипанию гомологичных хромосом - обратимая конъюгация;

обязательная предпосылка для кроссинговера.

У мутантов с отсутствием конъюгации отсутствует и кроссинговер.

Генетический контроль конъюгации

Рожь. 3 группы рецессивных мутаций, нарушающих формирование СК.

мутации сильногоасинапсиса. Мутации блокируют конъюгацию хромосом при переходе от лептотены к зиготене.

Мутации слабогоасинапсиса или десинапсиса - самая многочисленная группа. У ржи данные мутации нарушают конъюгацию в 1-3 парах хромосом из 7. Наблюдаются как диваленты, так и униваленты; подавление формирования СК на концах хромосом; внутренние участки асинапсиса или десинапсиса. Снижается частота появления хиазм, частота кроссинговера.

Мутации индискриминантного синапсиса - одновременное присутствие гомологичного и негомологичного синапсиса, что приводит к появлению мультивалентов и унивалентов. Латеральные элементы СК могут сформировать складки из-за синапсиса «на себя».

Синапсис Х и Y хромосом

У слепушонки (род полевок) Х и Y хромосомы формируют короткий СК в ранней пахитене (конъюгируют короткими плечами), в диплотене происходит десинапсис и половые хромосомы становятся унивалентами.

Для ХY-бивалента большинства млекопитающих характерна концевая конъюгация половых хромосом (длинные плечи Х и Y хромосом), отсутствие которой нарушает расхождение половых хромосом в мейозе. Конъюгируют Х и Y хромосомы за счет гомологичного участка, содержащего такие гены как ген общей цветовой слепоты, пигментной ксеродермы, геморрагического диатеза.

ХY-бивалент выключается из метаболизма клетки путем образования полового пузырька, внутри которого неконъюгированные участки хромосом находятся в конденсированном состоянии.

Х хромосома может ассоциироваться с аберрантными хромосомами (транслоцированными, инверсионными). Это защитный механизм - если Х хромосома тесно ассоциирована с аберрантной, то вокруг полового бивалента не образуется половой пузырек. Это служит сигналом для остановки мейоза на стадии пахитены. Это предотвращает попадание поврежденных хромосом в половые клетки.

1. В каких случаях происходит мейоз?

Ответ. Половые клетки животных формируются в результате особого типа деления, при котором число хромосом во вновь образующихся клетках в два раза меньше, чем в исходной материнской клетке. Таким образом, из диплоидной клетки образуются гаплоидные клетки. Это необходимо для того, чтобы сохранить постоянный набор хромосом организмов при половом размножении. Данный тип деления клетки получил название – мейоз. Мейоз (от греч. meiosis - уменьшение) - редукционное деление, при котором хромосомный набор клетки уменьшается вдвое. Для мейоза характерны те же стадии, что и для митоза, но процесс состоит из двух последовательных делений - I деление и II деление мейоза. В результате образуются не две, а четыре клетки с гаплоидным набором хромосом.

2. Какой набор хромосом называется диплоидным?

Ответ. Диплоидный набор хромосом - (другие названия - двойной набор хромосом, зиготический набор хромосом, полный набор хромосом, соматический набор хромосом) совокупность хромосом, присущая соматическим клеткам, в которой все характерные для данного биологического вида хромосомы представлены попарно; у человека диплоидный набор хромосом содержит 44 аутосомы и 2 половые хромосомы.

Вопросы после §30

1. В чем отличие мейоза от митоза?

Ответ. Основные отличия:

1. мейоз уменьшает вдвое число хромосом в дочерних клетках, митоз поддерживает число хромосом на стабильном уровне, как и в материнской клетке

2. в мейозе следуют 2 подряд деления, причем перед вторым-нет интерфазы

3. в профазе 1 мейоза есть конъюгация и возможен кроссинговер

4. в анафазе 1 мейоза к полюсам расходятся целые хромосомы. при митозе-хроматиды

5. в метафазе 1 мейоза вдоль экватора клетки выстраиваются биваленты хромосом, в митозе все хромосомы выстраиваются в одну линию

6. в результате мейоза образуется 4 дочерних клетки, в митозе-2 клетки.

2. Каково биологическое значение мейоза?

Ответ. У животных и человека мейоз приводит к образованию гаплоидных половых клеток - гамет. В ходе последующего процесса оплодотворения (слияния гамет) организм нового поколения получает диплоидный набор хромосом, а значит, сохраняет присущий данному виду организмов кариотип. Следовательно, мейоз препятствует увеличению числа хромосом при половом размножении. Без такого механизма деления хромосомные наборы удваивались бы с каждым следующим поколением.

У растений, грибов и некоторых протистов путем мейоза образуются споры. Процессы, протекающие в ходе мейоза, служат основой комбинативной изменчивости организмов. Таким образом, мейоз:

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

3. В какую фазу мейоза происходит кроссинговер?

Ответ. Профаза I мейоза наиболее продолжительна. В этой фазе помимо типичных для профазы митоза процессом спирализации ДНК и образования веретена деления про исходят два очень важных в биологическом отношении процесса: конъюгация (спаривание) и кроссинговер (перекрест) гомологичных хромосом.

При кроссинговере происходит обмен идентичными участками гомологичных хромосом. Подумайте, какое значение может иметь это явление.

Ответ. Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых функционирует как единый суперген, контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации – т. е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.

Это означает, что:

а) в ходе естественного отбора в одних хромосомах происходит накопление «полезных» аллелей (и носители таких хромосом получают преимущество в борьбе за существование), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбывают из игры – элиминируются из популяций);

б) в ходе искусственного отбора в одних хромосомах накапливаются аллели хозяйственно-ценных признаков (и носители таких хромосом сохраняются селекционером), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбраковываются).

В результате кроссинговера неблагоприятные аллели, первоначально сцепленные с благоприятными, могут переходить в другую хромосому. Тогда возникают новые сочетания, не содержащие неблагоприятных аллелей, и эти неблагоприятные аллели элиминируются из популяции.

В два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом - образованием специализированных половых клеток , или гамет , из недифференцированных стволовых .

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса .

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов . Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет . Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

Фазы мейоза

Мейоз состоит из двух последовательных делений с короткой интерфазой между ними.

  • Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:
  • Фаза лептотены или лептонемы - конденсация ДНК с образованием хромосом в виде тонких нитей.
  • Зиготена или зигонема - коньюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.
  • Пахитена или пахинема - кроссинговер (перекрест) обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.
  • Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.
  • Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; гомологичные хромосомы остаются соединёнными между собой.
  • Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки.
  • Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе .
  • Телофаза I

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.
  • Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
  • Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.
  • Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

Мейоз. Кроссинговер

МЕЙОЗ

Мейоз – это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон » – меньше – и от «мейозис » – уменьшение).

Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Поэтому в первом делении мейоза вследствие образования бивалентов к полюсам клетки расходятся не однохроматидные, а двухроматидные хромосомы. В результате число хромосом уменьшается в два раза, и из диплоидной клетки образуются гаплоидные клетки.

Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n ). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n ).

Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II . В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным . Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Однако в целом, можно считать, что в диплоидной клетке (2n ) содержание ДНК составляет 4с . При наличии центриолей происходит их удвоение. Таким образом, в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза (редукционное , илимейоз I )

Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

Профаза I (профаза первого деления) включает ряд стадий.

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты . Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов . Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады , так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра.В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

Метафаза I (метафаза первого деления) . Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки.Образуется метафазная пластинка из бивалентов.

Анафаза I (анафаза первого деления) . Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.

Телофаза I (телофаза первого деления) . Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с .

В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом .

После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

Второе деление мейоза (эквационное , илимейоз II )

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

Профаза II (профаза второго деления) . Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей.

Метафаза II (метафаза второго деления) . В каждой из дочерних клеток формируется веретено деления. Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.

Анафаза II (анафаза второго деления) . Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

Телофаза II (телофаза второго деления) . Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с .

Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.