Применение первого лазера в офтальмологии. Виды операций лазером в офтальмологии — преимущества современной лазерной микрохирургии глаза

Среди лазеров, позволяющих коагулировать ткани, в настоящее время по- прежнему наиболее популярными и часто используемыми остаются аргоновые офтальмокоагуляторы (X = 488 и 514 нм), впервые созданные в США в начале 70-х гг.

В нашей стране первый такой лазер запатентован и создан в 1982 г. и под названием «Лиман-2» выпускался вплоть до последнего времени на Загорском оптико-механическом заводе. Этот лазер (рис. 144) сыграл большую роль в распространении лазерных методов лечения в России и, хотя он морально устарел, но еще используется в ряде лечебных учреждений. За рубежом эти лазеры выпускаются многими фирмами, из которых в России наиболее известны «Carl Zeiss» (Германия) со своей моделью «Visulas Argon» и «Cоherent» (США), создавшая универсальную передвижную установку в виде чемодана «Ultima 2000 SE Argon Laser System», которая может быть использована как транспупиллярно, так и эндовитреально в операционном блоке. В последнее время на российский рынок активно выходят японские фирмы, например «Nidek» со своей моделью аргонового лазера. Серьезным конкурентом аргоновому лазеру стал в последнее время Nd^AG-лазер с удвоением частоты, позволяющий получать чисто зеленое излучение без синей составляющей (X = 532 нм), что существенно расширяет возможности их использования в макулярной зоне. Наиболее известным из них является модель «Ophthalas 532»

Рис. 144. Первый отечественный аргоновый лазер - газовая секция лазерного комплекса «Лиман-2».

фирмы «Alcon» (США). Этот лазер является твердотельным и соответственно более портативным и лишенным некоторых недостатков газовых лазеров, он имеет такую же мощность (3 Вт), может использоваться в режиме эндолазера, а также дает возможность получать излучение с длиной волны 1,06 мкм. Накопленный нами опыт применения такого лазера показал его несомненные достоинства.

«Зеленый» лазер выпускает фирма «Carl Zeiss Meditec», а в России - «Алком-Медика» (СПб.).

С конца 80-х гг. все более прочные позиции в офтальмологии завоевывают диодные (полупроводниковые) офтальмокоагуляторы (X = 0,81 мкм). Первый российский диодный коагулятор создан нами в 1989 г. и в настоящее время изготавливается в Санкт-Петербурге фирмой «Алком-Медика». Этот прибор отличается компактностью и малой массой (4 кг), что позволило полностью изменить идеологию компоновки офтальмокоагуляторов. В нем не офтальмологический прибор, в данном случае щелевая лампа, является дополнением к лазеру, а, наоборот, лазер органично вписан в офтальмологический прибор, не увеличивая его габариты (рис. 145). Лазер имеет также блок для эндокоагуляции. Портативность и малая масса прибора важны для военно-полевой офтальмологии, особенно с учетом того, что по мощности (4 Вт) последняя модель лазера даже превосходит аргоновый. Достоинствами прибора являются также бесшумность работы, высокая надежность из-за отсутствия газовых трубок, ламп накачки и долговечности кристалла полупроводника, на порядок большая по сравнению с газовыми лазерами экономичность. Опыт клинического использования лазера показал, что коагуляция его излучением легче переносится больными, так как оно, будучи невидимым для больного, не

Рис. 145. Первый отечественный диодный лазер МЛ-200 фирмы «Милон».

обладает слепящим действием, свойственным зеленой части спектра, к которой максимально чувствителен глаз человека. С помощью диодного лазера можно решать практически те же задачи, что и с помощью аргонового, кроме прямой коагуляции сосудов, так как его излучение хуже, чем сине-зеленое, поглощается гемоглобином крови. В то же время он незаменим при лечении различных видов патологии макулярной области сетчатки, так как липофусцин не поглощает его излучение . Диодный офтальмоэндолазер с набором волоконно-оптического инструмента (рис. 146) для транссклеральной и эндофотокоагуляции сетчатки и цилиарного тела марки АЛ-6000 в Санкт-Петербурге выпускают совместно фирмы «Медлаз» и «Алком-Медика». Диодные лазеры выпускаются также зарубежными фирмами «Iris» (США), «Carl Zeiss» (Германия), «Nidek» (Япония), но стоимость этих приборов в 5-7 раз выше.

В среднем и дальнем ИК-В- и ИК-С-диапазонах в России усилиями сотрудников кафедры офтальмологии ВМедА и Государственного оптического института созданы опытные образцы лазеров «Ладога-Неодим» (X = 1,06/1,32 мкм), «Ладога-Эрбий» (X = 1,54 мкм) (рис. 147) и гольмиевого лазера (X = 2,09 мкм), результаты клинических исследований которых обобщены в работах А.

Ф. Гацу и соавт., Э. В. Бойко и соавт. . В США фирма «Sunrise Technologies» создала Ho^AG-лазер (X = 2,1 мкм) для термокератопластики и склеростомии «Corneal Shaping System» с энергией в импульсе до 300 мДж, но прибор разрешен только в исследовательских целях. В Германии

Рис. 146. Эндоокулярные и транссклеральные лазерные зонды фирм «Мед- лаз» - «Алком-Медика».

Рис. 147. Иттербий-эрбиевый корнеосклеральный коагулятор.

фирма «Aesculap - Meditec Gmbh» выпустила на рынок на базе EnYAG-лазера «VCL-29» две установки - одну для склеростомии, капсулорексиса и фа- кофрагментации и другую - для фотоабляции кожных тканей. Эти приборы не получили широкого признания и в основном сняты с производства.

Первый отечественный моноимпульсный рубиновый лазерный фотодеструктор «Ятаган» разработки МЭП и производства Ульяновского электролампового завода в настоящее время выпускается в модифицированном варианте «Ятаган-4», выполненном на базе NdAAG-лазера. На Сергиево-Посадском оптико-механическом заводе выпускается лазерный Nd:YAG-фотодеструктор «Капсула» разработки КБТМ и ГОИ. Фирмы многих развитых стран предлагают большой выбор современных Nd^AG-лазеров, используемых в основном для капсуло- и иридотомии. Это Visuhs -YAG фирмы «Carl Zeiss» (рис. 148) в трех модификациях, MQL-12 фирмы «Aesculap» из Германии, Nanolas-15, фирмы «Biophysic medical» из Франции, YAG-3000LE фирмы «Alcon», 7970 Nd: YAG Laser фирмы «Coherent» из США, Iscra-Laser из Словакии и многие другие. Все они имеют длину волны излучения 1,06 мкм, длительность импульса порядка 3-5 нс и энергию в импульсе порядка 10 мДж.

Ультрафиолетовые (эксимерные) лазеры на флюориде аргона (ArF) для ке- ратэктомии представляют собой сложные, громоздкие и дорогие (ценой $250 000 и более) компьютеризированные приборы, генерирующие излучение с длиной волны 0,193 мкм с энергией в импульсе около 200 мДж и с частотой повторения импульсов 250 Гц. В России первая рефракционная эксимер-лазерная установка создана в МНТК «Микрохирургия глаза» еще в 1988 г. на базе лазера EVG-201 немецкой фирмы «Lambda-Physik». Она снабжена отечественной оригинальной формирующей системой на основе абсорбционной газовой ячейки, которая позволяет обеспечить плавное изменение рефракции роговицы в любой ее точке. В настоящее время выпускается отечественный эксимерный лазер «Микроскан» с формирующей системой типа летающего пятна. В США только в 1996 г. было получено официальное разрешение FDA (Food and Drug Administration - государственный разрешительный орган) на клиническое применение этих лазеров, которые производятся сейчас рядом компаний. Для европейского потребителя наиболее доступна система MEL-80 фирмы «Carl Zeiss Meditec» (Германия). Активно внедрилась со своей лазерной техникой на русский рынок японская фирма «Nidek», лазеры которой типа ЕС-5000 работают в коммерческих лазерных центрах Москвы, Санкт-Петербурга, Челябинска и др. городов (рис. 149).

Глазной лазерный стимулятор «Монокль» разработки ГОИ, НИИ гигиены труда и профзаболеваний и ВМедА в настоящее время серийно выпускается на львовском заводе «Полярон» . Прибор выполнен в виде бинокулярных очков, к которым через волоконные световоды проводится стимулирующее красное излучение He-Ne-лазера, размещенного в портативном электронном блоке (см. рис. 145). Оптотехнический прием, используемый в «Монокле», позволяет создавать по выбору врача различные условия облучения сетчатки каждого глаза - от тотальной до пятен засветки диаметром 4 мм. Предусмотрено индивидуальное варьирование энергетическими параметрами излучения в пятне засветки на сетчатке каждого глаза.

Низкоэнергетические лазерные стимуляторы производятся и реализуются в Санкт-Петербурге. В частности, фирма «Алком-Медика» выпускает стиму-

Рис. 148. Visulas-YAG - моноимпульсный лазер фирмы «Carl Zeiss».

лазер луч офтальмология зрение

Лазер используется для сохранения, улучшения и коррекции зрения. Производимый лазером луч поглощается сетчатки. Несмотря на то что остается шрам, а в местах образования шрамов глаз ничего не видит, шрамы настолько пигментными тканями глаза и преобразуется в тепло, это тепло выжигает, или каутеризует, ткань, что часто используется для присоединения отслоившейся малы, что не влияют на остроту зрения.

Лазеры также используются в случаях диабетической ретинопатии (ретинита) для выжигания кровеносных сосудов и снижения последствий дегенерации желтого пятна. Их применяют в случаях серповидно-клеточной ретинопатии, также при глаукоме, увеличивая дренаж, позволяя снять замутненность зрения, вызванную скоплением жидкости внутри глаза, для удаления опухолей на веках, при этом не повреждая само веко и почти не оставляя шрама, для рассекания спаек радужки или разрушения спаек стекловидного тела, которые могут вызвать отслоение сетчатки. Лазеры также используется после некоторых операций по поводу катаракты, когда мембрана мутнеет и снижается зрение.

С помощью лазера в помутневшей мембране делается отверстие. Все это под силу лазеру, и благодаря ему не нужны скальпель, нитки и прочие инструменты. Это означает, что исчезает проблема инфекции. Лазер также может проникать сквозь прозрачную часть глаза, не травмируя его и не причиняя никакой боли. Операцию можно проводить не в стационаре, а в амбулаторных условиях. Благодаря сложной системе наведения под микроскопом и системе подачи лазерного луча, многие из которых компьютеризированы, глазной хирург способен проводить операцию с самой высокой точностью, которая невозможна при использовании традиционного скальпеля. Хотя список применения лазера в хирургии глаза очень длинный, он продолжает увеличиваться. Разрабатывается лазерный зонд, который можно будет ввести непосредственно в глаз больного через крошечное отверстие в склере. Такой лазер позволит хирургу проводить операцию с гораздо большей точностью. Лазер стал широко применяться в лечении заболеваний сетчатки, и, несомненно, он станет еще более распространенным методом в будущем.

Точнее становится наведение лазерного луча, который удаляет аномальные кровеносные сосуды, не травмируя прилежащие здоровые ткани. Методы лечения дегенерации желтого пятна и диабетической ретинопатии также совершенствуются.

В настоящее время интенсивно развивается новое направление в медицине - лазерная микрохирургия глаза. Исследования в этой области ведутся в Одесском Институте глазных болезней имени В. П. Филатова, в Московском НИИ микрохирургии глаза и во многих других "глазных центрах" стран содружества

Первое применение лазеров в офтальмологии было связано с лечением отслоения сетчатки. Внутрь глаза через зрачок посылаются световые импульсы от рубинового лазера (энергия импульса 0,01-0,1 Дж, длительность порядка - 0,1 с.) Они свободно проникают сквозь прозрачное стекловидное тело и поглощаются сетчаткой. Фокусируя излучение на отслоившемся участке, последнюю "приваривают" к глазному дну за счет коагуляции. Операция проходит быстро и совершенно безболезненно.

Вообще, из наиболее серьезных заболеваний глаза, приводящих к слепоте, выделяют пять. Это глаукома, катаракта, отслоение сетчатки, диабетическая ретинопатия и злокачественная опухоль.

Сегодня все эти заболевания успешно лечатся при помощи лазеров, причем только для лечения опухолей разработано и используется три метода:

  • - Лазерное облучение - облучение опухоли расфокусированным лазерным лучом, приводящее к гибели раковых клеток, потери ими способности к размножению
  • - Лазерная коагуляция - разрушение опухоли умеренно сфокусированным излучением.

Лазерная хирургия - наиболее радикальный метод. Заключается в иссечении опухоли вместе с прилегающими тканями сфокусированным излучением. Для большинства заболеваний постоянно требуются все новые методы лечения. Но лазерное лечение является таким методом, который сам ищет болезни, чтобы их вылечить.

Впервые для хирургического лечения глаз лазер был применен в 60-х годах XX века и с тех пор используется для сохранения, улучшения и в некоторых случаях коррекции зрения у сотен тысяч мужчин, женщин и детей во всем мире.

Слово лазер является акронимом. Оно было создано из первых букв пяти английских слов - light amplification by stimulated emission of radiation (усиление света путем стимулированной эмиссии радиации).

Для создания лазерного луча в трубку нагнетаются специальные газы, а затем через нее пропускается сильный электрический заряд. Офтальмологические лазеры обычно используют один или три различных газа: аргон, который дает зеленый или зеленовато-голубой свет; криптон, который дает красный или желтый свет; neodymium-yttrium-alluminum-garnet (Nd-YAG), который дает инфракрасный луч.

Аргоновый и криптоновый лазеры называются фотокоагуляторами. Производимый ими луч поглощается пигментными тканями глаза и преобразуется в тепло. Это тепло выжигает, или каутеризует, ткань, оставляя на ней шрам. Этот вид лазера часто используется для присоединения отслоившейся сетчатки. Несмотря на то, что в местах образования шрамов глаз ничего не видит, шрамы настолько малы, что не влияют на остроту зрения.

Эти лазеры также используются в случаях диабетической ретинопатии (ретинита) для выжигания кровеносных сосудов и снижения последствий дегенерации желтого пятна. Их также применяют в случаях серповидно-клеточной ретинопатии, заболевании, наиболее распространенном среди чернокожих пациентов.

Аргоновый и криптоновый лазеры применяются также при глаукоме, увеличивая дренаж, позволяя снять замутненность зрения, вызванную скоплением жидкости внутри глаза. Аргоновый лазер также можно применять для удаления опухолей на веках, при этом не повреждая само веко и почти не оставляя шрама.

Лазер Nd-YAG является фоторазрушителем. Вместо того чтобы выжигать ткань, он ее взрывает. Его можно использовать несколькими способами, например для рассекания спаек радужки или разрушения спаек стекловидного тела, которые могут вызвать отслоение сетчатки.

Этот вид лазера также используется после некоторых операций по поводу катаракты, когда мембрана мутнеет и снижается зрение. С помощью лазера в помутневшей мембране делается отверстие.

Все это под силу лазеру, и благодаря ему не нужны скальпель, нитки и прочие инструменты. Это означает, что исчезает проблема инфекции. Лазер также может проникать сквозь прозрачную часть глаза, не травмируя его и не причиняя никакой боли. Операцию можно проводить не в стационаре, а в амбулаторных условиях.

Благодаря сложной системе наведения под микроскопом и системе подачи лазерного луча, многие из которых компьютеризированы, глазной хирург способен проводить операцию с самой высокой точностью, которая невозможна при использовании традиционного скальпеля.

Хотя список применения лазера в хирургии глаза очень длинный, он продолжает увеличиваться. Разрабатывается лазерный зонд, который можно будет ввести непосредственно в глаз больного через крошечное отверстие в склере. Такой лазер позволит хирургу проводить операцию с гораздо большей точностью.

Лазер стал широко применяться в лечении заболеваний сетчатки, и, несомненно, он станет еще более распространенным методом в будущем. Точнее становится наведение лазерного луча, который удаляет аномальные кровеносные сосуды, не травмируя прилежащие здоровые ткани. Методы лечения дегенерации желтого пятна и диабетической ретинопатии также совершенствуются.

Офтальмологические лазеры, применяемые при коррекции зрения, стали в свое время настоящим прорывом в сфере лечения патологий глаз. Этот способ коррекции остается флагманским направлением современной офтальмологии. С помощью все новых и новых достижений в этой сфере, врачи легко и просто решают проблему, возвращая зрение миллионам людей, имеющих разные формы его нарушения.

Каковы преимущества, есть ли минусы у этих систем?

Читаем!

Эксимерные офтальмологические лазеры для коррекции зрения

Прежде чем мы начнем рассматривать эту тему, надо определиться с некоторыми моментами.

Показаниями для лазерной микрохирургии считают:

  1. Глаукому катаракту
  2. Атрофические процессы в сетчатке, вызванные возрастом пациента
  3. Близорукость дальнозоркость и астигматизм
  4. Риск отслоения или разрыва сетчатки
  5. Вторичные изменения в сетчатке при сахарном диабете и др.

В офтальмологии, в первой из медицинских областей, начали использовать лазерное излучение для лечения заболеваний, т.е. — хирургическое лечение патологии оптического аппарата глаза.

Видео: Лазерная коррекция зрения


В настоящее время офтальмологи практикуют целый ряд лазеров, в том числе — эксимерных (читайте — двойных), от разных производителей, включая:

  • Отечественных.
  • Американских.
  • Немецких.
  • Японских.

Рассмотрим их некоторые виды, особенности и другие моменты.

Операции

Благодаря технологиям, с помощью которых делают операции с участием эксимерных лазеров, от очков и контактных линз избавляются люди, которым их ношение противопоказано (пожарные, военные и пр.).

Показания к лазерной коррекции:

  1. Близорукость.
  2. Дальнозоркость.
  3. и другие патологии.

Итак, детали.

Этот вид лазера относя к газовым лазерным устройствам.

Что такое эксимер? Аббревиатура, дословно переводимая, как возбужденный димер.

Как правило, на практике применяются эксимерные лазеры, излучающие фотоны в области ультрафиолетового спектра.

  • Высокая эффективность и надежность.
  • Высокая скорость – на операцию уходит не более 20-15 минут.
  • Минимум боли и риска появления осложнений.
  • Сокращение времени – коррекция проходит без госпитализации в режиме «одного дня».
  • Эффект в любом возрасте.
  • Безопасность использования.
  • Минимум времени на восстановление после коррекции.

КСТАТИ : В ряде случаев, импульсный световой поток высокой мощности заменяет скальпель, не повышая температуру и теплового разрушения клеток, которое могло бы разрушить ткани, расположенные глубже.

Работа всех, используемых в современной клинической практике, эксимерных лазеров осуществляется в импульсном режиме с одинаковым диапазоном длин волн. Различие устройств состоит в форме лазерного пучка (летающее пятно, сканирующая щель) и в составе инертного газа.

Каждый импульс обеспечивает испарение слоя роговицы, чья толщина — 0,25 мкм.

За счет такой точности офтальмологи получают лучшие результаты при использовании эксимерного лазера.

Модели эксимерных лазеров:

  1. VISX STAR S4IR – продукция мирового лидера по изготовлению медоборудования Abbott расширяет возможности офтальмохирургам.
  2. ZEISS MEL-80 – один из представителей последнего поколения, которые используют для рефракционных операций.
  3. Technolas 217z100 – немецкий продукт помогает докторам бороться с миопией, дальнозоркостью и астигматизмом разной степени.
  4. FS200 WaveLight – устройство из лазеров последнего поколения с очень высокой скоростью, позволяющей за шесть секунд сформировать лоскут из роговицы.
  5. – широко используется в рефрактивной офтальмологической хирургии.
  6. IntraLase FS60 — высокая частота и малая длительность импульсов позволяет делать разделение слоев роговицы без выделения тепла и механических воздействий на окружающие ткани глаза.
    В комплексе с VISX Star S4 IR и аберрометром WaveScan, лазерная коррекция зрения проходит с учетом малейших нюансов и особенностей зрительной системы больного.

Фемтосекундные лазеры в офтальмологии – преимущества и недостатки, показания к применению

Фемтосекундный лазер – это суперкороткие импульсы с 1 импульсом в фемтосекунду. Это дает возможность офтальмологам осуществлять проникновение в ткани глаз без крови, без серьезных травм.

Операции, выполняемые с такой техникой, самые безопасные. Правда — несколько устаревшие.

Фемтосекундный лазер применяется для удаления патологических участков роговой оболочки и формирования новой ее формы при:

  • Миопическом астигматизме.
  • Гиперметропическом астигматизме.
  • Имплантации интрастромальных колец при кератоконусе.
  • Астигматизме с нарушениями рефракции средней и легкой тяжести.
  • Близорукости, дальнозоркости.
  • Частичной кератопластике (например, при ).
  • Послойной или сквозной «пересадке» роговицы и пр.

Проверенный, высокоточный и максимально безопасный способ коррекции зрения, практически не имеющий противопоказаний:

  1. Обеспечивает скорость (пациент через 1 час после операции уходит домой) и отсутствие офтальмологических инструментов непосредственного контакта.
  2. Позволяет избегать дискомофрта для пациента, травматичности, побочных осложнений и неудачных операций.
  3. Гарантирует проникновение в ткани роговой оболочки точно на заданную специалистом глубину.
  4. С возможностью формирования из отделенных тканей роговичные лоскуты разной конфигурации и устранения дефектов рефракции.
  5. Со скорейшим заживлением и сокращением до минимума реабилитации и пр.

Минусов метода не так уж и много, но главные недостатки заключаются в высокой стоимости лечения и возможном развитии временного астигматизма после операции.

ПОМНИТЕ : Так называемый эффект «куполообразного реза», который случается при таком методе лечения, ухудшает зрение больных ночью и вечером при управлении автомобилем.

Микрокератомы в офтальмологии для лазерных операций на глазах

Каким окажется результат лазерной коррекции зрения?

Здесь свою роль играют многие факторы, в том числе — в виде:

  • Опытности специалиста, который проводит эти манипуляции.
  • Используемой методики лечения.
  • Лазера, который будет применен во время данной процедуры, и так далее.

Однако микрокератом, прибор для лазерных операций на глазах, занимает тоже значимое место.

Этот прибор, функционирующий в автономном режиме — т.е., без участия электричества — используется при проведении (без участия микроножа).

Задача специалиста – отделить с помощью прибора верхние слои роговицы. В итоге, можно одновременно делать операции на обоих глазах.

Открытие лазерных систем моментально привлекло внимание всех сфер человеческой деятельности. Во многих отраслях науки и техники они нашли своё применение. В медицине первопроходцем стало лечение глаз.

Именно в офтальмологии впервые стали использовать лазеры для диагностики и коррекции. С течением времени и развитием обеих направлений (физики лазеров и медицины) удалось достигнуть высоких результатов и в наши дни это – ключевой инструмент врачей. Но что лазер в медицине представляет из себя?

Обобщённо, лазер – это специфический источник света. Он имеет ряд отличий от прочих источников, в том числе концентрированность и направленность. Пользователь имеет возможность направлять пучок света в необходимую точку и при этом избегать рассеивания и утраты ценных свойств.

Внутри луча происходит индуцирование в атомах и молекулах, которое можно точно регулировать в соответствии с потребностями. Технология устройства и работы лазерной системы проста и включает в себя 4 основных элемента:

  1. Источник напряжения (накачки). Иными словами, энергия для работы.
  2. Непрозрачное зеркало, которое выполняет роль задней стенки ёмкости, где находится активная среда.
  3. Полупрозрачное зеркало, через которое генерируемый луч выходит в свет.
  4. Непосредственно активная среда. Её также называют генерирующим материалом. Это вещество, молекулы которого формируют лазерный луч с заданными характеристиками.

Разделение офтальмологических лазеров на виды происходит именно по последнему критерию.

Сейчас на практике выделяют следующие виды лазеров, применяемых для лечения глаз:

  • Эксимерные. Этот вид системы создаёт рабочее излучение в ультрафиолетовом диапазоне спектра (от 193 до 351 нанометра). Он используется для работы с локальными участками повреждённой ткани. Отличается высокой точностью. Обязателен при лечении глаукомы и негативных изменений роговицы глазного яблока. После его работы значительно сокращается восстановительный период.
  • Аргоновый тип. В качестве активной среды используется газ аргон. Луч формируется в промежутке длин волн между 488 и 514 нанометров, что соответствует синему и зелёному участку спектра. Главное направление применения – устранение патологий в сосудах.
  • Криптоновый вид. Работает в жёлтом и красном диапазоне спектра (568 – 647 нм). Особенно полезен при работе по коагуляции центральных долей сетчатки глаза.
  • Диодный. Инфракрасный участок спектра волн (810 нм). Отличается глубоким проникновением в оболочку сосудов и полезен при лечении макулярных участков сетчатки глаза.
  • Фемтосекундные. Лазеры, работающие в инфракрасном диапазоне. Часто объединяются с эксимерным в единую систему. Отличаются сверхвысокой скоростью, что позволяет применять их для пациентов с тонкой роговицей. Высокая точность работы позволяет создавать лоскут роговицы на заданном месте с установленными параметрами.
  • Гелий-неоновый. Рабочая длина волны 630 нм. Важный инструмент в руках офтальмолога. Потому что оказывает мощное стимулирующее воздействие на ткани, снимает воспаление и способствует регенерации тканей.
  • Десятиуглекислотные. Инфракрасный диапазон (10,6 мкм). Используются для испарения ткани и удаления злокачественных наростов.

Кроме этой градации, выделяют:

  • Мощные, которые оказывают значительное воздействие на поверхность.
  • Слабые, воздействие которых практически незаметно.

Мощность также определяется используемым веществом в системе.

Кто изобрел лазер и когда впервые он был применен в хирургии глаза?

Технологию вынужденного усиления света предсказал Эйнштейн в годы Первой мировой войны. В своих работах он описал физические основы работы лазера. После этого на протяжении почти 50 лет множество учёных прорабатывали составные элементы теории лазеров, чем заложили мощный фундамент развития отрасли знания.

В 1960 году Томас Мейман продемонстрировал первый работающий прототип лазера. 16 мая того года считается днём рождения лазерных систем – новой эры в развитии человечества.

Появление прибора стимулировало изучение его практического применения, в частности в медицине. Уже в 1963 году появились первые опубликованные результаты исследований по лазерной коагуляции, проведённые Кэмбеллом и Цвенгом. Вскоре Краснов обосновал возможность применения эффекта фоторазрыва для лечения катаракты. В американских клиниках в конце 70-х их активно применяли в качестве альтернативы скальпелю, что снижало кровопотери и обеспечивала высокую точность разрезов.

Сейчас лазер стал основой современной офтальмологии.

Принцип работы и характеристики луча

В зависимости от устройства, активной генерирующей среды и настроек системы эти приборы могут выполнять различную работу. Принцип действия луча позволяет доктору составлять программу оптимального лечения. В современной офтальмологии выделяют следующие принципы воздействия лазера на ткани:

Лазерная коагуляция. Под термическим воздействием происходит приваривание отслоившихся частей ткани и восстановление структуры тканей.

Фотодеструкция. Лазер прогревается до максимальной мощности и производит разрезание тканей для последующего восстановления.

Фотоиспарение. При длительной обработке участка с помощью специально настроенного лазера происходит выпаривание ткани.

Фотоабляция. Распространённая операция, которая позволяет удалить повреждённые ткани предельно бережно.

Лазерстимуляция. Принцип действия, лежащий в основе этого метода, обеспечивает протекание фотохимических процессов, оказывающих стимулирующее и восстанавливающее воздействие на ткани глаза.

Устройство офтальмологического лазера

Определяющим элементом в работе лазера является активная среда. Вещество, применяемое в работе, обуславливает применение источника энергии. Каждый газ требует особенного энергоносителя и способа доставки энергии.

Составные элементы конструкции описаны выше. В офтальмологическом лазерном оборудовании особое внимание уделено управлению работой системы. Врач получает возможность настраивать лазер с высокой точностью. Система датчиков и рычагов управления позволяет проводить широкий спектр операций.

Техника безопасности при работе с лазером: что следует знать окулисту

Каждый прибор имеет технический паспорт, где подробно изложены параметры оборудования. Эти характеристики определяют вредность прибора и меры необходимой безопасности. Окулист, при длительной работе с лазерами, должен строго соблюдать предписанные нормы поведения для предотвращения травмирования:

  • При работе с оборудованием необходимо использовать защитные очки с установленными характеристиками, которые рассчитаны на защиту от конкретного типа излучения.
  • Строго соблюдать график работы – обязательно делать перерывы в работе!
  • При наличии противопоказаний (злокачественные опухоли, индивидуальные показания, беременность) работать с лазерами запрещено!

Применения лазерных технологий в офтальмологии обеспечивает высококачественную диагностику, оперативное принятие верного решения и достижение отличного результата в ходе операций любой сложности.

§ "LASER - Light Amplification by Stimulated Emission of Radiation « (усиление света путем стимулированной эмиссии радиации). § Первой отраслью медицины, в которой нашли применение лазеры, была офтальмология. § Лазер (оптический квантовый генератор) - это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения.

Свойства лазерного излучения: q. Когерентность q. Монохроматичность q. Большая мощность q. Малая расходимость. Это позволяет избирательно и локально воздействовать на различные биологические ткани.

Выделяют следующие основные механизмы воздействия лазерного излучения на ткани глаза: ü фотохимический, химических реакций; заключающийся в ускорении ü термический, обеспечивающий коагуляцию белков; ü фотомеханический, вызывающий эффект вскипания воды.

Устройство лазера § активная (рабочая) среда; § система накачки (источник энергии); § оптический резонатор (может отсутствовать, если лазер работает в режиме усилителя).

Параметры лазерного излучения 1. длина волны: УФ (эксимерный лазер) ИК (диодный, неодимовый, гольмиевый…) работающие в видимом диапазоне (аргоновый) 2. временной режим: импульсные (большинство твердотельных лазеров) – возможно регулировать только энергию в импульсе непрерывного излучения (аргоновый, криптоновый, гелий- неоновый) – изменение мощности и длительности воздействия 3. энергетические параметры мощность лазеров непрерывного излучения измеряется в ваттах, в офтальмологии исп. лазеры до 3 Вт энергетическая эффективность импульсного лазерного излучения измеряется в Дж, в офтальмологии 1 -8 м. Дж

Офтальмологические лазеры используют: § аргон, который дает зеленый или зеленовато-голубой свет (488 нм и 514 нм); § криптон, который дает красный или желтый свет (568 нм и 647 нм); § neodymium-yttrium-alluminum-garnet (Nd-YAG), неодимовый лазер на алюмоиттриевом гранате, дает инфракрасный луч (1, 06 мкм). § гелий-неоновый лазер (630 нм); § 10 -углекислотный лазер (10, 6 мкм); § эксимерный лазер (с длиной волны 193 нм); § диодный лазер (810 нм).

1. Лазеркоагуляция (аргоновый, криптоновый и полупроводниковый диодный лазер). Используют термическое воздействие лазерного излучения при сосудистой патологии глаза: лазеркоагуляция сосудов роговицы, радужки, сетчатки, трабекулопластика, а также воздействие на роговицу ИК-излучением (1, 54 -2, 9 мкм), которое поглощается стромой роговицы, с целью изменения рефракции.

Аргоновый лазер § Излучает свет в синем и зеленом диапазонах, совпадающий со спектром поглощения гемоглобина, что позволяет эффективно использовать его при лечении сосудистой патологии: диабетической ретинопатии, тромбозах вен сетчатки, ангиоматозе Гиппеля. Линдау, болезни Коатса и др. ; 70% сине-зеленого излучения поглощается меланином и преимущественно используется для воздействия на пигментированные образования.

Криптоновый лазер § Излучает свет в желтом и красном диапазонах, которые максимально поглощаются пигментным эпителием и сосудистой оболочкой, не вызывая повреждения нервного слоя сетчатки, что важно при коагуляции центральных отделов сетчатки.

Диодный лазер § Незаменим при лечении различных видов патологии макулярной области сетчатки, так как липофусцин не поглощает его излучение, которое проникает в сосудистую оболочку глаза на большую глубину, чем излучение аргонового и криптонового лазеров. Т. к. излучение происходит в ИКдиапазоне, пациенты не ощущают слепящего эффекта во время коагуляции. Портативный диодный лазер GYC-1000 Nidek

Видимые лазерные повреждения сетчатки: § Коагулят 1 степени: ватообразный § Коагулят 2 степени: белый, с более четкими границами, § Коагулят 3 степени: белый с резкими границами, § Коагулят 4 степени: ярко-белый, с легкой пигментацией по краю четких границ

§ 2. Фотодеструкция (фотодисцизия) - YAG-лазер. Благодаря высокой пиковой мощности под действием лазерного излучения происходит рассечение тканей. Вследствие высвобождения большого количества энергии в ограниченном объеме образуется плазма, которая приводит к созданию ударной волны и микроразрыву ткани.

Nd: YAG-лазер § Неодимовый лазер с излучением в ближнем ИК-диапазоне (1, 06 мкм), работающий в импульсном режиме, является фоторазрушителем, применяется для точных внутриглазных разрезов (рассекание спаек радужки или разрушения спаек стекловидного тела, капсулотомия хрусталика глаза по поводу вторичной катаракты или иридотомия. YC-1800 Nidek Ellex Ultra Q

§ 3. Фотоиспарение и фотоинцизия (СО 2 -лазер). Эффект заключается в длительном тепловом воздействии с испарением ткани. Используется для удаления поверхностных образований конъюнктивы и век.

4. Фотоабляция (Эксимерные лазеры). § Заключается в дозированном удалении биологических тканей. § Излучают в ультрафиолетовом диапазоне (длина волн - 193 -351 нм). § С помощью этих лазеров можно удалять определенные поверхностные участки ткани с точностью до 500 нм, используя процесс фотоабляции (испарения). § Область использования: рефракционная хирургия, лечение дистрофических изменении роговицы с помутнениями, воспалительные заболевания роговицы, оперативное лечение птеригиума и глаукомы.

5. Лазерстимуляция (He-Ne-лазеры). § При взаимодействии низкоинтенсивного красного излучения с различными тканями в результате сложных фотохимических процессов проявляются противовоспалительный, десенсибилизирующий, рассасывающий эффекты, а также стимулирующее влияние на процессы репарации и трофики. § Применяется в комплексном лечении увеитов, склеритов, кератитов, экссудативных процессов в передней камере глаза, гемофтальмов, помутнений стекловидного тела, преретинальных кровоизлияний, амблиопий, после операционных вмешательств ожогов, эрозий роговицы, некоторых видах ретино- и макулопатии § Противопоказаниями являются увеиты туберкулезной этиологии, гипертоническая болезнь в стадии обострения, кровоизлияния сроком давности менее 6 дней.

Лазерное лечение глаукомы направлено на устранение блоков, препятствующих оттоку внутриглазной жидкости в глазу. В настоящее время с этой целью применяют лазеры-коагуляторы, действие которых основано на нанесении на зону трабекулы локального ожога с последующей атрофией и рубцеванием ее ткани (аргоновые лазеры, полупроводниковые (диодные) лазеры) или лазеры-деструкторы (неодимовые ИАГ-лазеры).

Консервативное лечение катаракты Применение средств консервативной терапии не ведет к рассасыванию уже имеющихся помутнений в хрусталике, а лишь замедляет их прогрессирование. Лечение начальных стадий возрастной катаракты основано на применении различных глазных капель: квинакс, офтанкатахром, сэнкаталин, витайодурол, витафакол, вицеин, тауфон, капли Смирнова и др. Препараты рекомендуются длительного применения (годами) при различной частоте закапывания (от 2 -3 до 4 -5 раз в течение дня).

Методы хирургического лечения § Интракапсулярная экстракция хрусталика – выполняется только при больших подвывихах хрусталика в сочетании с витрэктомией и шовной фиксацией ИОЛ. § Экстракапсулярная экстракция – дешевая устаревшая методика, базовая при проведении операции по системе ОМС. Требует наложения швов. Восстановление зрения происходит в течении нескольких месяцев после операции. Однако, в редких случаях выполняется по медицинским показаниям. § Факоэмульсификация катаракты – основной метод хирургического лечения катаракты.

Факоэмульсификация катаракты – наиболее безопасный и эффективный метод бесшовного хирургического лечения катаракты. Принципы: § Разрушение вещества хрусталика с помощью ультразвука. § Поддержание постоянного баланса ирригационного и аспирационного потоков жидкостей.

Преимущества факоэмульсификации § Малый самогерметизирующийся разрез, не требующий наложения швов – сейчас стандартным в хирургии катаракты считается разрез - 2 мм. § Сведение к минимуму индуцированного астигматизма. § Установка ИОЛ выполняется более быстро и безопасно. § Уменьшение вероятности возникновения геморрагических и воспалительных осложнений. § Достижение высокой остроты зрения в короткие сроки. § Быстрая реабилитация и отсутствие ограничения зрительных нагрузок.

Этапы факоэмульсификации § Тоннельный разрез роговицы – 2 мм § Капсулорексис § Гидродиссекция и гидроделинеация (ведение 0. 9 % физиологического раствора или BSS непосредственно под переднюю капсулу хрусталика с целью ее отделения, отделение ядра хрусталика от кортикального слоя). § Удаление ядра хрусталика (факоэмульсификация) § Аспирация остаточных хрусталиковых масс § Имплантация ИОЛ

Использование гибких ИОЛ и инжекторов для имплантации позволило уменьшить операционный разрез сначала до 4, 0 мм, а в настоящее время - до 2, 2 мм. § Применение красителей для передней капсулы хрусталика (0, 5% трепанового синего) сделало возможным выполнение факоэмульсификации при любой степени зрелости катаракты.

Классификация ИОЛ: по расположению § Заднекамерные Капсульные Для имплантации в цилиарную борозду Для подшивания в цилиарную борозду § Переднекамерные § ИОЛ зрачковой фиксации

Классификация ИОЛ: по материалу § Жесткие: - ПММА - кристаллические § Гибкие: - силиконовые - акриловые - коллагеновые - гидрогелевые

Сравнение качества зрения у пациентов после факоэмульсификации с разными типами ИОЛ Сферическая оптика Асферическая оптика

Уход за больными в послеоперационном периоде § После проведенной операции назначают: § дезинфицирующие капли («Витабакт» , «Фурациллин» и др.), § противовоспалительные капли («Наклоф» , «Диклоф» , «Индоколлир») § смешанные препараты (содержат антибиотик + дексаметазон, «Макситрол» , «Тобрадекс» и др.). § Капли назначают по убывающей схеме: первая неделя – 4 -х кратное закапывание, 2 -я неделя – 3 -х кратное закапывание, 3 -я неделя – 2 -х кратное закапывание, 4 -я неделя – однократное закапывание, затем – отмена капель.

Тенденции в развитии хирургии катаракты § Уменьшение разреза 3, 2 – 3, 0 – 2, 75 – 2, 2 – 1, 8 мм § Максимальная безопасность имплантации и биосовместимость материала ИОЛ § Улучшение качества зрения при максимальной ее остроте § Решение проблемы имеющейся аметропии и приобретенной пресбиопии за счет замены хрусталика, т. е. восстановление утраченной аккомодации.

Бимануальная факоэмульсификация § Разделение ирригационного и аспирационного потоков § 2 разреза по 1, 2 - 1, 4 мм § Практически нет ИОЛ, которые можно имплантировать через столь малый разрез

Показания к операции: § Недостаточная эффективность медикаментозного лечения о/у глаукомы (повышенное ВГД, прогрессирующее изменения зрительных функций и ДЗН); § З/у и смешанная глаукома (консервативное лечение имеет вспомогательное значение); § Пациент не может исполнять рекомендации врача по контролю ВГД и зрительных функций; § Не купировавшийся острый приступ глаукомы;

Основные направления оперативного вмешательства: § Операции, нормализирующие циркуляцию влаги внутри глаза; § Фистулизирующие операции; § Операции, уменьшающие скорость образования влаги; § Лазерные операции.

Операции, нормализующие циркуляцию влаги: В группу входят операции, устраняющие последствия зрачкового и хрусталикового блоков. § Иридэктомия; § Иридоциклоретракция; § Экстракция хрусталика

Операции, нормализующие циркуляцию влаги: Иридэктомия. Операция устраняет последствия зрачкового блока, создавая новый путь для движения жидкости из задней камеры в переднюю. В результате выравнивается давления в камерах глаза, исчезает бомбаж радужки и открывается угол передней камеры. Показания: зрачковый блок, з/у глаукома

Фистулизирующие операции: § Синустрабекулоэктомия; § Глубокая склерэктомия; § Непроникающая глубокая склерэктомия; § Двухкамерное дренирование После фистулизирующих операций формируется конъюнктивальная фильтрационная подушечка.

Типы фильтрационных подушечек: § Плоская – ВГД в норме или выше нормы, гипотонии обычно не бывает. Коэффициент легкости оттока может быть повышен. § Кистозная – ВГД в норме или нижняя граница нормы, часто бывает гипотония. Характер фильтрационных подушечек зависит от состава и количества внутриглазной жидкости, находящейся в с/конъюнктивальном пространстве, а также индивидуальные особенности соединительной ткани.

Синустрабекуэктомия: Показания: первичная глаукома, некоторые виды вторичной глаукомы. Принцип операции: субсклерально удаляют участок глубокой пластинки склеры с трабекулой и шлеммовым каналом. Дополнительно производят базальную иридэктомию. Эффективность впервые выполненной операции на ранее не оперированном глазу составляет до 85% в сроки до 2 -х лет. Схема операции трабекулэктомии. 1 -Склеральный лоскут, 2 -удаляемый участок трабекулы, 3 -базальная колобома радужки.

К отдаленным осложнениям трабекулэктомии относятся: 1. Кистозные изменения фильтрационной подушки; 2. Часто развивается помутнение хрусталика - катаракта.

Глубокая склерэктомия: Показания: первичная глаукома, некоторые виды вторичной глаукомы. Принцип операции: субсклерально удаляют участок глубокой пластинки склеры с трабекулой и шлеммовым каналом и участком склеры для обнажения части цилиарного тела. Дополнительно производят базальную иридэктомию. Отток влаги идет под конъюнктиву и в супрахориоидальное пространство.

Непроникающая ГСЭ: Показания: о/у глаукома с умеренно повышенным ВГД. Принцип операции: под поверхностным склеральным лоскутом иссекают глубокую пластинку склеры с наружной стенкой шлеммова канала и участком корнеосклеральной ткани кпереди от канала. При этом обнажаются вся корнеосклеральная трабекула и периферия десцеметовой оболочки. Преимущества: нет резкого перепада давления во время операции и, следовательно снижен риск осложнений. Фильтрация осуществляется сквозь поры оставшейся трабекулярной сети. После репозиции поверхностного лоскута под ним формируется «склеральное озеро» .

Операции, уменьшающие скорость образования влаги: Механизм действия – ожог или отморожение отдельных участков цилиарного тела, либо тромбоз и выключение питающих его сосудов. § Циклокриокоагуляция; § Циклодиатермия. Показания: некоторые виды вторичной глаукомы, терминальная глаукома.

Циклокриокоагуляция Это операция, направленная на снижение продукции водянистой влаги ресничным телом. Суть операции заключается в нанесении на поверхность склеры в области проекции цилиарного тела 6 -8 аппликаций специальным криозондом. Цилиарное тело под воздействием низких температур в местах нанесения криокоагулятов атрофируется и в целом начинает продуцировать меньшее количество водянистой влаги.

Лазерные операции: § Используют аргоновые и неодимовые лазеры; § Нет вскрытия фиброзной оболочки; § Нет необходимости в общей или проводниковой анестезии; § Восстановление оттока по естественным каналам; § Возможен реактивный синдром: повышение ВГД, увеит; § Часто необходимо дополнительное медикаментозное гипотензивное лечение; § При прогрессировании глаукомы выраженность лазерного воздествия уменьшается.

Методики лазерных операций в лечении глаукомы: § Лазерная иридэктомия § Лазерная трабекулопластика § Лазерная транссклеральная циклофотокоагуляция (контактная и бесконтактная) § Лазерная гониопластика § Лазерная десцеметогониопунктура

Преимущества: § Восстановление оттока внутриглазной жидкости по естественным путям; § Не требуется проведение общего обезболивания (достаточно закапывания местного анестетика); § Операция может быть проведена в амбулаторных условиях; § Минимальный период реабилитации; § Отсутствуют осложнения традиционной хирургии глаукомы; § Невысокая стоимость.

Недостатки: § Ограниченность эффекта операции, которая снижается по мере увеличения срока, прошедшего с постановки диагноза глаукома; § Возникновение реактивного синдрома, характеризующегося повышением внутриглазного давления в первые часы после лазерного вмешательства и развитием воспалительного процесса в дальнейшем; § Возможность повреждения клеток заднего эпителия роговицы, капсулы хрусталика и сосудов радужки; § Образование синехий в области воздействия (угол передней камеры, зона иридотомии).

Предоперационная подготовка больных перед лазерными операциями § 3 -х кратная инстилляция нестероидных противовоспалительных препаратов в течение часа до операции; § Инстилляция препаратов миотического действия за 30 минут до операции; § Инстилляции местных анестетиков перед операцией; § Ретробульбарная анестезия при выраженном болевом синдроме перед операцией.

Послеоперационная терапия § Инстилляция нестероидных противовоспалительных препаратов 3 - 4 раза в день в течении 5 -7 дней и/или пероральное их применение в течении 3 - 5 дней; § Ингибиторы карбоангидразы (в инстилляциях 7 -10 дней или перорально 3 дня с 3 -х дневным перерывом в течение 3 - 9 дней) ; § Гипотензивная терапия под контролем ВГД. Примечание: § При отсутствии компенсации глаукомного процесса на фоне лазерных вмешательств решается вопрос о хирургическом лечении.

Лазерная иридэктомия (иридотомия) - заключается в формировании небольшого отверстия в периферическом отделе радужки. Показания к проведению лазерной иридэктомии: - Профилактика острых приступов глаукомы на парном глазу при положительных нагрузочных пробах и пробе Форбса; - Узкоугольная и закрытоугольная глаукома со зрачковым блоком; - Плоская радужка; - Иридовитреальный блок; - Подвижность иридохрусталиковой диафрагмы при компрессии контактной линзой во время гониоскопии. Противопоказания к проведению лазерной иридэктомии: - Врождённые или приобретённые помутнения роговицы; - Выраженный отек роговицы; - Щелевидная передняя камера; - Паралитический мидриаз.

Лазерная иридэктомия (иридотомия) - заключается в формировании периферическом отделе радужки. небольшого отверстия в Техника проведения: - Операцию проводят под местной анестезией (закапывание раствора лидокаина, инокаина и др.). На глаз устанавливается специальная гониолинза, позволяющая сфокусировать лазерное излучение на выбранный участок радужки. Иридотомия проводится в зоне от 10 до 2 часов с целью избежания светорассеяния после операции. Следует выбирать максимально тонкий участок (крипты) радужки и избегать видимых сосудов. При перфорации радужки визуализируется ток жидкости с пигментом в передней камере. Оптимальный размер иридэктомии 200 -300 мкм. Используемые линзы: - линза Абрахама - линза Вайса

Лазерная трабекулопластика (ЛТП) § Операция заключается в нанесении серии ожогов на внутреннюю поверхность трабекулы. § Операция показана при первичной открытоугольной глаукоме, которая не поддается компенсации с помощью лекарственной терапии. § Это воздействие улучшает проницаемость трабекулярной диафрагмы для водянистой влаги, уменьшает опасность блокады Шлеммова канала. § Механизм действия операции заключается в натяжении и укорочении трабекулярной диафрагмы за счет сморщивания ткани в местах ожогов, а также в расширении трабекулярны

Лазерная трабекулопластика Техника проведения ЛТП: § Манипуляция выполняется под местной анестезией. На глаз устанавливается специальная гониолинза. Коагуляты наносятся равномерно в передней или средней трети трабекулы на протяжении 120 -180 -270 -300 градусов окружности трабекулы (исключая верхний сектор) за 1 -3 сеанса. При необходимости повторного вмешательства коагуляты наносятся в необработанной зоне. Линзы, используемые для проведения ЛТП: § 3 -х зеркальная линза Гольдмана; § Трабекулопластическая линза Рича; § Гониолинза для селективной ЛТП; § Гониолинза Магна.

Транссклеральная циклофотокоагуляция (ТЦФК) В результате коагуляции секретирующего ресничного эпителия, происходит уменьшение продукции водянистой влаги, что приводит к понижению внутриглазного давления. Показания: § Терминальная болящая первичная и вторичная глаукома с высоким ВГД; § Неподдающаяся традиционным способам лечения некомпенсированная первичная глаукома, преимущественно в далекозашедших стадиях; § Длительно существующий реактивный синдром после ранее перенесённых лазерных операций. Противопоказания: § Наличие у пациента хрусталика и хорошее зрение; § Выраженный увеит.

Транссклеральная циклофотокоагуляция (ТЦФК) В результате коагуляции секретирующего ресничного эпителия, происходит уменьшение продукции водянистой влаги, что приводит к понижению внутриглазного давления. Техника проведения ТЦФК: 20 -30 коагулятов наносятся на расстоянии 1, 5 - 3 мм от лимба в зоне проекции отростков цилиарного тела. Примечание: в случаях недостаточного снижения ВГД после ТЦФК возможно повторное ее проведение через 2 - 4 недели, а при «болящей» терминальной глаукоме - через 1 - 2 недели. Параметры лазерного воздействия: § Диодный лазер (810 нм), Nd: YAG-лазер (1064 нм); § Экспозиция = 1 - 5 сек; § Мощность = 0, 8 - 2, 0 Вт;

Осложнения ТЦФК: § Хроническая гипотония; § Болевой синдром; § Рубеоз радужки; § Застойная иньекция; § Кератопатия.

Лазерная иридопластика (гониопластика) В области корня радужки наносятся аргон-лазерные коагуляты (от 4 до 10 в каждом квадранте) с исходом в рубец, что приводит к сморщиванию и тракции радужной оболочки, освобождению трабекулярной зоны и расширению профиля угла передней камеры Показания: ЗУГ в случае, когда иридотомия невозможна или неэффективна ОУГ с узким углом как предварительный этап для последующей трабекулопластики Также этот метод используется для создания мидриаза при избыточном миозе (лазерный фотомидриаз). При этом коагуляты наносятся в зрачковой части радужки.

Осложнения лазерной гониопластики: § Ирит; § Повреждение эндотелия роговицы; § Повышение ВГД; § Стойкий мидриаз.