Полиморфноядерные нейтрофилы обеспечивают основную защиту от. Нейтрофилы: палочкоядерные, сегментоядерные, повышенные и пониженные, у взрослых и детей

Полиморфноядерные лейкоциты представляют собой вид белых кровяных клеток, "лейко" означает "белый", а "цит" означает "клетку". Название «полиморфноядерный» означает внешний вид этих клеток, похожих на множество ядер, склеенных вместе. Полиморфноядерные лейкоциты также известны, как гранулоциты благодаря своей зернистой природе.

Полиморфноядерные лейкоциты делятся на три типа:

  1. базофилы,
  2. нейтрофилы,
  3. эозинофилы.

Названия этих клеток зависят от свойств их окрашивания, когда клетки окрашиваются таким образом, их легко можно увидеть под микроскопом. Базофилы окрашиваются в базофильные пятна, а эозинофилы легко окрашиваются химическим веществом, называемым эозином. Нейтрофилы не окрашиваются ни в кислотные, ни в базофильные пятна, их можно различить по мягкому окрасу.

Полиморфноядерные лейкоциты составляют около 70 процентов от всех белых кровяных клеток, образующихся в костном мозге, и они являются частью иммунной системы.

Клетки, которые их производят, называются миелобластами. Полиморфноядерные лейкоциты прежде чем стать лейкоцитами, проходят через стадии роста, их называют миелоцитами и метамиелоцитами. Клетки на ранних стадиях роста не реагируют на окрашивание так, как это делают более зрелые клетки, а также у них имеются различия в атомной структуре.

Нейтрофилы составляют около 60 процентов белых кровяных клеток , они примерно в два раза больше по размеру, чем красные кровяные тельца. Нейтрофилы содержат лизосомальные ферменты – вещества, которые расщепляют бактериальные клетки. Когда иммунная система начинает процесс воспаления при обнаружении инфекции, нейтрофилы по крови перемещаются к пораженной области. После чего они распознают бактерии антителами, которые служат иммунной системе в качестве маркера для уничтожения инфекции.

Эозинофилы встречаются реже, чем нейтрофилы, и составляют менее 6 процентов белых кровяных клеток в крови.

Несмотря на название полиморфноядерных лейкоцитов, их клетки не обязательно содержат множество ядер. Незрелые нейтрофилы имеют ядро ​​в форме полосы, а эозинофилы и базофилы могут также иметь лентообразные ядра. Эозинофилы же могут иметь только две доли в ядре.

Смотрите также на тему:

Нейтрофилы (NEUT) среди всех белых клеток крови занимают особое положение, они, ввиду своей численности, возглавляют список всего лейкоцитарного звена и – в отдельности.

Без нейтрофилов не обходится ни один воспалительный процесс, потому что их гранулы наполнены бактерицидными веществами, их мембраны несут рецепторы к иммуноглобулинам класса G (IgG), что позволяет им связывать антитела данной специфичности. Пожалуй, главной полезной чертой нейтрофилов является их высокая способность к фагоцитозу, нейтрофилы первыми приходят в воспалительный очаг и тут же приступают к ликвидации «аварии» – одна единственная нейтрофильная клеточка способна враз поглотить 20-30 угрожающих здоровью человека бактерий.

Юные, молодые, палочки, сегменты…

Кроме основной функции – фагоцитоза, где нейтрофилы выступают в качестве убийц, эти клетки в организме имеют и другие задачи: выполняют цитотоксическую функцию, участвуют в процессе свертывания (способствуют образованию фибрина), помогают формированию иммунного ответа на всех уровнях иммунитета (имеют рецепторы к иммуноглобулинам Е и G, к лейкоцитарным антигенам классов А, В, С системы HLA, к интерлейкину, гистамину, компонентам системы комплемента).

Как они работают?

Как было отмечено ранее, нейтрофилам свойственны все функциональные способности фагоцитов:

  • Хемотаксис (положительный – покинув кровеносный сосуд, нейтрофилы берут курс «на врага», «решительно двигаясь в место внедрения инородного объекта, отрицательный – движение направлено в обратную сторону);
  • Адгезия (способность сцепляться с чужеродным агентом);
  • Умение самостоятельно захватывать бактериальные клетки, не нуждаясь в специфических рецепторах;
  • Способность исполнять роль киллеров (убивают захваченные микробы);
  • Переваривать чужеродные клетки («наевшись», нейтрофил заметно увеличивается в размере).

Видео: нейтрофил борется с бактерией


Зернистость нейтрофилов дает им возможность (впрочем, как и другим гранулоцитам) накапливать большое количество различных протеолитических ферментов и бактерицидных факторов (лизоцим, катионные белки, коллагеназа, миелоперексидаза, лактоферрин и пр.), которые разрушают стенки бактериальной клетки и «расправляются» с ней. Однако подобная активность может затрагивать и клетки организма, в котором живет нейтрофил, то есть, собственные клеточные структуры, она их повреждает. Это говорит о том, что нейтрофилы, инфильтрируя воспалительный очаг, одновременно с разрушением инородных факторов, своими ферментами повреждают и ткани собственного организма.

Всегда и всюду первые

Причины повышения нейтрофилов не всегда связаны с какой-то патологией. Ввиду того, что данные представители лейкоцитов всегда стремятся быть первыми, то они будут реагировать на любые изменения в организме:

  1. Сытный обед;
  2. Интенсивный труд;
  3. Положительные и отрицательные эмоции, стресс;
  4. Предменструальный период;
  5. Ожидание ребенка (при беременности, во второй половине);
  6. Период родоразрешения.

Такие ситуации, как правило, остаются незамеченными, нейтрофилы повышены незначительно, а анализ в такой момент мы не бежим сдавать.

Другое дело, когда человек чувствует, что заболел и лейкоциты нужны в качестве диагностического критерия. Нейтрофилы повышены при следующих патологических состояниях:

  • Любые (какие только могут быть) воспалительные процессы;
  • Злокачественные заболевания (гематологические, солидные опухоли, метастазы в костный мозг);
  • Метаболическая интоксикация (эклампсия при беременности, сахарный диабет);
  • Оперативные вмешательства в первые сутки после операции (как реакция на травму), но высокие нейтрофилы на следующий день после хирургического лечения – нехороший признак (это говорит о том, что присоединилась инфекция);
  • Трансфузии.

Следует заметить, что при некоторых заболеваниях отсутствие ожидаемого лейкоцитоза (или еще хуже – нейтрофилы понижены) относят к неблагоприятным «приметам», например, нормальный уровень гранулоцитов при острой пневмонии не дает обнадеживающих перспектив.

В каких случаях количество нейтрофилов снижается?

Причины тоже довольно разнообразны, однако следует иметь в виду: речь идет о пониженных значениях, вызванных другой патологией либо воздействием некоторых лечебных мероприятий, или реально низких цифрах, что может говорить о тяжелых заболеваниях крови (угнетение кроветворения). Беспричинная нейтропения всегда требует обследования и тогда, возможно, причины найдутся. Это могут быть:

  1. Температура тела выше 38°С (ответная реакция на инфекцию затормаживается, уровень нейтрофилов падает);
  2. Заболевания крови (апластическая );
  3. Большая необходимость в нейтрофилах при тяжелых инфекционных процессах (брюшной тиф, бруцеллез);

  4. Инфекция при подавленной продукции зернистых лейкоцитов в костном мозге (у ослабленных больных или страдающих алкоголизмом);
  5. Лечение цитостатиками, применение лучевой терапии;
  6. Лекарственная нейтропения (нестероидные противовоспалительные препараты – НПВП, некоторые диуретики, антидепрессанты и др.)
  7. Коллагенозы (ревматоидный артрит, );
  8. Сенсибилизация лейкоцитарными антигенами (высокий титр лейкоцитарных антител);
  9. Виремия (корь, краснуха, грипп);
  10. Вирусный гепатит, ВИЧ;
  11. – нейтропения указывает на тяжелое течение и неблагоприятный прогноз;
  12. Реакция гиперчувствительности (коллапс, гемолиз);
  13. Эндокринная патология (нарушение функции щитовидной железы);
  14. Повышенный радиационный фон;
  15. Влияние токсических химических веществ.
  16. Чаще всего причинами пониженных нейтрофилов являются грибковые, вирусные (особенно) и бактериальные инфекции, а на фоне низкого уровня нейтрофильных лейкоцитов хорошо себя чувствуют все бактерии, заселяющие кожные покровы и проникающие в слизистые верхних дыхательных путей, желудочно-кишечного тракта – замкнутый круг.

    Иной раз сами зернистые лейкоциты являются причиной иммунологических реакций. Например, в редких случаях (при беременности) организм женщины в гранулоцитах ребенка видит нечто «чужое» и, пытаясь от него избавиться, начинает вырабатывать антитела, направленные на эти клетки. Такое поведение иммунной системы матери может негативно сказаться на здоровье новорожденного. Нейтрофильные лейкоциты в анализе крови ребенка будут снижены, а врачам придется объяснять маме, что такое изоиммунная неонатальная нейтропения .

    Аномалии нейтрофилов

    Чтобы понять, почему нейтрофилы так ведут себя в тех или иных ситуациях, следует лучше изучить не только характеристики, присущие здоровым клеткам, но и познакомиться с их патологическими состояниями, когда клетка вынуждена переживать необычные для себя условия или неспособна нормально функционировать из-за наследственных, генетически обусловленных дефектов:

    Приобретенные аномалии и врожденные дефекты нейтрофилов не лучшим образом сказываются на функциональных способностях клеток и на здоровье пациента, в крови которого обнаружены неполноценные лейкоциты. Нарушение хемотаксиса (синдром ленивых лейкоцитов), активности ферментов в самом нейтрофиле, отсутствие реакции со стороны клетки на поданный сигнал (дефект рецепторов) – все эти обстоятельства заметно снижают защитные силы организма. Клетки, которые должны быть первыми в очаге воспаления, сами «болеют», поэтому не знают, что их ждут или не могут выполнить возложенные на них задачи, даже если в таком состоянии прибудут на место «аварии». Вот такие они важные – нейтрофилы.

    Нейтрофильные гранулоциты или нейтрофилы , сегментоядерные нейтрофилы , нейтрофильные лейкоциты - подвид гранулоцитарных лейкоцитов , названный нейтрофилами за то, что при окраске по Романовскому они интенсивно окрашиваются как кислым красителем эозином , так и основными красителями, в отличие от эозинофилов , окрашиваемых только эозином, и от базофилов , окрашиваемых только основными красителями.

    Зрелые нейтрофилы имеют сегментированное ядро , то есть относятся к полиморфноядерным лейкоцитам, или полиморфонуклеарам.

    Зрелые сегментоядерные нейтрофилы в норме являются основным видом лейкоцитов, циркулирующих в крови человека , составляя от 47% до 72% общего количества лейкоцитов крови. Еще 1-5% в норме составляют юные, функционально незрелые нейтрофилы, имеющие палочкообразное сплошное ядро и не имеющие характерной для зрелых нейтрофилов сегментации ядра - так называемые палочкоядерные нейтрофилы.

    Нейтрофилы способны к активному амебоидному движению, к экстравазации (эмиграции за пределы кровеносных сосудов), и к хемотаксису (преимущественному движению в направлении мест воспаления или повреждения тканей).

    Повышение процента нейтрофилов в крови называется относительным нейтрофилезом , или относительным нейтрофильным лейкоцитозом . Повышение абсолютного числа нейтрофилов в крови называется абсолютным нейтрофилезом . Снижение процента нейтрофилов в крови называется относительной нейтропенией . Снижение абсолютного числа нейтрофилов в крови обозначается как абсолютная нейтропения .

    Нейтрофилы играют очень важную роль в защите организма от бактериальных и грибковых инфекций, и сравнительно меньшую - в защите от вирусных инфекций. В противоопухолевой или антигельминтной защите нейтрофилы практически не играют роли.

    Нейтрофильный ответ (инфильтрация очага воспаления нейтрофилами, повышение числа нейтрофилов в крови, сдвиг лейкоцитарной формулы влево с увеличением процента «юных» форм, указывающий на усиление продукции нейтрофилов костным мозгом) - самый первый ответ на бактериальные и многие другие инфекции. Нейтрофильный ответ при острых воспалениях и инфекциях всегда предшествует более специфическому лимфоцитарному. При хронических воспалениях и инфекциях роль нейтрофилов незначительна и преобладает лимфоцитарный ответ (инфильтрация очага воспаления лимфоцитами, абсолютный или относительный лимфоцитоз в крови).


    Wikimedia Foundation . 2010 .

    • Нейтрофил
    • Нейтроны

    Смотреть что такое "Нейтрофилы" в других словарях:

      НЕЙТРОФИЛЫ - (от лат. neuter ни тот ни др. и...фил) (микрофаги), один из типов лейкоцитов. Нейтрофилы способны к фагоцитозу мелких инородных частиц, в т. ч. бактерий, могут растворять (лизировать) омертвевшие ткани … Большой Энциклопедический словарь

      Нейтрофилы - основные фагоцитирующие (т. е. лпожирающие Источник: Медицинский словарь … Медицинские термины

      НЕЙТРОФИЛЫ - (от лат. neuter ни тот, ни другой и...фил), микрофаги, специальные лейкоциты, гетерофилы, одна из форм зернистых лейкоцитов (гранулоцитов) у позвоночных. Диам. 9 12 мкм. Зёрна Н. имеют нейтральную реакцию и поэтому не воспринимают ни кислые, ни… … Биологический энциклопедический словарь

      НЕЙТРОФИЛЫ - [от лат. neuter ни тот, ни другой и...фил (ы)], “нейтральные” виды, организмы, предпочитающие среду (почву, воду), имеющую нейтральную реакцию, т. е. рН = 7 7,5 (например, клевер, тимофеевка). Ср Ацидофилы. Экологический энциклопедический… … Экологический словарь

      нейтрофилы - (от лат. neuter ни тот ни другой и...фил) (микрофаги), один из типов лейкоцитов. Нейтрофилы способны к фагоцитозу мелких инородных частиц, в том числе бактерий, могут растворять (лизировать) омертвевшие ткани. * * * НЕЙТРОФИЛЫ НЕЙТРОФИЛЫ… … Энциклопедический словарь

    Рецензент

    Доктор медицинских наук

    Профессор В.Р.Вебер

    Архипов Г.С., Е.И.Архипова

    Основы иммунологии: Учебное пособие/НовГУ им.Ярослава Мудрого. – Великий Новгород, 2009. – 47 с.

    В пособии изложены структура и функции иммунной системы, закономерности иммунологической реакции при взаимодействии с антигеном, о также некоторые вопросы иммунопатологического состояния.

    Предназначено для студентов 1-6 курсов медицинских факультетов, а также для врачей лечебно-профилактических учреждений.

    Издание 3-е, дополненное

    ББК 28.073 (075)

    © Новгородский государственный

    Университет, 2009

    © Г.С.Архипов, Е.И.Архипова, 2009

    Иммунная система организма безус­ловно необходима для его выживания: без нее смерть от любой инфекции была бы практически неизбежна. Но даже безотносительно к своей жизненной важности иммунная система вызывает восхищение как пример изобретатель­ности Природы.

    Сосуму Тонегава

    Здоровая, нормально работающая иммунная система сама решает, как и чем лечить болезнь прицельно точно. Если мы научимся управлять иммунной системой, эта универсальная фармацевтическая фабрика произведет лекарство, необходимое организму в данный момент, там где нужно и сколько нужно…… Новая революция в медицине действительно на пороге.

    Р. В. Петров, академик АН и АМН России

    ВВЕДЕНИЕ

    Иммунитет – это совокупность биологических явлений (процессов и механизмов), направленных на сохранение посто­янства внутренней среды (гомеостаза) и защиту организма от ин­фекционных и других генетически чужеродных для него агентов.

    Иммунологическая защита осуществляется с помощью ряда раз­личных механизмов, которые можно разделить на две большие группы:

    1. Неспецифические механизмы иммунитета, наиболее филогене­тически древние, которые направлены против любого чужеродного агента.

    3. Регуляторные механизмы иммунного ответа, обусловленное большим количеством цитокинов, медиаторов, гормонов и других биологически активных веществ.

    ФАКТОРЫ И МЕХАНИЗМЫ НЕСПЕЦИФИЧЕСКОЙ ПРОТИВОИНФЕКЦИОННОИ ЗАЩИТЫ

    КОЖА И СЛИЗИСТЫЕ ОБОЛОЧКИ

    Простейший способ избежать инфицирования - это предотвра­тить проникновение возбудителя в организм. Главной линией “обороны” служит кожа, которая, оставаясь неповрежденной, непрони­цаема для большинства инфекционных агентов. Кроме того, вырабаты­ваемые потовыми и сальными железами молочная и жирные кислоты обладают бактерицидным действием, поэтому различные микроорга­низмы, не входящие в число постоянных обитателей кожных покровов, быстро исчезают с ее поверхности.

    Слизь, выделяемая стенками внутренних органов, действует как защитный барьер, препятствующий прикреплению бактерий к эпители­альным клеткам. За счет движения ресничек эпителия микробы вместе со слизью удаляются из организма. Аналогичным вымывающим дей­ствием обладают слезы, моча и слюна. Во многих секретах содержатся бактерицидные компоненты, такие как кис/юта в желудочном соке, спермин и цинк в сперме, лактопероксидаза в молоке, лизоцим в сле­зах, носовых выделениях и слюне.

    ЛИЗОЦИМ

    Лизоцим является одним из наиболее древних факторов противомикробной защиты. Он расщепляет мураминовую кислоту в составе оболочки чувствительных грамположительных микроорганизмов и в отдельных случаях может даже вызвать бактериолиз. Он синтезируется гранулоцитами, моноцитами и тканевыми макрофагами, может накапли­ваться в секреторных гранулах и лизосомах фагоцитов. При лизисе грамотрицательных бактерий лизоцим действует совместно с системой комплемента. В связи с этим он является важным фактором сыворо­точной бактерицидности, одновременно он присутствует также во всех жидкостях организма. Определение уровня его концентрации дает воз­можность оценить активность фагоцитарной системы. Снижение лизоцима наблюдается и при обострении хронических воспалительных за­болеваний

    НОРМАЛЬНАЯ МИКРОФЛОРА

    Нормальная микрофлора способствует созреванию иммунной системы и поддержанию ее в состоянии высокой функциональной ак­тивности, что показано при исследовании гнотобионтов – организмов, развивающихся в стерильных условиях. Выступая в качестве антаго­нистов, представители нормальной микрофлоры препятствуют адгезии, внедрению и размножению патогенных микроорганизмов. В то же вре­мя представители нормальной микрофлоры могут вызывать заболева­ния в случаях проникновения в большом количестве из одних биотопов в другие и при иммунодефицитах (дисбактериозы).

    ФАГОЦИТИРУЮЩИЕ КЛЕТКИ ОРГАНИЗМА

    Учение о фагоцитарной системе создано еще И. И. Мечниковым (1896). Под фагоцитозом понимают активное поглощение клетками твердого материала. У одноклеточных этот процесс служил в основном для питания. У многих многоклеточных организмов, включая человека, фагоцитоз служит, прежде всего, фундаментальным механизмом противоинфекционной защиты. Фагоциты представляют собой клетки с особо выраженной способностью поглощать микроорганизмы и другие внед­рившиеся в организм чужеродные вещества. Морфологически и функ­ционально различают моноцитарные (макрофаги) и гранулоцитарные (микрофаги) компоненты фагоцитарной системы. Макрофаги и микро­фаги имеют общее миелоидное происхождение от полипотентной ство­ловой клетки костного мозга. Для микрофагов характерно большое количество гранул в цитоплазме. По особенностям окрашивания разли­чают базофильные, эозинофильные и нейтрофильные гранулоциты (лейкоциты). Наиболее многочисленны среди лейкоцитов полиморфно-ядерные нейтрофилы. Ежедневно из костного мозга в кровь выходит 10 названных лейкоцитов, а при острых инфекциях это количество может возрастать в 10 – 70 раз, при этом в крови появляются и не зрелые формы (сдвиг формулы крови влево). Активность нейтрофилов тесно связана с гранулами, содержимое которых представлено фер­ментами и другими биологически активными веществами: бактерицид­ные ферменты, нейтральные протеиназы, кислотные гидролазы и про­чие вещества (лактоферрин, витамин В 12 -связывающий белок). С по­мощью этих вышеназванных ферментов и белков микрофаги осу­ществляют свою фагоцитирующую функцию.

    Макрофаги различных тканей организма (соединительной, пе­чени, легких и др.) вместе с моноцитами крови и их костномозговыми предшественниками (промоноциты и монобласты) объединены в особую систему мононуклеарных фагоцитов (СМФ). Концентрация моноцитов в крови относительно невелика по сравнению с гранулоцитами (1–6% и 60 – 70% соответственно), однако продолжительность жизни значи­тельно выше. В крови моноциты циркулируют до трех суток, а затем мигрируют в прилегающие ткани, где их количество в десятки раз больше, чем в крови. Здесь происходит окончательное созревание моноцитов либо в мобильные гистиоциты (тканевые макрофаги), либо в высокодифференцированные тканеспецифические макрофаги (альвео­лярные макрофаги легких, купферовские клетки печени).

    Рис.1. Мононуклеарная фагоцитарная система (первоначально включающая эндотелиальные и полиморфнондерные клетки под названием “ретикуло-эндотелиальная система”, или РЭС), Предшественники промоноцитов в костном мозге развиваются в циркулирующие моноциты крови, которые со временем распределяются по всему организму в виде зрелых макрофагов (МФ), как показано на рисунке. Другие основные фагоцитирующие клетки – полиморфноядерные нейтрофилы - главным образом остаются в крови, за исключением случаев их локализации в очагах острого воспаления

    Морфологическая гетерогенность клеток соответствует функцио­нальному разнообразию мононуклеарной системы. В отличие от полиморфноядерных нейтрофилов, которые обеспечивают основную защиту от пиогенных (гноеродных) бактерий, функция макрофагов в основном связана борьбой с теми бактериями, вирусами и простейшими, которые способны существовать внутри клеток хозяина. У клеток Лангерганса кожи, дендритных клеток селезенки имеется способность пере­рабатывать и представлять антиген клеткам иммунной системы. В этот момент он может быть узнан соответствующими Т-лимфоцитами. Мак­рофаги синтезируют и секретируют во внеклеточную среду большое количество различных белков и ферментов: нейтральные протеазы, кислые гидролазы, эндогенный пироген, факторы комплемента, интерлейкин и др.

    Макрофаги способны к передвижению, поглощению объектов фагоцитоза посредством опсонинов и мембранных рецепторов, обез­вреживанию его в лизосомах с помощью ферментов.

    Все фагоцитирующие клетки характеризуются общностью основ­ных функций, сходством структур и метаболических процессов. Разли­чают четыре последовательно протекающие стадии фагоцитоза:

    1. Хемотаксис целенаправленное передвижение фагоцитов в направлении градиента хемоаттрактантов благодаря наличию на мем­бране фагоцита специфических рецепторов. В качестве хемоаттрактан­тов могут выступать бактериальные компоненты, продукты некроза тканей организма, активированные фракции системы комплемента - С5а, СЗа, лимфокины.

    2. Адгезия - прикрепление фагоцита к мишени, может быть опосредован и не опосредован рецепторами.

    3. Эндоцитоз - захватывание, которое может происходить без участия рецепторов, например, при поглощении частичек угля и при участии рецепторов, как в случае поглощения многих бактерий, грибов рода Candida и др. Маннозофруктозные рецепторы фагоцитов узнают при этом углеводные компоненты поверхностных структур микроорга­низмов. Наиболее эффективным является фагоцитоз, опосредованный рецепторами для Fc-фрагмента иммуноглобулинов (см. ниже) и для фракции СЗ-комплемента. Эндоцитоз идет по принципу застежки “молния”.

    4. Внутриклеточное переваривание происходит в фаголизосомах в результате слияния с первичными лизосомами. Уничтожение микро­организма происходит в результате “окислительного взрыва” - вы­броса биологически активных продуктов восстановления кислорода, таких как перекись водорода, супероксидант молекулярного кислорода и гидроксильных радикалов, а также за счет кислороднезависимых механизмов, связанных с высвобождением лизоцима и гидролитических ферментов.

    Многие вирулентные бактерии часто не погибают и могут дли­тельное время персистировать внутри фагоцитов. Некоторые (токсоплазмы, микобактерии туберкулеза) могут препятствовать слия­нию фагосом с лизосомами; другие (гонококки, стафилококки, стреп­тококки гр. А) обладают устойчивостью к действию лизосомных фер­ментов; третьи после эндоцитоза покидают фагосому и избегают дейст­вия ферментов (риккетсии). В этих случаях фагоцитоз остается неза­вершенным.

    Макрофаги при поглощении антигена вырабатывают монокины - вещества, оказывающие регулирующее действие на пролиферацию, дифференциацию и функции фагоцитов, лимфоцитов, фибробластов и других клеток, например, интерлейкин-1, который стимулирует Т-лимфоциты и одновременно оказывает пирогенный эффект. Одновременно макрофаги секретируют лизоцим, компоненты комплемента, интерфероны, кислородные радикалы, благодаря которым могут убивать бакте­рии без фагоцитоза, а также оказывать цитотоксическое действие на раковые и аллотрансплантированные клетки.

    Общая функция фагоцитов заключается в представлении на своей наружной мембране фрагментов (антигенных эпитопов) захвачен­ных микроорганизмов. В таком виде возбудители специфически распо­знаются Т-лимфоцитами.

    Клеточная неспецифическая защита организма осуществляется двумя ка­тегориями клеток:

    1) фагоцитами;

    2) естественными киллерами (НК-клетками).

    Среди фагоцитов различают: а) профессиональные фагоциты; б) факуль­тативные фагоциты.

    К профессиональным фагоцитам относятся нейтрофилы, моноциты крови и фиксированные макрофаги тканей (клетки микроглии нервной ткани, макро­фаги печени, соединительной ткани, альвеолярные макрофаги лёгких, остеокла­сты костной ткани).

    Полиморфноядерные нейтрофилы (микрофаги) обеспечивают основную защиту организма от пиогенных бактерий. Макрофаги (моноциты крови, ткане­вые макрофаги) являются основными клетками в борьбе с бактериями, вируса­ми и простейшими, которые могут существовать внутри клеток.

    Макрофаги продуцируют целую гамму биологически активных веществ - регуляторов разнообразных физиологических процессов организма (Табл. 3-4).

    Т а б л и ц а 3-4. Продукты, синтезируемые и секретируемые макрофагами.

    Классы веществ Виды веществ
    Ферменты Лизоцим
    - нейтральные протеазы Активатор плазминогена, коллагеназа. эластаза, ангиотензин- конвертаза
    - кислые гидролазы Протеиназы, липазы, рибонуклеазы, глюкозидазы, фосфатазы, сульфатазы
    Ингибиторы ферментов a 1 -Макроглобулин, ингибиторы плазминогена
    Активные формы О 2 Н 2 О 2 ; О 2 - ; 1 О 2 ; ОН -
    Медиаторы липидов Метаболиты арахидоновой кислоты, ФАТ
    Хемотаксины для ПМН Лейкотриен В4, ФАТ, интерлейкин-1
    Эндогенный пироген Интерлейкин-1
    Факторы комплемента С1–С9, факторы В, D, пропердин, C31-INA, b1Н
    Связывающие и транс­портные белки Трансферрин, фибронектин, транскобаламин II
    Факторы, стимулирую­щие репликацию Интерлейкин-1 для лимфоцитов G-CSF, GM-CSF для гранулоцитов и моноцитов Ангиобластный фактор Фибробластный фактор
    Факторы, ингибирующие репликацию и оказы­вающие цитотоксичное действие a-Интерферон, фактор некроза опухолей, интерлейкин-1

    К факультативным фагоцитам относятся фибробласты соединительной ткани, эндотелиоциты синусов селезенки и печени, ретикулярные клетки кост­ного мозга, селезенки, лимфатических узлов, клетки Лангерганса кожи, эозинофилы крови.



    Фагоциты свое защитное действие реализуют через фагоцитоз и пиноцитоз. Фагоцитоз (пиноцитоз) представляет собой процесс активного поглощения чужеродного материала (Рис. 3-10).

    Р и с. 3-10. Процесс фагоцитоза тест-частиц нейтрофильными гранулоцитами.

    (К – клеточное ядро, aG – азурофилъная гранула, SpG - специфическая гранула, C3bR – мембранные ре­цепторы для СЗ - компонента комплемента, Fc R – мембранные рецепторы для Fc фрагмента IgG, R-L – лектинотропный рецептор.)

    Для разрушения поглощенных микроорганизмов и вирусов фагоцитирующие клетки используют кислородзависимые и кислороднезависимые меха­низмы (Табл. 3-5).

    Т а б л и ц а 3-5.Антимикробные системы в фагоцитарных вакуолях.

    (Микробицидные соединения выделены жирным шрифтом. О ` 2 – надпероксидный анион; 1 О 2 – синглетный (активный) кислород; ОН-свободный гидроксид).

    Кислородзависимые механизмы
    Гексозомоно фосфатный Пентозофосфат ù Вспышка
    Глюкоза + НАДФ + ¾¾¾¾¾¾® шунт +НАДФ·Н ÷ выделения О 2
    ÷ + образование
    Цитохром b -245 ÷ надпероксидных
    НАДФ·Н+ О 2 ¾¾¾¾¾¾® НАДФ + + O 2 - û анионов
    Спонтанная ù Спонтанное образование
    2O 2 - + 2Н + ¾¾¾¾¾¾® Н 2 О 2 + 1 О 2 ÷ последующих
    дисмутация ÷ микробицидных
    O 2 - + Н 2 О 2 ¾¾¾¾¾¾® НО + OH - + 1 О 2 û агентов
    Миелопероксидаза ù Миелопероксидаза гене­
    Н 2 О 2 + Cl - ¾¾¾¾¾¾® ОСl - + Н 2 О ÷ рирует образование
    ОСl - +Н 2 О ¾¾¾¾¾¾® 1 О 2 + Cl - + Н 2 О û микробицидных агентов
    Надпероксид-дисмутаза
    2О 2 - + 2Н + ¾¾¾¾¾¾® O 2 + Н 2 О 2 ù Защитные механизмы,
    Каталаза ÷ используемые хозяином
    2Н 2 О 2 ¾¾¾¾¾¾® 2Н 2 О + O 2 û при большом количестве
    микробов

    Фагоцитированные микробы под влиянием бактерицидных систем в большинстве случаев погибают внутри фагоцита. Такой процесс, сопровож­дающийся гибелью бактерий, называется завершенным фагоцитозом. В некото­рых случаях поглощенные микроорганизмы в результате пониженной бактери­цидной активности фагоцитов или высокой устойчивости микробов к действию бактерицидных факторов могут выживать и активно размножаться внутри фа­гоцитов, обусловливая хроническое воспаление или хроническое течение ин­фекции. Это явление получило название незавершенного фагоцитоза. Наблюда­ется оно при туберкулезе, бруцеллезе, туляремии, гонорее и других инфекциях.

    Другой категорией клеток, участвующих в неспецифической клеточной защите организма, являются НК-клетки. НК-клетки свое защитное действие реализуют через неспецифическое прямое цитотоксическое действие. Они способны вызвать цитолиз клеток трансплантата, опухолевых клеток, клеток, инфицированных вирусом. Своё ци­тотоксическое действие НК-клетки при взаимодействии с клеткой-мишенью реализуют через продукцию перфоринов и фрагментинов.