Дана матрица парных коэффициентов корреляции. Коэффициент парной корреляции в Excel

Коэффициент корреляции отражает степень взаимосвязи между двумя показателями. Всегда принимает значение от -1 до 1. Если коэффициент расположился около 0, то говорят об отсутствии связи между переменными.

Если значение близко к единице (от 0,9, например), то между наблюдаемыми объектами существует сильная прямая взаимосвязь. Если коэффициент близок к другой крайней точке диапазона (-1), то между переменными имеется сильная обратная взаимосвязь. Когда значение находится где-то посередине от 0 до 1 или от 0 до -1, то речь идет о слабой связи (прямой или обратной). Такую взаимосвязь обычно не учитывают: считается, что ее нет.

Расчет коэффициента корреляции в Excel

Рассмотрим на примере способы расчета коэффициента корреляции, особенности прямой и обратной взаимосвязи между переменными.

Значения показателей x и y:

Y – независимая переменная, x – зависимая. Необходимо найти силу (сильная / слабая) и направление (прямая / обратная) связи между ними. Формула коэффициента корреляции выглядит так:


Чтобы упростить ее понимание, разобьем на несколько несложных элементов.

Между переменными определяется сильная прямая связь.

Встроенная функция КОРРЕЛ позволяет избежать сложных расчетов. Рассчитаем коэффициент парной корреляции в Excel с ее помощью. Вызываем мастер функций. Находим нужную. Аргументы функции – массив значений y и массив значений х:

Покажем значения переменных на графике:


Видна сильная связь между y и х, т.к. линии идут практически параллельно друг другу. Взаимосвязь прямая: растет y – растет х, уменьшается y – уменьшается х.



Матрица парных коэффициентов корреляции в Excel

Корреляционная матрица представляет собой таблицу, на пересечении строк и столбцов которой находятся коэффициенты корреляции между соответствующими значениями. Имеет смысл ее строить для нескольких переменных.

Матрица коэффициентов корреляции в Excel строится с помощью инструмента «Корреляция» из пакета «Анализ данных».


Между значениями y и х1 обнаружена сильная прямая взаимосвязь. Между х1 и х2 имеется сильная обратная связь. Связь со значениями в столбце х3 практически отсутствует.

Задание 2

1. Построить матрицу парных коэффициентов корреляции. Проверить наличие мультиколлинеарности. Обосновать отбор факторов в модель.

2. Построить уравнение множественной регрессии в линейной форме с выбранными факторами.

3. Оценить статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.

4. Построить уравнение регрессии со статистически значимыми факторами. Оценить качество уравнения регрессии с помощью коэффициента детерминации R 2 . Оценить точность построенной модели.

5. Оценить прогноз объема выпуска продукции, если прогнозные значения факторов составляют 75% от их максимальных значений.

Условия задачи (Вариант 21)

По данным, представленным в таблице 1 (n =17), изучается зависимость объема выпуска продукции Y (млн. руб.) от следующих факторов (переменных):

X 1 – численность промышленно-производственного персонала, чел.

X 2 – среднегодовая стоимость основных фондов, млн. руб.

X 3 – износ основных фондов, %

X 4 – электровооруженность, кВт×ч.

X 5 – техническая вооруженность одного рабочего, млн. руб.

X 6 – выработка товарной продукции на одного работающего, руб.

Таблица 1. Данные выпуска продукции

Y X 1 X 2 X 3 X 4 X 5 X 6
39,5 4,9 3,2
46,4 60,5 20,4
43,7 24,9 9,5
35,7 50,4 34,7
41,8 5,1 17,9
49,8 35,9 12,1
44,1 48,1 18,9
48,1 69,5 12,2
47,6 31,9 8,1
58,6 139,4 29,7
70,4 16,9 5,3
37,5 17,8 5,6
62,0 27,6 12,3
34,4 13,9 3,2
35,4 37,3 19,0
40,8 55,3 19,3
48,1 35,1 12,4


Построить матрицу парных коэффициентов корреляции. Проверить наличие мультиколлинеарности. Обосновать отбор факторов в модель

В таблице 2 представлена матрица коэффициентов парной корреляции для всех переменных, участвующих в рассмотрении. Матрица получена с помощью инструмента Корреляция из пакета Анализ данных в Excel.

Таблица 2. Матрица коэффициентов парной корреляции

Y X1 X2 X3 X4 X5 X6
Y
X1 0,995634
X2 0,996949 0,994947
X3 -0,25446 -0,27074 -0,26264
X4 0,12291 0,07251 0,107572 0,248622
X5 0,222946 0,166919 0,219914 -0,07573 0,671386
X6 0,067685 -0,00273 0,041955 -0,28755 0,366382 0,600899

Визуальный анализ матрицы позволяет установить:

1) У имеет довольно высокие парные корреляции с переменными Х1, Х2 (>0,5) и низкие с переменными Х3,Х4,Х5,Х6 (<0,5);

2) Переменные анализа Х1, Х2 демонстрируют довольно высокие парные корреляции, что обуславливает необходимость проверки факторов на наличие между ними мультиколлинеарности. Тем более, что одним из условий классической регрессионной модели является предположение о независимости объясняющих переменных.

Для выявления мультиколлинеарности факторов выполним тест Фаррара-Глоубера по факторам Х1,Х2,Х3,Х4,Х5,Х6 .

Проверка теста Фаррара-Глоубера на мультиколлинеарность факторов включает несколько этапов.

1) Проверка наличия мультиколлинеарности всего массива переменных .

Одним из условий классической регрессионной модели является предположение о независимости объясняющих переменных. Для выявления мультиколлинеарности между факторами вычисляется матрица межфакторных корреляций R с помощью Пакета анализа данных (таблица 3).

Таблица 3.Матрица межфакторных корреляций R

X1 X2 X3 X4 X5 X6
X1 0,994947 -0,27074 0,07251 0,166919 -0,00273
X2 0,994947 -0,26264 0,107572 0,219914 0,041955
X3 -0,27074 -0,26264 0,248622 -0,07573 -0,28755
X4 0,07251 0,107572 0,248622 0,671386 0,366382
X5 0,166919 0,219914 -0,07573 0,671386 0,600899
X6 -0,00273 0,041955 -0,28755 0,366382 0,600899

Между факторами Х1 и Х2, Х5 и Х4, Х6 и Х5 наблюдается сильная зависимость (>0,5).

Определитель det (R) = 0,001488 вычисляется с помощью функции МОПРЕД. Определитель матрицы R стремится к нулю, что позволяет сделать предположение об общей мультиколлинеарности факторов.

2) Проверка наличия мультиколлинеарности каждой переменной с другими переменными:

· Вычислим обратную матрицу R -1 с помощью функции Excel МОБР (таблица 4):

Таблица 4. Обратная матрица R -1

X1 X2 X3 X4 X5 X6
X1 150,1209 -149,95 3,415228 -1,70527 6,775768 4,236465
X2 -149,95 150,9583 -3,00988 1,591549 -7,10952 -3,91954
X3 3,415228 -3,00988 1,541199 -0,76909 0,325241 0,665121
X4 -1,70527 1,591549 -0,76909 2,218969 -1,4854 -0,213
X5 6,775768 -7,10952 0,325241 -1,4854 2,943718 -0,81434
X6 4,236465 -3,91954 0,665121 -0,213 -0,81434 1,934647

· Вычисление F-критериев , где – диагональные элементы матрицы , n=17, k = 6 (таблица 5).

Таблица 5. Значения F-критериев

F1 (Х1) F2 (Х2) F3 (Х3) F4 (Х4) F5 (Х5) F6 (Х6)
89,29396 89,79536 0,324071 0,729921 1,163903 0,559669

· Фактические значения F-критериев сравниваются с табличным значением F табл = 3,21 (FРАСПОБР(0,05;6;10)) при n1= 6 и n2 = n - k – 1=17-6-1=10 степенях свободы и уровне значимости α=0,05, где k – количество факторов.

· Значения F-критериев для факторов Х1 и Х2 больше табличного, что свидетельствует о наличии мультиколлинеарности между данными факторами. Меньше всего влияет на общую мультиколлинеарность факторов фактор Х3.

3) Проверка наличия мультиколлинеарности каждой пары переменных

· Вычислим частные коэффициенты корреляции по формуле , где – элементы матрицы (таблица 6)

Таблица 6. Матрица коэффициентов частных корреляций

X1 X2 X3 X4 X5 X6
X1
X2 0,996086
X3 -0,22453 0,197329
X4 0,093432 -0,08696 0,415882
X5 -0,32232 0,337259 -0,1527 0,581191
X6 -0,24859 0,229354 -0,38519 0,102801 0,341239

· Вычисление t -критериев по формуле (таблица 7)

n - число данных = 17

K - число факторов = 6

Таблица 7.t-критерии для коэффициентов частной корреляции

X1 X2 X3 X4 X5 X6
X1
X2 35,6355
X3 -0,72862 0,636526
X4 0,296756 -0,27604 1,446126
X5 -1,07674 1,13288 -0,4886 2,258495
X6 -0,81158 0,745143 -1,31991 0,326817 1,147999

t табл = СТЬЮДРАСПОБР(0,05;10) = 2,23

Фактические значения t-критериев сравниваются с табличным значением при степенях свободы n-k-1 = 17-6-1=10 и уровне значимости α=0,05;

t21 > tтабл

t54 > tтабл

Из таблиц 6 и 7 видно, что две пары факторов X1 и Х2, Х4 и Х5 имеют высокую статистически значимую частную корреляцию, то есть являются мультиколлинеарными. Для того чтобы избавиться от мультиколлинеарности, можно исключить одну из переменных коллинеарной пары. В паре Х1 и Х2 оставляем Х2, в паре Х4 и Х5 оставляем Х5.

Таким образом, в результате проверки теста Фаррара-Глоубера остаются факторы: Х2, Х3, Х5, Х6.

Завершая процедуры корреляционного анализа, целесообразно посмотреть частные корреляции выбранных факторов с результатом Y.

Построим матрицу парных коэффициентов корреляции, исходя из данных таблицы 8.

Таблица 8. Данные выпуска продукции с отобранными факторами Х2, Х3, Х5, Х6.

№ наблю-дения Y X 2 X 3 X 5 X 6
39,5 3,2
46,4 20,4
43,7 9,5
35,7 34,7
41,8 17,9
49,8 12,1
44,1 18,9
48,1 12,2
47,6 8,1
58,6 29,7
70,4 5,3
37,5 5,6
12,3
34,4 3,2
35,4
40,8 19,3
48,1 12,4

В последнем столбце таблицы 9 представлены значения t-критерия для столбца У.

Таблица 9.Матрица коэффициентов частной корреляции с результатом Y

Y X2 X3 X5 X6 t критерий (t табл (0,05;11)= 2,200985
Y 0,996949 -0,25446 0,222946 0,067685
X2 0,996949 -0,26264 0,219914 0,041955 44,31676
X3 -0,25446 -0,26264 -0,07573 -0,28755 0,916144
X5 0,222946 0,219914 -0,07573 0,600899 -0,88721
X6 0,067685 0,041955 -0,28755 0,600899 1,645749

Из таблицы 9 видно, что переменная Y имеет высокую и одновременно статистически значимую частную корреляцию с фактором Х2.

1. Рассчитать матрицу парных коэффициентов корреляции; проанализировать тесноту и направление связи результирующего признака Y с каждым из факторов Х ; оценить статистическую значимость коэффициентов корреляции r (Y , X i); выбрать наиболее информативный фактор.

2. Построить модель парной регрессии с наиболее информативным фактором; дать экономическую интерпретацию коэффициента регрессии.

3. Оценить качество модели с помощью средней относительной ошибки аппроксимации, коэффициента детерминации и F – критерия Фишера (принять уровень значимости α=0,05).

4. С доверительной вероятностью γ=80% осуществить прогнозирование среднего значения показателя Y (прогнозные значения факторов приведены в Приложении 6). Представить графически фактические и модельные значения Y , результаты прогнозирования.

5. Методом включения построить двухфакторные модели, сохраняя в них наиболее информативный фактор; построить трехфакторную модель с полным перечнем факторов.

6. Выбрать лучшую из построенных множественных моделей. Дать экономическую интерпретацию ее коэффициентов.

7. Проверить значимость коэффициентов множественной регрессии с помощью t –критерия Стьюдента (принять уровень значимости α=0,05). Улучшилось ли качество множественной модели по сравнению с парной?

8. Дать оценку влияния факторов на результат с помощью коэффициентов эластичности, бета– и дельта– коэффициентов.

Задача 2. Моделирование одномерного временного ряда

В Приложении 7 приведены временные ряды Y(t) социально-экономических показателей по Алтайскому краю за период с 2000 г. по 2011 г. Требуется исследовать динамику показателя, соответствующего варианту задания.

Вариант Обозначение, наименование, единица измерения показателя
Y1 Потребительские расходы в среднем на душу населения (в месяц), руб.
Y2 Выбросы загрязняющих веществ в атмосферный воздух, тыс. тонн
Y3 Средние цены на вторичном рынке жилья (на конец года, за квадратный метр общей площади), руб
Y4 Объем платных услуг на душу населения, руб
Y5 Среднегодовая численность занятых в экономике, тыс. человек
Y6 Число собственных легковых автомобилей на 1000 человек населения (на конец года), штук
Y7 Среднедушевые денежные доходы (в месяц), руб
Y8 Индекс потребительских цен (декабрь к декабрю предыдущего года), %
Y9 Инвестиции в основной капитал (в фактически действовавших ценах), млн. руб
Y10 Оборот розничной торговли на душу населения (в фактически действовавших ценах), руб


Порядок выполнения работы

1. Построить линейную модель временного ряда , параметры которой оценить МНК. Пояснить смысл коэффициента регрессии.

2. Оценить адекватность построенной модели, используя свойства случайности, независимости и соответствия остаточной компоненты нормальному закону распределения.

3. Оценить точность модели на основе использования средней относительной ошибки аппроксимации.

4. Осуществить прогнозирование рассматриваемого показателя на год вперед (прогнозный интервал рассчитать при доверительной вероятности 70%).

5. Представить графически фактические значения показателя, результаты моделирования и прогнозирования.

6. Провести расчет параметров логарифмического, полиномиального (полином 2-й степени), степенного, экспоненциального и гиперболического трендов. На основании графического изображения и значения индекса детерминации выбрать наиболее подходящий вид тренда.

7. С помощью лучшей нелинейной модели осуществить точечное прогнозирование рассматриваемого показателя на год вперед. Сопоставить полученный результат с доверительным прогнозным интервалом, построенным при использовании линейной модели.

ПРИМЕР

Выполнения контрольной работы

Задача 1

Фирма занимается реализацией подержанных автомобилей. Наименования показателей и исходные данные для эконометрического моделирования представлены в таблице:

Цена реализации, тыс.у.е. (Y ) Цена нового авт., тыс.у.е. (Х1 ) Срок эксплуатации, годы (Х2 ) Левый руль - 1, правый руль - 0, (Х3 )
8,33 13,99 3,8
10,40 19,05 2,4
10,60 17,36 4,5
16,58 25,00 3,5
20,94 25,45 3,0
19,13 31,81 3,5
13,88 22,53 3,0
8,80 16,24 5,0
13,89 16,54 2,0
11,03 19,04 4,5
14,88 22,61 4,6
20,43 27,56 4,0
14,80 22,51 3,3
26,05 31,75 2,3

Требуется:

1. Рассчитать матрицу парных коэффициентов корреляции; проанализировать тесноту и направление связи результирующего признака Y с каждым из факторов Х; оценить статистическую значимость коэффициентов корреляции r(Y, X i); выбрать наиболее информативный фактор.

Используем Excel (Данные / Анализ данных / КОРРЕЛЯЦИЯ):

Получим матрицу коэффициентов парной корреляции между всеми имеющимися переменными:

У Х1 Х2 Х3
У
Х1 0,910987
Х2 -0,4156 -0,2603
Х3 0,190785 0,221927 -0,30308

Проанализируем коэффициенты корреляции между результирующим признаком Y и каждым из факторов X j:

> 0, следовательно, между переменными Y и Х 1 наблюдается прямая корреляционная зависимость: чем выше цена нового автомобиля, тем выше цена реализации.

> 0,7 – эта зависимость является тесной.

< 0, значит, между переменными Y и Х 2 наблюдается

обратная корреляционная зависимость: цена реализации ниже для авто-

мобилей с большим сроком эксплуатации.

– эта зависимость умеренная, ближе к слабой.

> 0, значит, между переменными Y и Х 3 наблюдается прямая корреляционная зависимость: цена реализации выше для автомобилей с левым рулем.

< 0,4 – эта зависимость слабая.

Для проверки значимости найденных коэффициентов корреляции используем критерий Стьюдента.

Для каждого коэффициента корреляции вычислим t -статистику по формуле и занесем результаты расчетов в дополнительный столбец корреляционной таблицы:

У Х1 Х2 Х3 t-статистики
У
Х1 0,910987 7,651524603
Х2 -0,4156 -0,2603 1,582847988
Х3 0,190785 0,221927 -0,30308 0,673265587

По таблице критических точек распределения Стъюдента при уровне значимости и числе степеней свободы определим критическое значение (Приложение 1, или функция СТЬЮДРАСПОБР).Y и сроком эксплуатации Х 2 достоверна.

< , следовательно, коэффициент не является значимым. На основании выборочных данных нет оснований утверждать, что зависимость между ценой реализации Y и расположением руля Х 3 достоверна.

Таким образом, наиболее тесная и значимая зависимость наблюдается между ценой реализации Y и ценой нового автомобиля Х 1 ; фактор Х 1 является наиболее информативным.

Для определения степени зависимости между несколькими показателями применяется множественные коэффициенты корреляции. Их затем сводят в отдельную таблицу, которая имеет название корреляционной матрицы. Наименованиями строк и столбцов такой матрицы являются названия параметров, зависимость которых друг от друга устанавливается. На пересечении строк и столбцов располагаются соответствующие коэффициенты корреляции. Давайте выясним, как можно провести подобный расчет с помощью инструментов Excel.

Принято следующим образом определять уровень взаимосвязи между различными показателями, в зависимости от коэффициента корреляции:

  • 0 – 0,3 – связь отсутствует;
  • 0,3 – 0,5 – связь слабая;
  • 0,5 – 0,7 – средняя связь;
  • 0,7 – 0,9 – высокая;
  • 0,9 – 1 – очень сильная.

Если корреляционный коэффициент отрицательный, то это значит, что связь параметров обратная.

Для того, чтобы составить корреляционную матрицу в Экселе, используется один инструмент, входящий в пакет «Анализ данных» . Он так и называется – «Корреляция» . Давайте узнаем, как с помощью него можно вычислить показатели множественной корреляции.

Этап 1: активация пакета анализа

Сразу нужно сказать, что по умолчанию пакет «Анализ данных» отключен. Поэтому, прежде чем приступить к процедуре непосредственного вычисления коэффициентов корреляции, нужно его активировать. К сожалению, далеко не каждый пользователь знает, как это делать. Поэтому мы остановимся на данном вопросе.


После указанного действия пакет инструментов «Анализ данных» будет активирован.

Этап 2: расчет коэффициента

Теперь можно переходить непосредственно к расчету множественного коэффициента корреляции. Давайте на примере представленной ниже таблицы показателей производительности труда, фондовооруженности и энерговооруженности на различных предприятиях рассчитаем множественный коэффициент корреляции указанных факторов.


Этап 3: анализ полученного результата

Теперь давайте разберемся, как понимать тот результат, который мы получили в процессе обработки данных инструментом «Корреляция» в программе Excel.

Как видим из таблицы, коэффициент корреляции фондовооруженности (Столбец 2 ) и энерговооруженности (Столбец 1 ) составляет 0,92, что соответствует очень сильной взаимосвязи. Между производительностью труда (Столбец 3 ) и энерговооруженностью (Столбец 1 ) данный показатель равен 0,72, что является высокой степенью зависимости. Коэффициент корреляции между производительностью труда (Столбец 3 ) и фондовооруженностью (Столбец 2 ) равен 0,88, что тоже соответствует высокой степени зависимости. Таким образом, можно сказать, что зависимость между всеми изучаемыми факторами прослеживается довольно сильная.

Как видим, пакет «Анализ данных» в Экселе представляет собой очень удобный и довольно легкий в обращении инструмент для определения множественного коэффициента корреляции. С его же помощью можно производить расчет и обычной корреляции между двумя факторами.

Матрица парных коэффициентов корреляции

Y X1 X2 X3 X4 X5
Y
X1 0,732705
X2 0,785156 0,706287
X3 0,179211 -0,29849 0,208514
X4 0,667343 0,924333 0,70069 0,299583
X5 0,709204 0,940488 0,691809 0,326602 0,992945

В узлах матрицы находятся парные коэффициенты корреляции, характеризующие тесноту взаимосвязи между факторными признаками. Анализируя эти коэффициенты, отметим, что чем больше их абсолютная величина, тем большее влияние оказывает соответствующий факторный признак на результативный. Анализ полученной матрицы осуществляется в два этапа:

1. Если в первом столбце матрицы есть коэффициенты корреляции, для которых /r / < 0,5, то соответствующие признаки из модели исключаются. В данном случае в первом столбце матрицы коэффициентов корреляции исключается фактор или коэффициент роста уровня инфляции. Данный фактор оказывает меньшее влияние на результативный признак, нежели оставшиеся четыре признака.

2. Анализируя парные коэффициенты корреляции факторных признаков друг с другом, (r XiXj), характеризующие тесноту их взаимосвязи, необходимо оценить их независимость друг от друга, поскольку это необходимое условие для дальнейшего проведения регрессионного анализа. В виду того, что в экономике абсолютно независимых признаков нет, необходимо выделить, по возможности, максимально независимые. Факторные признаки, находящиеся в тесной корреляционной зависимости друг с другом, называются мультиколлинеарными. Включение в модель мультиколлинеарных признаков делает невозможным экономическую интерпретацию регрессионной модели, так как изменение одного фактора влечет за собой изменение факторов с ним связанных, что может привести к «поломке» модели в целом.

Критерий мультиколлениарности факторов выглядит следующим образом:

/r XiXj / > 0,8

В полученной матрице парных коэффициентов корреляции этому критерию отвечают два показателя, находящиеся на пересечении строк и . Из каждой пары этих признаков в модели необходимо оставить один, он должен оказывать большее влияние на результативный признак. В итоге из модели исключаются факторы и , т.е. коэффициент роста себестоимости реализованной продукции и коэффициент роста объёма её реализации.

Итак, в регрессионную модель вводим факторы Х1 и Х2.

Далее осуществляется регрессионный анализ (сервис, анализ данных, регрессия). Вновь составляет таблица исходных данных с факторами Х1 и Х2. Регрессия в целом используется для анализа воздействия на отдельную зависимую переменную значений независимых переменных (факторов) и позволяет корреляционную связь между признаками представить в виде некоторой функциональной зависимости называемой уравнением регрессии или корреляционно-регрессионной моделью.

В результате регрессионного анализа получаем результаты расчета многомерной регрессии. Проанализируем полученные результаты.

Все коэффициенты регрессии значимы по критерию Стьюдента. Коэффициент множественной корреляции R составил 0,925, квадрат этой величины (коэффициент детерминации) означает, что вариация результативного признака в среднем на 85,5% объясняется за счет вариации факторных признаков, включенных в модель. Коэффициент детерминированности характеризует тесноту взаимосвязи между совокупностью факторных признаков и результативным показателем. Чем ближе значение R-квадрат к 1, тем теснее взаимосвязь. В нашем случае показатель, равный 0,855, указывает на правильный подбор факторов и на наличие взаимосвязи факторов с результативным показателем.

Рассматриваемая модель адекватна, поскольку расчетное значение F-критерия Фишера существенно превышает его табличное значение (F набл =52,401; F табл =1,53).

В качестве общего результата проведенного корреляционно-регрессионного анализа выступает множественное уравнение регрессии, которое имеет вид:

Полученное уравнение регрессии отвечает цели корреляционно-регрессионного анализа и является линейной моделью зависимости балансовой прибыли предприятия от двух факторов: коэффициента роста производительности труда и коэффициента имущества производственного назначения.

На основании полученной модели можно сделать вывод о том, что при увеличении уровня производительности труда на 1% к уровню предыдущего периода величина балансовой прибыли возрастет на 0,95 п.п.; увеличение же коэффициента имущества производственного назначения на 1% приведет к росту результативного показателя на 27,9 п.п. Слелдовательно, доминирующее влияние на рост балансовой прибыли оказывает увеличение стоимости имущества производственного назначения (обновление и рост основных средств предприятия).

По множественной регрессионной модели выполняется многофакторный прогноз результативного признака. Пусть известно, что Х1 = 3,0, а Х3 = 0,7. Подставим значения факторных признаков в модель, получим Упр = 0,95*3,0 + 27,9*0,7 – 19,4 = 2,98. Таким образом, при увеличении производительности труда и модернизации основных средств на предприятии балансовая прибыль в 1 квартале 2005 г. по отношению к предыдущему периоду (IV квартал 2004 г.) возрастет на 2,98%.