Функции ацетилхолина. Что такое ацетилхолин? Эффект ацетилхолина

Ацетилхолин (лат. Acetylcholinum ) — нейромедиатор, осуществляющий нервно-мышечную передачу, а также основной нейромедиатор в парасимпатической нервной системе.

Список симптомов повышенного ацетилхолина:

  • Подавленное настроение
  • Ангедония
  • Проблемы с концентрацией внимания
  • Проблемы с мышлением
  • Ментальная усталость
  • Проблемы с памятью
  • Низкая мотивация
  • Невозможность выспаться
  • Проблемы с пониманием и выполнением сложных задач
  • Пессимизм
  • Чувство безнадежности и беспомощности
  • Раздражительность
  • Слезливость
  • Проблемы со зрением
  • Головные боли
  • Сухость во рту
  • Боли в животе
  • Вздутие живота
  • Диарея или запор
  • Тошнота
  • Мышечная боль
  • Мышечная слабость
  • Зубная или челюстная боль
  • Покалывание или онемение рук или ног
  • Учащенное мочеиспускание или проблемы с контролем мочевого пузыря
  • Симптомы, схожие с гриппом или простудой
  • Слабый иммунитет
  • Холодные руки и ноги
  • Проблемы со сном
  • Тревога
  • Яркие сны, в основном кошмары
  • Пониженный уровень серотонина, дофамина и норадреналина в мозге

Между серотонином и ацетилхолином существует обратная антагонистичная связь. Когда уровень одного из этих нейромедиаторов повышается, уровень другого понижается. Определенное количество ацетилхолина необходимо для нормального функционирования головного мозга. Память, мотивация, сексуальное желание и сон зависят от ацетилхолина. В малых количествах ацетилхолин действует как стимулятор выброса дофамина и норадреналина. Слишком высокий уровень ацетилхолина дает противоположный эффект, вызывая торможение центральной нервной системы. В итоге можно сказать, что когда в мозге повышается уровень ацетилхолина, то понижаются уровни других нейромедиаторов, таких как серотонин, дофамин и норадреналин.

Что касается настроения, то комбинация повышенного ацетилхолина и норадреналина, вместе с низким серотонином дает в результате тревогу, эмоциональную лабильность, раздражительность, пессимизм, нетерпеливость, импульсивность и многое другое. Когда норадреналин, дофамин и серотонин на низком уровне, а ацетилхолин на высоком — в результате получаем депрессию. Антидепрессанты типа СИОЗС, увеличивая серотонин, способны понижать уровень ацетилхолина, тем самым уменьшать или устранять симптомы, связанные с повышенным ацетилхолином. Однако, основным недостатком в данном подходе является то, что увеличивая уровень серотонина мы уменьшаем уровень дофамина и норадреналина в мозге. Поэтому длительное употребление СИОЗС, в конце концов, приведет к завышенному уровню серотонина, а это ещё одна разновидность депрессии. Именно по этой причине СИОЗС помогают далеко не всем людям, а у некоторых ухудшают депрессию и вызывают неприятные побочные симптомы. Так что, несмотря на популярность и распространенность использования, СИОЗС антидепрессанты являются не лучшим выбором в данной ситуации.

Уровень ацетилхолина в мозге напрямую зависит от количества холина в диете. Но есть и другие причины, не зависящие от потребляемой пищи. Пища богатая холином:

  • Куриные яйца
  • Соевые продукты
  • Все, что содержит лецитин

Некоторые люди более чувствительны к холину, поэтому даже небольшое количество потребляемого холина может вызвать у них соответствующие симптомы. Также чувствительность к холину увеличивается с возрастом.


По материалам: DIFERENT

Если вы обнаружили ошибку на этой странице, выделите ее и нажмите Ctrl+Enter.

Ацетилхолин – это натуральное вещество, которое образуется в организме. Он относится к биогенным аминам. В передаче нервных импульсов в центральной нервной системе, в окончаниях двигательных и парасимпатических нервов, в вегетативных узлах принимает участие ацетилхолин. Действие ацетилхолина в организме нельзя переоценить.
Ацетилхолин замедляет сердечные сокращения, понижает давление, расширяет периферические кровеносные сосуды. Он усиливает перистальтику желудка и кишечника, усиливает секрецию желез, сокращает мышцы (мочевого и желчного пузырей, бронхов, матки), сужает зрачки.
Сосуды и ацетилхолин
Ацетилхолин значительно стимулирует мозговую деятельность: усиливает концентрацию внимания и память, в определенных дозировках улучшает сон, улучшает настроение. Кроме того, он способствует улучшению питания внутренних органов, мышц, клеток кожи за счет расширения мелких сосудов.
Увеличение уровня ацетилхолина часто помогало людям с сахарным диабетом, избежать таких серьезных осложнений, как диабетическая ангиопатия нижних конечностей, сосудов почек, сетчатки.
Кожа и ацетилхолин
Упругость кожи, ее тонус и внешний вид ацетилхолин повышает. Это происходит за счет того, что нормализуется скорость обновления клеток, регулируется кровообращение, лимфоток. А от этого, в свою очередь, улучшается питание клеток кожи и подкожной жировой клетчатки. Считается, что мезофлавон (природный источник ацетилхолина) способствует сжиганию жира, регулирует обмен жиров.
Зрение и ацетилхолин
Часто при глаукоме назначают синтетические препараты ацетилхолина. Под его действием зрачки сужаются, понижается внутриглазное давление, а это способствует лучшему оттоку жидкости из внутренних сред глаза.
Фитнес и ацетилхолин
При недостатке ацетилхолина не удастся эффективно тренироваться — мышцы будут вялыми. Действие ацетилхолин в организме человека способствует укреплению поперечнополосатой мускулатуры.
Мезофлавон (по рейтингу добавок для бодибилдинга) считается одним из лучших для повышения тонуса. Он просто необходим людям, заботящимся о своей фигуре. (об этом в следующих статьях)
Ацетилхолин синтетический и натуральный
Это очень важный момент, т.к. речь идет о применении средств, содержащих ацетилхолин, для омоложения кожи и организма в целом. А это подразумевает применение только природного вещества.
В медицинской практике при спазмах периферических сосудов, артерий сетчатки и в рентген-кабинетах применяется синтетический ацетилхолин.
Ацетилхолин — препарат сильнодействующий. Его нельзя самостоятельно использовать. Синтетический ацетилхолин похож на природный в самых общих чертах. Приблизительно, как кустарная и фирменная вещь.
Безопасно и эффективно можно использовать только мезофлавон, как источник ацетилхолина.

Ацетилхолин - не самое знаменитое вещество, но он играет важную роль в таких процессах, как память и обучение. Давайте приоткроем завесу тайны над одним из самых недооцененных нейромедиаторов нашей нервной системы.

Первый среди равных

Рисунок 1. Классический опыт Отто Лёви по выявлению химических посредников передачи нервных импульсов (1921 год). Объекты - изолированные и погруженные в солевой раствор сердцá двух лягушек (донора и реципиента). Описание приведено в тексте. Рисунок с сайта en.wikipedia.org , адаптирован .

В научно-популярной литературе медицинской и нейрофизиологической направленности чаще всего речь заходит о трех нейромедиаторах : дофамине , серотонине и норадреналине . Во многом это объясняется тем, что нормальные и болезненные состояния, связанные с изменением уровня этих нейротрансмиттеров, доступнее для понимания и вызывают больше интереса у читателей. Об этих веществах я уже писал, теперь настало время уделить внимание еще одному медиатору.

Речь пойдет об ацетилхолине , и это будет символично, учитывая, что он был первым открытым нейромедиатором. В начале XX века между учеными велся спор, каким способом передается сигнал от одной нервной клетки на другую. Одни считали, что электрический заряд, пробежав по одному нервному волокну, передается на другое по каким-то более тонким «проводам». Их оппоненты утверждали, что существуют вещества, которые переносят сигнал от одной нервной клетки к другой. В принципе, обе стороны оказались правы: существуют химические и электрические синапсы . Однако сторонники второй гипотезы оказались «правее» - химические синапсы преобладают в организме человека .

Чтобы разобраться в особенностях передачи сигнала от одной клетки к другой, физиолог Отто Лёви проводил простые, но изящные опыты (рис. 1). Он стимулировал электрическим током блуждающий нерв лягушки, что приводило к уменьшению частоты сердечных сокращений*. Затем жидкость, находящуюся вокруг этого сердца, Лёви собирал и наносил на сердце другой лягушки - и оно тоже замедлялось. Это доказывало существование некоего вещества, передающего сигнал от одних нервных клеток другим. Загадочное вещество Лёви назвал vagusstoff («вещество блуждающего нерва»). Сейчас мы знаем его под названием ацетилхолин. Вопросом химической синаптической передачи занимался и британец Генри Дейл , который обнаружил ацетилхолин еще раньше Лёви. В 1936 году оба ученых получили Нобелевскую премию по физиологии и медицине «за открытия, связанные с химической передачей нервных импульсов».

* - О том, как сокращается наше сердце - об автоматизме, дирижирующих пейсмейкерах и даже смешных каналах, - читайте в обзоре « » . - Ред.

Ацетилхолин (рис. 2) производится в нервных клетках из холина и ацетилкофермента-А (ацетил-КоА). За разрушение ацетилхолина отвечает фермент ацетилхолинэстераза , находящийся в синаптической щели; об этом ферменте будет подробный разговор позже. План строения ацетилхолинергической системы головного мозга схож со строением других нейромедиаторных систем (рис. 3). В стволе мозга существует ряд структур, выделяющих ацетилхолин, который поступает по аксонам в базальные ганглии головного мозга. Там есть свои ацетилхолиновые нейроны, чьи отростки расходятся широко по коре и проникают в гиппокамп .

Рисунок 3. Ацетилхолиновая система мозга. Мы видим, что в глубоких отделах головного мозга находятся скопления нервных клеток (в переднем мозге и стволе), которые посылают свои отростки в различные отделы коры и подкорковых областей. В конечных пунктах из нейронных окончаний выделяется ацетилхолин. Местные эффекты нейромедиатора различаются в зависимости от типа рецептора и его расположения. MS - медиальное ядро перегородки, DB - диагональная связка Брока, nBM - базальное магноцеллюлярное ядро (ядро Мейтнера); PPT - педункулопонтийное тегментальное ядро, LDT - латеральное дорсальное тегментальное ядро (оба ядра - в ретикулярной формации ствола мозга). Рисунок из , адаптирован.

Рецепторы ацетилхолина делятся на две группы - мускариновые и никотиновые . Стимуляция мускариновых рецепторов приводит к изменению метаболизма в клетке через систему G-белков* (метаботропные рецепторы ), а воздействие на никотиновые - к изменению мембранного потенциала (ионотропные рецепторы ). Это происходит благодаря тому, что никотиновые рецепторы связаны с натриевыми каналами на поверхности клеток. Экспрессия рецепторов различается в разных участках нервной системы (рис. 4).

* - О пространственных структурах нескольких представителей громадного семейства GPCR-рецепторов - мембранных рецепторов, действующих через активацию G-белка, - доступно рассказано в статьях: «Рецепторы в активной форме » (об активной форме родопсина) , «Структуры рецепторов GPCR „в копилку“ » (о дофаминовом и хемокиновом рецепторах) , «Рецептор медиатора настроения » (о двух серотониновых рецепторах) . - Ред.

Рисунок 4. Распределение мускариновых и никотиновых рецепторов в головном мозге человека. Рисунок с сайта , адаптирован .

Медиатор памяти и обучения

Ацетилхолиновая система головного мозга напрямую связана с таким явлением как синаптическая пластичность - способность синапса усиливать или снижать выделение нейромедиатора в ответ на увеличение или уменьшение его активности. Синаптическая пластичность является важным процессом для памяти и обучения , поэтому ученые стремились обнаружить его в отделе мозга, отвечающем за эти функции - в гиппокампе. Большое количество ацетилхолиновых нейронов направляет свои отростки в гиппокамп, и там они влияют на высвобождение нейромедиаторов из других нервных клеток . Способ осуществления этого процесса довольно простой: на теле нейрона и его пресинаптической части расположены различные никотиновые рецепторы (в основном, α 7 - и β 2 -типов). Их активация будет приводить к тому, что прохождение сигнала по иннервируемой клетке упростится, и он с большей вероятностью перейдет на следующий нейрон. Наибольшее влияние такого рода испытывают на себе ГАМК-ергические нейроны - нервные клетки, чьим нейромедиатором является γ-аминомасляная кислота .

ГАМК-ергические нейроны являются важной частью системы, генерирующей электрические ритмы нашего мозга. Эти ритмы можно записать и изучить при помощи электроэнцефалограммы - широкодоступного метода исследования в нейрофизиологии. Ритмы различной частоты обозначаются греческими буквами: 8–14 Гц - альфа-ритм, 14–30 Гц - бета-ритм и так далее. Использование стимуляторов ацетилхолиновых рецепторов приводит к тому, что в мозге возникает тета- (0,4–14 Гц) и гамма-ритм (30–80 Гц). Эти ритмы, как правило, сопровождают активную когнитивную деятельность. Стимуляция постсинаптических мускариновых ацетилхолиновых рецепторов, расположенных на нейронах гиппокампа (центра памяти) и префронтальной коры (центр сложных форм поведения), приводит к возбуждению этих клеток и генерации упомянутых выше ритмов. Они сопровождают различную когнитивную деятельность - например, выстраивание временнόй последовательности событий .

Гиппокамп и префронтальная кора играют важную роль в обучении. С точки зрения рефлексов любое обучение происходит двумя путями. Допустим, вы экспериментатор, и объектом вашего эксперимента является мышь. В первом случае в ее клетке зажигается свет (условный стимул), и грызун получает кусочек сыра (безусловный стимул) еще до того, как свет погаснет. Формирующийся рефлекс можно назвать задержанным . Во втором случае свет также зажигается, но мышь получает лакомство через некоторое время после выключения лампочки. Этот тип рефлекса называется следовым . Рефлексы второго типа зависят от осознанности стимулов больше, чем рефлексы первого типа. Угнетение активности ацетилхолинергической системы приводит к тому, что у животных не вырабатываются следовые рефлексы, хотя с задержанными проблем не возникает .

При сравнении секреции ацетилхолина в мозге крыс, у которых вырабатывали оба вида рефлексов, были получены интересные данные . У крыс, которые успешно справлялись с усвоением временнόй связи между условным и безусловным стимулом, обнаруживалось значительное увеличение уровня ацетилхолина в медиальной префронтальной коре (рис. 5) по сравнению с гиппокампом. Особенно существенной была разница в уровнях ацетилхолина у крыс, которые выработали следовый рефлекс. Те грызуны, которые не справились с обеими задачами, обнаруживали приблизительно равные уровни нейромедиатора в исследуемых отделах мозга (рис. 6). Исходя из этого можно заключить, что непосредственно в обучении бóльшую роль играет префронтальная кора, а гиппокамп сохраняет полученные знания .

Рисунок 5. Выброс ацетилхолина в гиппокампе (HPC) и префронтальной коре (PFC) крыс при успешной выработке рефлексов. Максимальный уровень ацетилхолина наблюдается в префронтальной коре при выработке следового рефлекса. Рисунок из .

Рисунок 6. Выброс ацетилхолина в гиппокампе (HPC) и префронтальной коре (PFC) крыс в случае «провала» в обучении. Регистрируется почти одинаковое содержание ацетилхолина в двух зонах вне зависимости от рефлекса. Рисунок из.

Рецепторы внимания

Рисунок 7. Многообразие ацетилхолиновых рецепторов (nAChR) в слоях префронтальной коры головного мозга. Рисунок из .

Для обучения важен не только интеллект или объем памяти, но и внимание. Без внимания даже самый успешный ученик будет двоечником. Ацетилхолин участвует также в процессах, регулирующих внимание.

Внимание - сфокусированное восприятие или обдумывание проблемы - сопровождается повышенной активностью в префронтальной коре. Ацетилхолиновые волокна направляются в лобную кору из глубоких отделов мозга. В связи с тем, что часто нам требуется быстрое переключение внимания, вполне логично, что в регуляции внимания участвуют никотиновые (ионотропные) рецепторы ацетилхолина, а не мускариновые, которые вызывают более медленные и преимущественно структурные изменения в нейронах. Повреждение ацетилхолиновых структур глубоких отделов мозга снижает активность медиальной префронтальной коры и нарушает внимание . Кроме того, взаимодействие глубоких ацетилхолиновых структур с префронтальной корой не ограничивается восходящими сигналами. Нейроны лобной коры также отправляют свои сигналы в нижележащие отделы, что позволяет создавать саморегулирующуюся систему поддержания внимания . Внимание поддерживается за счет воздействия ацетилхолина на пресинаптические и постсинаптические рецепторы (рис. 7).

При разговоре о никотиновых рецепторах и внимании возникает вопрос об улучшении когнитивных функций при помощи курения, то есть введения дополнительной дозы никотина, пусть и в виде сигаретного дыма . Ситуация здесь довольно ясная, и результаты не дают курильщикам лишнего аргумента в пользу их пагубного пристрастия. Никотин, пришедший извне, нарушает нормальное развитие мозга, что может приводить к расстройствам внимания (на долгие годы) . Если сравнивать курильщиков и некурящих, то у первых показатели внимания хуже, чем у их оппонентов . Улучшение внимания у курильщиков возникает в случае выкуривания сигареты после долгого воздержания, когда их плохое настроение и когнитивные проблемы улетучиваются вместе с дымом.

Лекарство для памяти

Если в норме ацетилхолинергическая система нашего мозга отвечает за память, внимание и обучение, то заболевания, при которых нарушается этот тип трансмиссии в нашем мозге, должны проявляться соответствующими симптомами: потерей памяти, снижением внимания и способности учиться новому. Здесь надо сразу оговориться, что в ходе нормального старения у подавляющего большинства людей снижается и способность к запоминанию нового, и живость ума в целом. Если эти нарушения выражены настолько, что мешают пожилому человеку заниматься повседневной деятельностью и удовлетворять свои повседневные потребности (обслуживать себя), то тогда врачи могут заподозрить деменцию . Если вы хотите узнать о деменции больше, то рекомендую начать с изучения информационного бюллетеня ВОЗ , посвященного этой патологии .

Строго говоря, деменция - это не отдельное заболевание, а синдром, встречающийся при ряде заболеваний. Одной из самых частых болезней, которая приводит к деменции, является болезнь Альцгеймера . Считается, что при болезни Альцгеймера в нервных клетках накапливается патологический белок β-амилоид , который и нарушает деятельность нервных клеток, что в итоге приводит к их гибели. Кроме этой теории существует ряд других, которые имеют свои доказательства. Вполне вероятно, что при болезни Альцгеймера в клетках головного мозга разных пациентов происходят неодинаковые процессы, но приводят они к схожим симптомам. Однако β-амилоид интересен тем, что он может подавлять эффект, производимый ацетилхолином на клетку через никотиновые рецепторы . Если у нас получится интенсифицировать ацетилхолинергическую передачу, то мы можем уменьшить проявления болезни и продлить самостоятельную жизнь человеку с деменцией.

К препаратам, используемым при деменции, относятся ингибиторы ацетилхолинэстеразы (АХЭ) - фермента, разрушающего ацетилхолин в синаптической щели. Применение ингибиторов АХЭ приводит к повышению содержания ацетилхолина в межнейронном пространстве и улучшению передачи сигнала. Исследование эффективности ингибиторов АХЭ при болезни Альцгеймера определило, что они способны уменьшить симптомы заболевания и замедлить его прогрессирование . Три наиболее применяемых препарата из этой группы - ривастигмин, галантамин и донепезил - сравнимы по эффективности и безопасности. Также существует небольшой, но успешный опыт применения ингибиторов АХЭ в лечении музыкальных галлюцинаций у пожилых людей .

При помощи ацетилхолина наш мозг обучается, фокусирует внимание на разных объектах и явлениях окружающего мира. Наша память «работает» на ацетилхолине, а его дефицит можно компенсировать при помощи лекарств. Надеюсь, что вам понравилось знакомство с ацетилхолином.

Литература

  1. Дофаминовые болезни ;
  2. Серотониновые сети ;
  3. Тайны голубого пятна ;
  4. Метроном: как руководить разрядами? ;
  5. Рецепторы в активной форме ;
  6. . Neurobiol. Learn. Mem. 87 (1), 86–92;
  7. Flesher M.M., Butt A.E., Kinney-Hurd B.L. (2011). Differential acetylcholine release in the prefrontal cortex and hippocampus during pavlovian trace and delay conditioning . Neurobiol. Learn. Mem. 96 (2), 181–191;
  8. Gill T.M., Sarter M., Givens B. (2000). Sustained visual attention performance-associated prefrontal neuronal activity: evidence for cholinergic modulation . J. Neurosci. 20 (12), 4745–4757;
  9. Sherman S.M. (2007). The thalamus is more than just a relay . Curr. Opin. Neurobiol. 17 (4), 417–422;
  10. Bloem B., Poorthuis R.B., Mansvelder H.D. (2014). Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity . Front. Neural. Circuits. 8 , 17. doi: 10.3389/fncir.2014.00017;
  11. Спасибо, дорогой Минздрав, что предупредил! ;Amyloid β-protein suppressed nicotinic acetylcholine receptor-mediated currents in acutely isolated rat hippocampal CA1 pyramidal neurons . Synapse . 67 (1), 11–20;
  12. Birks J. (2006). Cholinesterase inhibitors for Alzheimer’s disease . The Cochrane Library ;
  13. Kumar A., Singh A., Ekavali. (2015). A review on Alzheimer’s disease pathophysiology and its management: an update . Pharmacol. Rep. 67 (2), 195–203;
  14. Blom J.D., Coebergh J.A., Lauw R., Sommer I.E. (2015). Musical hallucinations treated with acetylcholinesterase inhibitors . Front. Psychiatry . 6 , 46. doi: 10.3389/fpsyt.2015.00046..

Механизм действия ацетилхолина

Холинэргические рецепторы (ацетилхолиновые рецепторы) - трансмембранные рецепторы, лигандом которых является ацетилхолин.

Ацетилхолин служит нейротрансмиттером как в пре-, так и в постганглионарных синапсах парасимпатической системы и в преганглионарных симпатических синапсах, в ряде постганглионарных симпатических синапсов, нервно-мышечных синапсах (соматическая нервная система), а также в некоторых участках ЦНС. Нервные волокна, выделяющие ацетилхолин из своих окончаний, называются холинергическими.

Синтез ацетилхолина происходит в цитоплазме нервных окончаний; запасы его хранятся в виде пузырьков в пресинаптических терминалях. Возникновение пресинаптического потенциала действия ведет к высвобождению содержимого нескольких сотен пузырьков в синаптическую щель. Ацетилхолин, выделяющийся из этих пузырьков, связывается со специфическими рецепторами на постсинаптической мембране, что повышает ее проницаемость для ионов натрия, калия и кальция и приводит к появлению возбуждающего постсинаптического потенциала. Действие ацетилхолина ограничивается путем его гидролиза с помощью фермента ацетилхолинэстеразы.

Специфические холинергические рецепторы с фармакологичесой точки зрения разделяются на никотиновые (Н-рецепторы) и мускариновые (М-рецепторы).

Ацетилхолиновый никотиновый рецептор является одновременно и ионным каналом, т.е. относится к рецепторам-каналоформером, тогда как ацетилхолиновый мускариновый рецепторотносится к классу серпентиновых рецепторов, осуществляющих передачу сигнала через гетеротримерные G - белки.

Холинорецепторы вегетативных ганглиев и внутренних органов различаются.

На постганглионарных нейронах и клетках мозгового вещества надпочечников располагаются N-холинорецепторы (чувствительные к никотину), а на внутренних органах - М-холинорецепторы (чувствительные к алкалоиду мускарину). Первые блокируются ганглиоблокаторами, вторые - атропином.

М-холинорецепторы подразделяются на несколько подтипов:

М1-холинорецепторы располагаются в ЦНС и, возможно, на нейронах парасимпатическихганглиев;

М2-холинорецепторы - на гладких и сердечной мышцах и клетках железистого эпителия.

М3-холинорецепторы располагаются на гладких мышцах и железах.

Селективным стимулятором М2-холинорецепторов служит бетанехол. Пример селективного блокатора М1-холинорецепторов - пирензепин. Этот препарат резко подавляет выработку HCl в желудке.

Стимуляция М2-холинорецепторов через Gi-белок приводит к ингибированию аденилатциклазы, а стимуляция М2-холинорецепторов через Gq-бeлок - к активации фосфолипазы С и образованию ИФ3 и ДАГ (рис. 70.5).

Стимуляция М3-холинорецепторов также приводит к активации фосфолипазы С. Блокатором этих рецепторов служит атропин.

Методами молекулярной биологии были выявлены и другие подтипы М-холинорецепторов, однако они пока недостаточно изучены.

Ацетилхолин (acetylcholine, Ach) [лат. acetum -- уксус, греч. chole -- желчь и лат. -in(e) -- суффикс, обозначающий "подобный"] -- уксусный эфир холина (см. Холин), нейромедиатор, передающий нервное возбуждение через синаптическую щель в парасимпатической нервной системе; синтезируется в тканях при участии холинацетилазы, гидролизуется ферментом ацетилхолинэстеразой. А. обнаружен также в составе некоторых растительных ядов. Впервые выделен из спорыньи в 1914 г. Г. Дейлом. За установление роли А. в передаче нервного импульса он совместно с О. Леви получил Нобелевскую премию за 1936 г.

Ацетилхолин действует через холинергические окончания нервов, концевые мионевральные пластинки и другие холинорецепторы. Находясь в белково-липоидном комплексе (прекурссор), ацетилхолин освобождается при электрическом и нервном возбуждении. Исследованиями Palay в 1956 г. с помощью электронной микроскопии показано накопление капель жидкости в порах синапса, часть из которых лопалась при прохождении нервного импульса. Полагают, что секретируемая жидкость -- ацетилхолин (теория пи-ноцитоза). Выделяясь в холинергических субстанциях сердца, ацетилхолин воздействует на сопредельные клеточные мембраны. Согласно современным взглядам, мебрана несет в покое определенный электрический заряд, обусловленный перераспределением иона К. Концентрация калия в покое много выше внутри клетки, нежели снаружи. Для натрия, наоборот, концентрация снаружи клетки велика, а внутри -- мала. Концентрация ионов натрия внутри клетки остается постоянной благодаря активному удалению его из клетки во время процесса, называемого "натриевым насосом". Калий же проникает на поверхность клетки, оставляя более массивный анион внутри ее, поэтому наружная поверхность клетки получает избыток положительных зарядов, внутренняя -- отрицательных. Чем больше катионов калия выйдет из клетки, тем выше оказывается заряд ее мембраны, и наоборот -- при замедлении выхода калия потенциал мембраны снижается. Прямые измерения потенциала покоя показали, что он равен в миокарде желудочков и предсердий приблизительно 90 мв, в синусовом узле 70 мв. Если по какой-либо причине потенциал мембраны снизится до 50 мв, резко меняются свойства мембраны и она пропускает внутрь клетки значительное количество ионов натрия. Тогда внутри клетки превалируют положительные ионы и мембранный потенциал меняет свой знак. Перезарядка (деполяризация) мембраны вызывает электрический потенциал действия. После сокращения восстанавливаются концентрации калия и натрия, свойственные состоянию покоя (реполяризация).

Установлено, что холинергические (парасимпатомиметические, парасимпатотропные, трофотропные) реакции возникают при действии ацетилхолина (или других соединений холина) на холинорецепторы, субклеточные образования, клетки, ткани, органы или организм в целом. Помимо своего основного (холинергического) действия, ацетилхолин вызывает освобождение калия, связанного белками, повышает или снижает проницаемость биологических мембран, принимает участие в регуляции избирательной проницаемости эритроцитов, изменяет активность отдельных дыхательных ферментов, влияет на активность катепсинов, на обновляемость фосфатной группы в фосфолипидах, на метаболизм макроэр-гических фосфорных соединений, повышает устойчивость отдельных тканей и организма в целом к гипоксии. Коштоянц высказал предположение, что, осуществляя медиаторное действие, ацетилхолин вступает в круг тканевых биохимических превращений.

Нормальный механизм автоматизма в сердце основан на спонтанном уменьшении потенциала синусового узла до --50 мв (генераторный потенциал). Это происходит в синусовом узле посредством особого метаболического процесса, основанного на снижении проницаемости мебраны для калия. Ацетилхолин, напротив, специфически увеличивает проницаемость для К мембраны синусового узла, тем самым повышая выход К и препятствуя развитию генераторного потенциала. Поэтому частота сердечных сокращений падает. Если же концентрацию ацетилхолина увеличить еще более, то генераторный потенциал развивается настолько медленно, что мембраны синусового узла теряют способность развивать потенциал действия (аккомодация мембраны). Наступает остановка сердца. Повышение проницаемости для калия под влиянием ацетилхолина обусловливает более быстрый процесс восстановления потенциала покоя мембраны (реполяризацию). Введенный ацетилхолин разносится кровью не всегда равномерно. Поэтому в предсердии этот процесс ускоренной реполяризации также может идти неравномерно, что при сохранившемся возбуждении синусового узла проявляется как трепетание и мерцание предсердий. Желудочки сердца, лишенные холинергических окончаний, остаются нечувствительными к ацетилхолину. Активация центров автоматизма II порядка (пучка Гиса) связана со свойством волокон Пуркинье развивать спонтанную деполяризацию так же, как это происходит в синусовом узле.

Немедиаторное действие ацетилхолина в целостном организме представляет один из наименее изученных и наиболее спорных разделов гуморально-гормональной регуляции функций. Установлено, что холинергические (парасимпатомиметические, парасимпатотропные, трофо-тропные) реакции возникают при действии ацетилхолина (или других соединений холина) на холинорецепторы, субклеточные образования, клетки, ткани, органы или организм в целом. Помимо своего основного (холинергического) действия, ацетилхолин вызывает освобождение калия, связанного белками, повышает или снижает проницаемость биологических мембран, принимает участие в регуляции избирательной проницаемости эритроцитов, изменяет активность отдельных дыхательных ферментов, влияет на активность катепсинов, на обновляемость фосфатной группы в фосфолипидах, на метаболизм макроэргических фосфорных соединений, повышает устойчивость отдельных тканей и организма в целом к гипоксии. Коштоянц высказал предположение, что, осуществляя медиаторное действие, ацетилхолин вступает в круг тканевых биохимических превращений. А торможение действия ацетилхолина в какой-то мере функционально эквивалентно увеличению концентрации дофамина.

Биохимический эффект ацетилхолина заключается в том, что его присоединение к рецептору открывает канал для прохождения ионов Na и К через мембрану клетки, что ведет к деполяризации мембраны. Блокирование действия ацетилхолина чревато серьезными проблемами, вплоть до смертельного исхода. Именно в этом заключается биохимическое действие нейротоксинов. Ниже показаны структуры двух наиболее сильных нейро-токсинов - хистрионикотоксина и хлорида D-тубокурарина. Как и ацетил-холин, молекула D-тубокурарина содержит аммониевые фрагменты. Она блокирует место присоединения ацетилхолина к рецептору, исключает передачу нервного сигнала, предотвращает перенос ионов через мембрану. Создается ситуация, называемая параличом живой системы.

Влияние ацетилхолина на сердце.

Холинергические механизмы. На наружной мембране кардиомиоцитов представлены, в основном, мускаринчувствительные (М-) холинорецепторы. Доказано наличие в миокарде и никотинчувствительных (N-) холинорецепторов, однако их значение в парасимпатических влияниях на сердце менее ясно. Плотность мускариновых рецепторов в миокарде зависит от концентрации мускариновых агонистов в тканевой жидкости. Возбуждение мускариновых рецепторов тормозит активность пейсмекерных клеток синусного узла и в то же время увеличивает возбудимость предсердных кардиомиоцитов. Эти два процесса могут привести к возникновению предсердных экстрасистол в случае повышения тонуса блуждающего нерва, например ночью во время сна. Таким образом, возбуждение М-холинорецепторов вызывает снижение частоты и силы сокращений предсердий, но повышает их возбудимость.

Ацетилхолин угнетает проводимость в атриовентрикулярном узле. Это связано с тем, что под влиянием ацетилхолина возникает гиперполяризация клеток атриовентрикулярного узла вследствие усиления выходящего калиевого тока. Таким образом, возбуждение мускариновых холинорецепторов оказывает противоположное, по сравнению с активацией B-адренорецепторов, действие на сердце. При этом снижается частота сердечных сокращений, угнетается проводимость и сократимость миокарда, а также потребление миокардом кислорода. Возбудимость предсердий в ответ на применение ацетилхолина возрастает, тогда как возбудимость желудочков, напротив, уменьшается.

Ацетилхолин относится к числу самых важных нейромедиаторов мозга. Самая выдающаяся роль ацетилхолина реализуется в нейромышечной передаче, где он является возбуждающим трансмиттером. Известно, что ацетилхолин может оказывать как возбуждающее, так и ингибирующее действие. Это зависит от природы ионного канала, который он регулирует при взаимодействии с соответствующим рецептором.

Нейротрансмиттер ацетилхолин высвобождается из везикул в пресинаптических нервных терминалях и связывается как с никотиновыми рецепторами, так и мускариновыми рецепторами на поверхности клетки. Эти два типа ацетихолиновых рецепторов значительно отличается как по структуре, так и по функциям.

Ацетилхолин - уксуснокислый эфир холина, является медиатором в нервно-мышечных соединениях, в пресинаптических окончаниях мотонейронов на клетках Реншоу, в симпатическом отделе вегетативной нервной системы - во всех ганглионарных синапсах, в синапсах мозгового вещества надпочечников и в постганглионарных синапсах потовых желез; в парасимпатическом отделе вегетативной нервной системы - также в синапсах всех ганглиев и в постганглионарных синапсах эффекторных органов. В ЦНС ацетилхолин обнаружен во фракциях многих отделов мозга, иногда в значительных количествах, однако центральных холинэргических синапсов обнаружить не удалось.

Ацетилхолин синтезируется в нервных окончаниях из холина, который поступает туда с помощью неизвестного пока транспортного механизма. Половина поступившего холина образуется в результате гидролиза ранее высвободившегося ацетилхолина, а остальная часть, по-видимому, поступает из плазмы крови. Фермент холин-ацетилтрансфераза образуется в соме нейрона и примерно за 10 дней транспортируется по аксону к пресинаптическим нервным окончаниям. Механизм поступления синтезированного ацетилхолина в синаптические пузырьки пока неизвестен.

По-видимому, лишь небольшая часть (15-20%) запаса ацетилхолина, который хранится в пузырьках, составляет фракцию немедленно доступного медиатора, готовую к высвобождению - спонтанно или под влиянием потенциала действия.

Депонированная фракция может мобилизоваться только после некоторой задержки. Это подтверждается, во-первых, тем, что вновь синтезированный ацетилхолин высвобождается примерно вдвое быстрее, чем ранее присутствовавший, во-вторых, при нефизиологически высоких частотах стимуляции количество ацетилхолина, высвобождаемое в ответ на один импульс, падает до такого уровня, при котором количество ацетилхолина, высвобождаемое в течение каждой минуты, остается постоянным. После блокады поглощения холина гемихолинием из нервных окончаний высвобождается не весь ацетилхолин. Следовательно, должна быть третья, стационарная фракция, которая, возможно, не заключена в синаптические пузырьки. Видимо, между этими тремя фракциями может происходить обмен. Гистологические коррелянты этих фракций еще не выяснены, но предполагают, что пузырьки, расположенные около синаптической щели, составляют фракцию немедленно доступного медиатора, тогда как остальные пузырьки соответствуют депонированной фракции или ее части.

На постсинаптической мембране ацетилхолин связывается со специфическими макромолекулами, которые называются рецепторами. Эти рецепторы, вероятно, представляют собой липопротеин с молекулярной массой около 300 000. Ацетилхолиновые рецепторы расположены только на наружной поверхности постсинаптической мембраны и отсутствуют в соседних постсинаптических областях. Плотность их составляет около 10 000 на 1 кв. мкм.

Ацетилхолин служит медиатором всех преганглионарных нейронов, постганглионарных парасимпатических нейронов, постганглионарных симпатических нейронов, иннервирующих мерокриновые потовые железы, и соматических нервов. Он образуется в нервных окончаниях из ацетил-КоA и холина под действием холинацетилтрансферазы. В свою очередь, холин активно захватывается пресинаптическими окончаниями из внеклеточной жидкости. В нервных окончаниях ацетилхолин хранится в синаптических пузырьках и высвобождается в ответ на поступление потенциала действия и вход двухвалентных ионов кальция. Ацетилхолин относится к числу самых важных нейромедиаторов мозга.

Если концевая пластинка подвергается действию ацетилхолина в течение нескольких сотен миллисекунд, то мембрана, деполяризованная вначале, постепенно реполяризуется, несмотря на постоянное присутствие ацетилхолина, то есть постсинаптические рецепторы инактивируются. Причины и механизм этого процесса пока не изучены.

Обычно действие ацетилхолина на постсинаптическую мембрану продолжается всего 1-2 мс, потому что часть ацетилхолина диффундирует из области концевой пластинки, а часть гидролизуется ферментом ацетилхолинэстеразой (т.е. расщепляется на неэффективные компоненты холин и уксусную кислоту). Ацетилхолинэстераза в больших количествах имеется в концевой пластинке (так называемая специфическая или истинная холинэстераза), однако холинэстеразы имеются также в эритроцитах (также специфические) и в плазме крови (неспецифические, т.е. расщепляют и другие эфиры холина). Поэтому ацетилхолин, который диффундирует из области концевой пластинки в окружающее межклеточное пространство и поступает в кровоток, тоже расщепляется на холин и уксусную кислоту. Большая часть холина из крови снова поступает в пресинаптические окончания.

Действие ацетилхолина на постсинаптическую мембрану постганглионарных нейронов может быть воспроизведено никотином, а на эффекторные органы - мускарином (токсин мухомора). В связи с этим возникла гипотеза о наличие двух типов макромолекулярных рецепторов ацетилхолина, и его действие на эти рецепторы называется никотиноподобным или мускариноподобным. Никотоноподобное действие блокируется основаниями, а мускариноподобное - атропином.

Вещества, действующие на клетки эффекторных органов так же, как холинэргические постганглионарные парасимпатические нейроны, называются парасимпатомиметическими, а вещества, ослабляющие действие ацетилхолина - парасимпатолитическими.

Список литературы

холинергический рецептор ацетилхолин нейрон

1. Харкевич Д.А. Фармакология. М.: ГЭОТАР-МЕД, 2004

2. Зеймаль Э.В., Шелковников С.А. - Мускариновые холинорецепторы

3. Сергеев П.В., Галенко-Ярошевский П.А., Шимановский Н.Л., Очерки биохимической фармакологии, М., 1996.

4. Хуго Ф. Нейрохимия, М, "Мир", 1990 г.

5. Сергеев П.В., Шимановский Н.Л., В.И. Петров, Рецепторы, Москва - Волгоград, 1999 г.

Ацетилхолин

Общие
Систематическое наименование N,N,N-триметил-2-аминоэтанола ацетат
Сокращения ACh
Химическая формула СH 3 CO 2 CH 2 CH 2 N(СH 3) 3
Эмпирическая формула C 7 H 16 N O 2
Физические свойства
Молярная масса 146.21 г/моль
Термические свойства
Классификация
Рег. номер CAS 51-84-3
Рег. номер PubChem 187
SMILES O=C(OCC(C)(C)C)C

Свойства

Физические

Бесцветные кристаллы или белая кристаллическая масса. Расплывается на воздухе. Легко растворим в воде и спирте. При кипячении и длительном хранении растворы разлагаются.

Медицинские

Периферическое мускариноподобное действие ацетилхолина проявляется в замедлении сердечных сокращений, расширении периферических кровеносных сосудов и понижении артериального давления , усилении перистальтики желудка и кишечника , сокращении мускулатуры бронхов, матки, желчного и мочевого пузыря, усилении секреции пищеварительных, бронхиальных, потовых и слёзных желез, миоз . Миотический эффект связан с усилением сокращения круговой мышцы радужной оболочки, которая иннервируется постганглионарными холинергическими волокнами глазодвигательного нерва . Одновременно в результате сокращения ресничной мышцы и расслабления цинновой связки ресничного пояска наступает спазм аккомодации.

Сужение зрачка, обусловленное действием ацетилхолина, сопровождается обычно понижением внутриглазного давления. Этот эффект частично объясняется тем, что при сужении зрачка и уплощении радужной оболочки расширяется шлеммов канал (венозный синус склеры) и фонтановы пространства (пространства радужно-роговичного угла), что обеспечивает лучший отток жидкости из внутренних сред глаза. Не исключено, что в понижении внутриглазного давления принимают участие и другие механизмы. В связи со способностью снижать внутриглазное давление вещества, действующие подобно ацетилхолину (холиномиметики, антихолинэстеразные препараты), имеют широкое применение для лечения глаукомы . Следует учитывать, что при введении этих препаратов в конъюктивальный мешок они всасываются в кровь и, оказывая резорбтивное действие, могут вызвать характерные для этих препаратов побочные явления. Следует также иметь в виду, что длительное (в течение ряда лет) применение миотических веществ может иногда привести к развитию стойкого (необратимого) миоза , образованию задних петехий и другим осложнениям, а длительное применение в качестве миотиков антихолинэстеразных препаратов может способствовать развитию катаракты .

Ацетилхолину принадлежит также важная роль как медиатору ЦНС . Он участвует в передаче импульсов в разных отделах мозга, при этом малые концентрации облегчают, а большие - тормозят синаптическую передачу . Изменения в обмене ацетилхолина могут привести к нарушению функций мозга. Недостаток его во многом определяет клиническую картину такого опасного нейродегенеративного заболевания, как болезнь Альцгеймера . Некоторые центральнодействующие антагонисты ацетилхолина (см. Амизил) являются психотропными препаратами (см. также Атропин). Передозировка антагонистов ацетилхолина может вызвать нарушения высшей нервной деятельности (оказывать галлюциногенный эффект и др.).

Применение

Общее применение

Для применения в медицинской практике и для экспериментальных исследований выпускается ацетилхолин-хлорид (лат. Acetylcholini chloridum ). Как лекарственное средство ацетилхолин-хлорид широкого применения не имеет.

Лечение

При приёме внутрь ацетилхолин неэффективен, так как он быстро гидролизуется. При парентеральном введении оказывает быстрый, резкий, но непродолжительный эффект. Как и другие четвертичные соединения, ацетилхолин плохо проникает через гематоэнцефалический барьер и не оказывает существенного влияния на ЦНС . Иногда пользуются ацетилхолином как сосудорасширяющим средством при спазмах периферических сосудов (эндартериит , перемежающаяся хромота, трофические расстройства в культях и т. д.), при спазмах артерий сетчатки . В редких случаях вводят ацетилхолин при атонии кишечника и мочевого пузыря. Ацетилхолин применяют также иногда для облегчения рентгенологической диагностики ахалазии пищевода.

Форма применения

Препарат назначают под кожу и внутримышечно в дозе (для взрослых) 0,05 г или 0,1 г. Инъекции в случае необходимости можно повторять 2-3 раза в день. При инъекции следует убедиться, что игла не попала в вену . Внутривенное введение не допускается из-за возможности резкого понижения артериального давления и остановки сердца .

Высшие дозы под кожу и внутримышечно для взрослых:

  • разовая 0,1 г,
  • суточная 0,3 г.

Опасность применения при лечении

При применении ацетилхолина следует учитывать, что он вызывает сужение венечных сосудов сердца. При передозировке могут наблюдаться резкое понижение артериального давления с брадикардией и нарушениями сердечного ритма , профузный пот , миоз , усиление перистальтики кишечника и другие явления. В этих случаях следует немедленно ввести в вену или под кожу 1 мл 0,1 % раствора атропина (при необходимости повторно) или другой холинолитический препарат (см. Метацин).

Участие в процессах жизнедеятельности

Образующийся в организме (эндогенный) ацетилхолин играет важную роль в процессах жизнедеятельности: он принимает участие в передаче нервного возбуждения в ЦНС , вегетативных узлах, окончаниях парасимпатических и двигательных нервов. Ацетилхолин связан с функциями памяти. Снижение ацетилхолина при болезни Альцгеймера приводит к ослаблению памяти у пациентов. Ацетилхолин играет важную роль в засыпании и пробуждении. Пробуждение происходит при увеличении активности холинергических нейронов в базальных ядрах переднего мозга и стволе головного мозга .

Физиологические свойства

Ацетилхолин является химическим передатчиком (медиатором) нервного возбуждения; окончания нервных волокон, для которых он служит медиатором, называются холинергическими, а рецепторы, взаимодействующие с ним, называют холинорецепторами. Холинорецептор (по современной зарубежной терминологии - «холиноцептор») является сложной белковой макромолекулой (нуклеопротеидом), локализованной на внешней стороне постсинаптической мембраны. При этом холинорецептор постганглионарных холинергических нервов (сердца, гладких мышц, желез) обозначают как м-холинорецепторы (мускариночувствительные), а расположенные в области ганглионарных синапсов и в соматических нервномышечных синапсах - как н-холинорецепторы (никотиночувствительнные). Такое деление связано с особенностями реакций, возникающих при взаимодействии ацетилхолина с этими биохимическими системами: мускариноподобных в первом случае и никотиноподобных - во втором; м- и н-холинорецепторы находятся также в разных отделах ЦНС .

По современным данным, мускариночувствительные рецепторы делят на М1-, М2- и М3-рецепторы, которые по-разному распределяются в органах и разнородны по физиологическому значению (см. Атропин , Пиренцепин).

Ацетилхолин не оказывает строгого избирательного действия на разновидности холинорецепторов. В той или другой степени он действует на м- и н-холинорецепторы и на подгруппы м-холинорецепторов. Периферическое никотиноподобное действие ацетилхолина связано с его участием в передаче нервных импульсов с преганглионарных волокон на постганглионарные в вегетативных узлах, а также с двигательных нервов на поперечнополосатую мускулатуру. В малых дозах он является физиологическим передатчиком нервного возбуждения, в больших дозах может вызвать стойкую деполяризацию в области синапсов и блокировать передачу возбуждения.

Противопоказания

Ацетилхолин противопоказан при бронхиальной астме , стенокардии , атеросклерозе , органических заболеваниях сердца, эпилепсии .

Форма выпуска

Форма выпуска: в ампулах ёмкостью 5 мл, содержащих 0,1 и 0,2 г сухого вещества. Препарат растворяют непосредственно перед применением. Вскрывают ампулу и шприцем вводят в неё необходимое количество (2-5 мл) стерильной воды для