Градиентные методы безусловной оптимизации. Градиентный метод с постоянным m

Наконец, параметр m можно задавать постоянным на всех итерациях. Однако при больших значениях m процесс поиска может расходиться. Хорошим способом выбора m может быть его определение на первой итерации из условия экстремума по направлению градиента. На последующих итерациях m остается постоянным. Это еще более упрощает вычисления.

Например, для функции при с проекциями градиентов методом наискорейшего спуска определен . Примем параметр постоянным на всех итерациях.

Вычисляем координаты х (1) :

Для вычисления координат точки х (2) находим проекции градиента в точке х (1) : , тогда

и т.д.

Данная последовательность также сходится.

Шаговый градиентный метод

Этот метод разработан инженерами и заключается в том, что шаг по одной из переменных берется постоянным, а для других переменных он выбирается исходя из пропорциональности градиентов точках. Этим как бы масштабируют экстремальную поверхность, т.к. не по всем переменным сходимость одинакова. Поэтому выбором различных шагов для координат пытаются сделать скорость сходимости примерно одинаковой по всем переменным.

Пусть дана сепарабельная функция и начальная точка . Зададимся постоянным шагом по координате х 1 , пусть Dх 1 =0,2. Шаг по координате х 2 находим из соотношения градиентов и шагов.

Метод релаксации

Алгоритм метода заключается в отыскании осевого направления, вдоль которого целевая функция уменьшается наиболее сильно (при поиске минимума). Рассмотрим задачу безусловной оптимизации

Для определения осевого направления в начальной точке поиска из области определяются производные , , по всем независимым переменным. Осевому направлению соответствует наибольшая по модулю производная .

Пусть – осевое направление, т.е. .

Если знак производной отрицательный, функция убывает в направлении оси, если положительный – в обратном направлении:

В точке вычисляют . По направлению убывания функции производится один шаг, определяется и в случае улучшения критерия шаги продолжаются до тех пор, пока не будет найдено минимальное значение по выбранному направлению. В этой точке вновь определяются производные по всем переменным, за исключением тех, по которой осуществляется спуск. Снова находится осевое направление наиболее быстрого убывания , по которому производятся дальнейшие шаги и т.д.

Эту процедуру повторяют до тех пор, пока не достигается оптимальная точка, при движении из которой по любому осевому направлению дальнейшего убывания не происходит. На практике критерием окончания поиска служит условие

которое при превращается в точное условие равенства нулю производных в точке экстремума. Естественно условие (3.7) может быть использовано только в том случае, если оптимум лежит внутри допустимой области изменения независимых переменных . Если же оптимум попадает на границу области , критерий типа (3.7) непригоден и вместо него следует применять положительности всех производных по допустимым осевым направлениям.

Алгоритм спуска для выбранного осевого направления может быть записан так

(3.8)

где -значение варьируемой переменной на каждом шаге спуска;

Величина k+1 шага, которая может изменяться в зависимости от номера шага:

– функция знака z;

Вектор точки, в которой последний раз производилось вычисление производных ;



Знак “+” в алгоритме (3.8) принимается при поиске max I, а знак “-” – при поиске min I.Чем меньше шаг h., тем больше количество вычислений на пути движения к оптимуму. Но при слишком большой величине h вблизи оптимума может возникнуть зацикливание процесса поиска. Вблизи оптимума необходимо, чтобы выполнялось условие h

Простейший алгоритм изменения шага h состоит в следующем. В начале спуска задается шаг , равный например, 10% от диапазона d; изменения с этим шагом производится спуск по выбранному направлению до тез пор, пока выполняется условие для двух последующих вычислений

При нарушении условия на каком-либо шаге направление спуска на оси изменяется на обратное и спуск продолжается из последней точки с уменьшенной вдвое величиной шага.

Формальная запись этого алгоритма следующая:

(3.9)

В результате использования такой стратегии ша спуска будет уменьшатся в районе оптимума по данному направлению и поиск по направлению можно прекратить, когда станет меньше E.

Затем отыскивается новое осевое направление начальный шаг для дальнейшего спуска, обычно меньший пройденного вдоль предыдущего осевого направления. Характер движения в оптимуме в данном методе показан на рисунке 3.4.

Рисунок 3.5 – Траектория движения к оптимуму в методе релаксации

Улучшение алгоритма поиска по данному методу может быть достигнуто путем применения методов однопараметрической оптимизации. При этом может быть предложена схема решения задачи:

Шаг 1. – осевое направление,

; , если ;

Шаг 2. – новое осевое направление;

Метод градиента

В этом методе используется градиент функции . Градиентом функции в точке называется вектор, проекциями которого на координатные оси являются частные производные функции по координатам (рис. 6.5)

Рисунок 3.6 – Градиент функции

.

Направление градиента – это направление наиболее быстрого возрастания функции (наиболее крутого “склона” поверхности отклика). Противоположное ему направление (направление антиградиента) – это направление наибыстрейшего убывания (направление наискорейшего “спуска” величин ).

Проекция градиента на плоскость переменных перпендикулярна касательной к линии уровня , т.е. градиент ортогонален к линиям постоянного уровня целевой функции (рис. 3.6).

Рисунок 3.7 – Траектория движения к оптимуму в методе

градиента

В отличие от метода релаксации в методе градиента шаги совершаются в направлении наибыстрейшего уменьшения (увеличения) функции .

Поиск оптимума производится в два этапа. На первом этапе находятся значения частных производных по всем переменным , которые определяют направление градиента в рассматриваемой точке. На втором этапе осуществляется шаг в направлении градиента при поиске максимума или в противоположном направлении – при поиске минимума.

Если аналитическое выражение неизвестно, то направление градиента определяется поиском на объекте пробных движений. Пусть начальная точка. Дается приращение величина , при этом . Определяют приращение и производную

Аналогично определяют производные по остальным переменным. После нахождения составляющих градиента пробные движения прекращаются и начинаются рабочие шаги по выбранному направлению. Причем величина шага тем больше, чем больше абсолютная величина вектора .

При выполнении шага одновременно изменяются значения всех независимых переменных. Каждая из них получает приращение, пропорциональное соответствующей составляющей градиента

, (3.10)

или в векторной форме

, (3.11)

где – положительная константа;

“+” – при поиске max I;

“-” – при поиске min I.

Алгоритм градиентного поиска при нормировании градиента (деление на модуль) применяется в виде

; (3.12)

(3.13)

Определяет величину шага по направлению градиента.

Алгоритм (3.10) обладает тем достоинством, что при приближении к оптимуму длина шага автоматически уменьшается. А при алгоритме (3.12) стратегию изменения можно строить независимо от абсолютной величины коэффициента.

В методе градиента каждый разделяется один рабочий шаг, после которого вновь вычисляются производные, определяется новое направление градиента и процесс поиска продолжается (рис. 3.5).

Если размер шага выбран слишком малым, то движение к оптимуму будет слишком долгим из-за необходимости вычисления в очень многих точках. Если же шаг выбран слишком большим, в район оптимума может возникнуть зацикливание.

Процесс поиска продолжается до тех пор, пока , , не станут близки к нулю или пока не будет достигнута граница области задания переменных.

В алгоритме с автоматическим уточнением шага величину уточняют так, чтобы изменение направления градиента в соседних точках и

Критерии окончания поиска оптимума:

; (3.16)

; (3.17)

где – норма вектора.

Поиск завершается при выполнении одного из условий (3.14) – (3.17).

Недостатком градиентного поиска (так же и рассмотренных выше методов) является то, что при его использовании можно обнаружить только локальный экстремум функции . Для отыскания других локальных экстремумов необходимо производить поиск из других начальных точек.

Лекция 6.

Градиентные методы решения задач нелинейного программирования.

Вопросы: 1. Общая характеристика методов.

2. Метод градиента.

3. Метод наискорейшего спуска.

4. Метод Франка-Фулфа.

5. Метод штрафных функций.

1. Общая характеристика методов.

Градиентные методы представляют собой приближенные (итерационные) методы решения задачи нелинейного программирования и позволяют решить практически любую задачу. Однако при этом определяется локальный экстремум. Поэтому целесообразно применять эти методы для решения задач выпуклого программирования, в которых каждый локальный экстремум является и глобальным. Процесс решения задачи состоит в том, что, начиная с некоторой точки х (начальной), осуществляется последовательный переход в направлении gradF(x), если определяется точка максимума, и –gradF(x) (антиградиента), если определяется точка минимума, до точки, являющейся решением задачи. При этом эта точка может оказаться как внутри области допустимых значений, так и на ее границе.

Градиентные методы можно разделить на два класса (группы). К первой группе относятся методы, в которых все исследуемые точки принадлежат допустимой области. К таким методам относятся: метод градиента, наискорейшего спуска, Франка-Вулфа и др. Ко второй группе относятся методы, в которых исследуемые точки могут и не принадлежать допустимой области. Общим из таких методов является метод штрафных функций. Все методы штрафных функций отличаются друг от друга способом определения «штрафа».

Основным понятием, используемым во всех градиентных методах, является понятие градиента функции, как направления наискорейшего возрастания функции.

При определении решения градиентными методами итерационный процесс продолжается до тех пор, пока:

Либо grad F(x*) = 0, (точное решение);

где
- две последовательные точки,
- малое число, характеризующее точность решения.

2. Метод градиента.

Представим человека, стоящего на склоне оврага, которому необходимо спуститься вниз (на дно). Наиболее естественным, кажется, направление в сторону наибольшей крутизны спуска, т.е. направление (-grad F(x)). Получаемая при этом стратегия, называемая градиентным методом , представляет собой последовательность шагов, каждый из которых содержит две операции:

а) определение направления наибольшей крутизны спуска (подъема);

б) перемещение в выбранном направлении на некоторый шаг.

Правильный выбор шага имеет существенное значение. Чем шаг меньше, тем точнее результат, но больше вычислений. Различные модификации градиентного метода и состоят в использовании различных способов определения шага. Если на каком-либо шаге значение F(x) не уменьшилось, это означает, что точку минимума «проскочили», в этом случае необходимо вернуться к предыдущей точке и уменьшить шаг, например, вдвое.

Схема решения.

принадлежащей допустимой области

3. Выбор шага h.

x (k+1) = x (k)

«-» - если min.

5. Определение F(x (k +1)) и:

Если
, решение найдено;

Замечание. Если grad F(x (k)) = 0, то решение будет точным.

Пример. F(x) = -6x 1 + 2x 1 2 – 2x 1 x 2 + 2x 2 2
min,

x 1 +x 2 2,x 1 0, x 2 0,= 0,1.

3. Метод наискорейшего спуска.

В отличие от метода градиента, в котором градиент определяют на каждом шаге, в методе наискорейшего спуска градиент находят в начальной точке и движение в найденном направлении продолжают одинаковыми шагами до тех пор, пока значение функции уменьшается (увеличивается). Если на каком-либо шаге F(x) возросло (уменьшилось), то движение в данном направлении прекращается, последний шаг снимается полностью или наполовину и вычисляется новое значение градиента и новое направление.

Схема решения.

1. Определение х 0 = (х 1 ,x 2 ,…,x n),

принадлежащей допустимой области,

и F(x 0), k = 0.

2. Определение grad F(x 0) или –gradF(x 0).

3. Выбор шага h.

4. Определение следующей точки по формуле

x (k+1) = x (k) h grad F(x (k)), «+» - если max,

«-» - если min.

5. Определение F(x (k +1)) и:

Если
, решение найдено;

Если нет:

а) при поиске min: - если F(x (k +1))

Если F(x (k +1)) >F(x (k)) – переход к п. 2;

б) при поиске max: - еслиF(x (k +1)) >F(x (k)) – переход к п. 4;

Если F(x (k +1))

Замечания: 1. Если grad F(x (k)) = 0, то решение будет точным.

2. Преимуществом метода наискорейшего спуска является его простота и

сокращение расчетов, так как grad F(x) вычисляется не во всех точках, что

важно для задач большой размерности.

3. Недостатком является то, что шаги должны быть малыми, чтобы не

пропустить точку оптимума.

Пример. F(x) = 3x 1 – 0,2x 1 2 + x 2 - 0,2x 2 2
max,

x 1 + x 2 7, x 1 0,

x 1 + 2x 2 10, x 2 0.

4. Метод Франка-Вулфа.

Метод используется для оптимизации нелинейной целевой функции при линейных ограничениях. В окрестности исследуемой точки нелинейная целевая функция заменяется линейной функцией и задача сводится к последовательному решению задач линейного программирования.

Схема решения.

1. Определение х 0 = (х 1 ,x 2 ,…,x n), принадлежащей допустимой области, и F(x 0), k = 0.

2. Определение grad F(x (k)).

3. Строят функцию

(min – «-»;max– «+»).

4. Определение max(min)f(x) при исходных ограничениях. Пусть это будет точка z (k) .

5. Определение шага вычислений x (k +1) =x (k) + (k) (z (k) –x (k)), где (k) – шаг, коэффициент, 0 1. (k) выбирается так, чтобы значение функции F(x) было max (min) в точке х (k +1) . Для этого решают уравнение
и выбирают наименьший (наибольший) из корней, но 0 1.

6. Определение F(x (k +1)) и проверяют необходимость дальнейших вычислений:

Если
или grad F(x (k +1)) = 0, то решение найдено;

Если нет, то переход к п. 2.

Пример. F(x) = 4x 1 + 10x 2 –x 1 2 –x 2 2
max,

x 1 +x 2 4, x 1 0,

x 2 2, x 2 0.

5. Метод штрафных функций.

Пусть необходимо найти F(x 1 ,x 2 ,…,x n)
max(min),

g i (x 1 , x 2 ,…,x n) b i , i =
, x j 0, j =.

Функции F и g i – выпуклые или вогнутые.

Идея метода штрафных функций заключается в поиске оптимального значения новой целевой функции Q(x) = F(x) + H(x), которая является суммой исходной целевой функции и некоторой функции H(x), определяемой системой ограничений и называемой штрафной функцией. Штрафные функции строят таким образом, чтобы обеспечить либо быстрое возвращение в допустимую область, либо невозможность выходы из нее. Метод штрафных функций сводит задачу на условный экстремум к решению последовательности задач на безусловный экстремум, что проще. Существует множество способов построения штрафной функции. Наиболее часто она имеет вид:

H(x) =
,

где

- некоторые положительные Const.

Примечание :

Чем меньше , тем быстрее находится решение, однако, точность снижается;

Начинают решение с малых и увеличивают их на последующих шагах.

Используя штрафную функцию, последовательно переходят от одной точки к другой до тех пор, пока не получат приемлемое решение.

Схема решения.

1. Определение начальную точку х 0 = (х 1 ,x 2 ,…,x n), F(x 0) и k = 0.

2. Выбирают шаг вычислений h.

3. Определяют частные производные и.

4. Определяют координаты следующей точки по формуле:

x j (k +1)
.

5. Если x (k +1) Допустимой области, проверяют:

а) если
- решение найдено, если нет – переход к п. 2.

б) если grad F(x (k +1)) = 0, то найдено точное решение.

Если x (k +1) Допустимой области, задают новое значениеи переходят к п. 4.

Пример. F(x) = – x 1 2 – x 2 2
max,

(x 1 -5) 2 +(x 2 -5) 2 8, x 1 0, x 2 0.

Градиентные методы

Градиентные методы безусловной оптимизации используют только первые производные целевой функции и являются методами линейной аппроксимации на каждом шаге, т.е. целевая функция на каждом шаге заменяется касательной гиперплоскостью к ее графику в текущей точке.

На k-м этапе градиентных методов переход из точки Xk в точку Xk+1 описывается соотношением:

где k - величина шага, k - вектор в направлении Xk+1-Xk.

Методы наискорейшего спуска

Впервые такой метод рассмотрел и применил еще О. Коши в XVIII в. Идея его проста: градиент целевой функции f(X) в любой точке есть вектор в направлении наибольшего возрастания значения функции. Следовательно, антиградиент будет направлен в сторону наибольшего убывания функции и является направлением наискорейшего спуска. Антиградиент (и градиент) ортогонален поверхности уровня f(X) в точке X. Если в (1.2) ввести направление

то это будет направление наискорейшего спуска в точке Xk.

Получаем формулу перехода из Xk в Xk+1:

Антиградиент дает только направление спуска, но не величину шага. В общем случае один шаг не дает точку минимума, поэтому процедура спуска должна применяться несколько раз. В точке минимума все компоненты градиента равны нулю.

Все градиентные методы используют изложенную идею и отличаются друг от друга техническими деталями: вычисление производных по аналитической формуле или конечно-разностной аппроксимации; величина шага может быть постоянной, меняться по каким-либо правилам или выбираться после применения методов одномерной оптимизации в направлении антиградиента и т.д. и т.п.

Останавливаться подробно мы не будем, т.к. метод наискорейшего спуска не рекомендуется обычно в качестве серьезной оптимизационной процедуры.

Одним из недостатков этого метода является то, что он сходится к любой стационарной точке, в том числе и седловой, которая не может быть решением.

Но самое главное - очень медленная сходимость наискорейшего спуска в общем случае. Дело в том, что спуск является "наискорейшим" в локальном смысле. Если гиперпространство поиска сильно вытянуто ("овраг"), то антиградиент направлен почти ортогонально дну "оврага", т.е. наилучшему направлению достижения минимума. В этом смысле прямой перевод английского термина "steepest descent", т.е. спуск по наиболее крутому склону более соответствует положению дел, чем термин "наискорейший", принятый в русскоязычной специальной литературе. Одним из выходов в этой ситуации является использование информации даваемой вторыми частными производными. Другой выход - изменение масштабов переменных.

линейный аппроксимация производная градиент

Метод сопряженного градиента Флетчера-Ривса

В методе сопряженного градиента строится последовательность направлений поиска, являющихся линейными комбинациями, текущего направления наискорейшего спуска, и, предыдущих направлений поиска, т.е.

причем коэффициенты выбираются так, чтобы сделать направления поиска сопряженными. Доказано, что

и это очень ценный результат, позволяющий строить быстрый и эффективный алгоритм оптимизации.

Алгоритм Флетчера-Ривса

1. В X0 вычисляется.

2. На k-ом шаге с помощь одномерного поиска в направлении находится минимум f(X), который и определяет точку Xk+1.

  • 3. Вычисляются f(Xk+1) и.
  • 4. Направление определяется из соотношения:
  • 5. После (n+1)-й итерации (т.е. при k=n) производится рестарт: полагается X0=Xn+1 и осуществляется переход к шагу 1.
  • 6. Алгоритм останавливается, когда

где - произвольная константа.

Преимуществом алгоритма Флетчера-Ривса является то, что он не требует обращения матрицы и экономит память ЭВМ, так как ему не нужны матрицы, используемые в Ньютоновских методах, но в то же время почти столь же эффективен как квази-Ньютоновские алгоритмы. Т.к. направления поиска взаимно сопряжены, то квадратичная функция будет минимизирована не более, чем за n шагов. В общем случае используется рестарт, который позволяет получать результат.

Алгоритм Флетчера-Ривса чувствителен к точности одномерного поиска, поэтому при его использовании необходимо устранять любые ошибки округления, которые могут возникнуть. Кроме того, алгоритм может отказать в ситуациях, где Гессиан становится плохо обусловленным. Гарантии сходимости всегда и везде у алгоритма нет, хотя практика показывает, что почти всегда алгоритм дает результат.

Ньютоновские методы

Направление поиска, соответствующее наискорейшему спуску, связано с линейной аппроксимацией целевой функции. Методы, использующие вторые производные, возникли из квадратичной аппроксимации целевой функции, т. е. при разложении функции в ряд Тейлора отбрасываются члены третьего и более высоких порядков.

где - матрица Гессе.

Минимум правой части (если он существует) достигается там же, где и минимум квадратичной формы. Запишем формулу для определения направления поиска:

Минимум достигается при

Алгоритм оптимизации, в котором направление поиска определяется из этого соотношения, называется методом Ньютона, а направление - ньютоновским направлением.

В задачах поиска минимума произвольной квадратичной функции с положительной матрицей вторых производных метод Ньютона дает решение за одну итерацию независимо от выбора начальной точки.

Классификация Ньютоновских методов

Собственно метод Ньютона состоит в однократном применении Ньютоновского направления для оптимизации квадратичной функции. Если же функция не является квадратичной, то верна следующая теорема.

Теорема 1.4. Если матрица Гессе нелинейной функции f общего вида в точке минимума X* положительно определена, начальная точка выбрана достаточно близко к X* и длины шагов подобраны верно, то метод Ньютона сходится к X* с квадратичной скоростью.

Метод Ньютона считается эталонным, с ним сравнивают все разрабатываемые оптимизационные процедуры. Однако метод Ньютона работоспособен только при положительно определенной и хорошо обусловленной матрицей Гессе (определитель ее должен быть существенно больше нуля, точнее отношение наибольшего и наименьшего собственных чисел должно быть близко к единице). Для устранения этого недостатка используют модифицированные методы Ньютона, использующие ньютоновские направления по мере возможности и уклоняющиеся от них только тогда, когда это необходимо.

Общий принцип модификаций метода Ньютона состоит в следующем: на каждой итерации сначала строится некоторая "связанная" с положительно определенная матрица, а затем вычисляется по формуле

Так как положительно определена, то - обязательно будет направлением спуска. Процедуру построения организуют так, чтобы она совпадала с матрицей Гессе, если она является положительно определенной. Эти процедуры строятся на основе некоторых матричных разложений.

Другая группа методов, практически не уступающих по быстродействию методу Ньютона, основана на аппроксимации матрицы Гессе с помощью конечных разностей, т.к. не обязательно для оптимизации использовать точные значения производных. Эти методы полезны, когда аналитическое вычисление производных затруднительно или просто невозможно. Такие методы называются дискретными методами Ньютона.

Залогом эффективности методов ньютоновского типа является учет информации о кривизне минимизируемой функции, содержащейся в матрице Гессе и позволяющей строить локально точные квадратичные модели целевой функции. Но ведь возможно информацию о кривизне функции собирать и накапливать на основе наблюдения за изменением градиента во время итераций спуска.

Соответствующие методы, опирающиеся на возможность аппроксимации кривизны нелинейной функции без явного формирования ее матрицы Гессе, называют квази-Ньютоновскими методами.

Отметим, что при построении оптимизационной процедуры ньютоновского типа (в том числе и квази-Ньютоновской) необходимо учитывать возможность появления седловой точки. В этом случае вектор наилучшего направления поиска будет все время направлен к седловой точке, вместо того, чтобы уходить от нее в направлении "вниз".

Метод Ньютона-Рафсона

Данный метод состоит в многократном использовании Ньютоновского направления при оптимизации функций, не являющихся квадратичными.

Основная итерационная формула многомерной оптимизации

используется в этом методе при выборе направления оптимизации из соотношения

Реальная длина шага скрыта в ненормализованном Ньютоновском направлении.

Так как этот метод не требует значения целевой функции в текущей точке, то его иногда называют непрямым или аналитическим методом оптимизации. Его способность определять минимум квадратичной функции за одно вычисление выглядит на первый взгляд исключительно привлекательно. Однако это "одно вычисление" требует значительных затрат. Прежде всего, необходимо вычислить n частных производных первого порядка и n(n+1)/2 - второго. Кроме того, матрица Гессе должна быть инвертирована. Это требует уже порядка n3 вычислительных операций. С теми же самыми затратами методы сопряженных направлений или методы сопряженного градиента могут сделать порядка n шагов, т.е. достичь практически того же результата. Таким образом, итерация метода Ньютона-Рафсона не дает преимуществ в случае квадратичной функции.

Если же функция не квадратична, то

  • - начальное направление уже, вообще говоря, не указывает действительную точку минимума, а значит, итерации должны повторяться неоднократно;
  • - шаг единичной длины может привести в точку с худшим значением целевой функции, а поиск может выдать неправильное направление, если, например, гессиан не является положительно определенным;
  • - гессиан может стать плохо обусловленным, что сделает невозможным его инвертирование, т.е. определение направления для следующей итерации.

Сама по себе стратегия не различает, к какой именно стационарной точке (минимума, максимума, седловой) приближается поиск, а вычисления значений целевой функции, по которым можно было бы отследить, не возрастает ли функция, не делаются. Значит, все зависит от того, в зоне притяжения какой стационарной точки оказывается стартовая точка поиска. Стратегия Ньютона-Рафсона редко используется сама по себе без модификации того или иного рода.

Методы Пирсона

Пирсон предложил несколько методов с аппроксимацией обратного гессиана без явного вычисления вторых производных, т.е. путем наблюдений за изменениями направления антиградиента. При этом получаются сопряженные направления. Эти алгоритмы отличаются только деталями. Приведем те из них, которые получили наиболее широкое распространение в прикладных областях.

Алгоритм Пирсона № 2.

В этом алгоритме обратный гессиан аппроксимируется матрицей Hk, вычисляемой на каждом шаге по формуле

В качестве начальной матрицы H0 выбирается произвольная положительно определенная симметрическая матрица.

Данный алгоритм Пирсона часто приводит к ситуациям, когда матрица Hk становится плохо обусловленной, а именно - она начинает осцилировать, колеблясь между положительно определенной и не положительно определенной, при этом определитель матрицы близок к нулю. Для избежания этой ситуации необходимо через каждые n шагов перезадавать матрицу, приравнивая ее к H0.

Алгоритм Пирсона № 3.

В этом алгоритме матрица Hk+1 определяется из формулы

Hk+1 = Hk +

Траектория спуска, порождаемая алгоритмом, аналогична поведению алгоритма Дэвидона-Флетчера-Пауэлла, но шаги немного короче. Пирсон также предложил разновидность этого алгоритма с циклическим перезаданием матрицы.

Проективный алгоритм Ньютона-Рафсона

Пирсон предложил идею алгоритма, в котором матрица рассчитывается из соотношения

H0=R0, где матрица R0 такая же как и начальные матрицы в предыдущих алгоритмах.

Когда k кратно числу независимых переменных n, матрица Hk заменяется на матрицу Rk+1, вычисляемую как сумма

Величина Hk(f(Xk+1) - f(Xk)) является проекцией вектора приращения градиента (f(Xk+1)-f(Xk)), ортогональной ко всем векторам приращения градиента на предыдущих шагах. После каждых n шагов Rk является аппроксимацией обратного гессиана H-1(Xk), так что в сущности осуществляется (приближенно) поиск Ньютона.

Метод Дэвидона-Флетчера-Пауэла

Этот метод имеет и другие названия - метод переменной метрики, квазиньютоновский метод, т.к. он использует оба эти подхода.

Метод Дэвидона-Флетчера-Пауэла (ДФП) основан на использовании ньютоновских направлений, но не требует вычисления обратного гессиана на каждом шаге.

Направление поиска на шаге k является направлением

где Hi - положительно определенная симметричная матрица, которая обновляется на каждом шаге и в пределе становится равной обратному гессиану. В качестве начальной матрицы H обычно выбирают единичную. Итерационная процедура ДФП может быть представлена следующим образом:

  • 1. На шаге k имеются точка Xk и положительно определенная матрица Hk.
  • 2. В качестве нового направления поиска выбирается

3. Одномерным поиском (обычно кубической интерполяцией) вдоль направления определяется k, минимизирующее функцию.

4. Полагается.

5. Полагается.

6. Определяется и. Если Vk или достаточно малы, процедура завершается.

  • 7. Полагается Uk = f(Xk+1) - f(Xk).
  • 8. Матрица Hk обновляется по формуле

9. Увеличить k на единицу и вернуться на шаг 2.

Метод эффективен на практике, если ошибка вычислений градиента невелика и матрица Hk не становится плохо обусловленной.

Матрица Ak обеспечивает сходимость Hk к G-1, матрица Bk обеспечивает положительную определенность Hk+1 на всех этапах и в пределе исключает H0.

В случае квадратичной функции

т.е. алгоритм ДФП использует сопряженные направления.

Таким образом, метод ДФП использует как идеи ньютоновского подхода, так и свойства сопряженных направлений, и при минимизации квадратичной функции сходится не более чем за n итераций. Если оптимизируемая функция имеет вид, близкий к квадратичной функции, то метод ДФП эффективен за счет хорошей аппроксимации G-1(метод Ньютона). Если же целевая функция имеет общий вид, то метод ДФП эффективен за счет использования сопряженных направлений.

Метод градиентного спуска.

Направление наискорейшего спуска соответствует направлению наибольшего убывания функции. Известно, что направление наибольшего возрастания функции двух переменных u = f(x, у) характеризуется ее градиентом:

где e1, е2 - единичные векторы (орты) в направлении координатных осей. Следовательно, направление, противоположное градиентному, укажет направление наибольшего убывания функции. Методы, основанные на выборе пути оптимизации с помощью градиента, называются градиентными.

Идея метода градиентного спуска состоит в следующем. Выбираем некоторую начальную точку

вычисляем в ней градиент рассматриваемой функции. Делаем шаг в направлении, обратном градиентному:

Процесс продолжается до получения наименьшего значения целевой функции. Строго говоря, момент окончания поиска наступит тогда, когда движение из полученной точки с любым шагом приводит к возрастанию значения целевой функции. Если минимум функции достигается внутри рассматриваемой области, то в этой точке градиент равен нулю, что также может служить сигналом об окончании процесса оптимизации.

Метод градиентного спуска обладает тем же недостатком, что и метод покоординатного спуска: при наличии оврагов на поверхности сходимость метода очень медленная.

В описанном методе требуется вычислять на каждом шаге оптимизации градиент целевой функции f(х):

Формулы для частных производных можно получить в явном виде лишь в том случае, когда целевая функция задана аналитически. В противном случае эти производные вычисляются с помощью численного дифференцирования:

При использовании градиентного спуска в задачах оптимизации основной объем вычислений приходится обычно на вычисление градиента целевой функции в каждой точке траектории спуска. Поэтому целесообразно уменьшить количество таких точек без ущерба для самого решения. Это достигается в некоторых методах, являющихся модификациями градиентного спуска. Одним из них является метод наискорейшего спуска. Согласно этому методу, после определения в начальной точке направления, противоположного градиенту целевой функции, решают одномерную задачу оптимизации, минимизируя функцию вдоль этого направления. А именно, минимизируется функция:

Для минимизации можно использовать один из методов одномерной оптимизации. Можно и просто двигаться в направлении, противоположном градиенту, делая при этом не один шаг, а несколько шагов до тех пор, пока целевая функция не перестанет убывать. В найденной новой точке снова определяют направление спуска (с помощью градиента) и ищут новую точку минимума целевой функции и т. д. В этом методе спуск происходит гораздо более крупными шагами, и градиент функции вычисляется в меньшем числе точек. Разница состоит в том, что здесь направление одномерной оптимизации определяется градиентом целевой функции, тогда как покоординатный спуск проводится на каждом шаге вдоль одного из координатных направлений.

Метод наискорейшего спуска для случая функции двух переменных z = f(x,y).

Во-первых, легко показать, что градиент функции перпендикулярен касательной к линии уровня в данной точке. Следовательно, в градиентных методах спуск происходит по нормали к линии уровня. Во-вторых, в точке, в которой достигается минимум целевой функции вдоль направления, производная функции по этому направлению обращается в нуль. Но производная функции равна нулю по направлению касательной к линии уровня. Отсюда следует, что градиент целевой функции в новой точке перпендикулярен направлению одномерной оптимизации на предыдущем шаге, т. е. спуск на двух последовательных шагах производится во взаимно перпендикулярных направлениях.