Использование химического анализа в медицине. Химия аналитическая

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ, 2014, том 69, № 4, с. 359-362

СТАТЬИ ОБЩЕГО ХАРАКТЕРА

ХИМИЧЕСКИМ АНАЛИЗ И МЕДИЦИНА © 2014 г. Ю. А. Золотов

Московский государственный университет имени М.В. Ломоносова 119991 Москва, Ленинские горы, 1, стр. 3 Поступила в редакцию 27.06.2013 г., после доработки 14.10.2013 г.

Рассмотрены основные направления использования химического анализа в медицине: при диагностике заболеваний, санитарно-гигиеническом контроле, допинг-контроле, прямой идентификации микроорганизмов, ДНК-анализе и др.

Ключевые слова: химический анализ в медицине, медицинская диагностика, санитарно-гигиенический контроль, допинг-контроль, геномный анализ.

DOI: 10.7868/S0044450214040173

Тема "Химический анализ и медицина" слишком широка, чтобы ее можно было осветить сколько-нибудь детально. Однако она выбрана сознательно: хотелось бросить общий взгляд на эту область, попытаться ее оконтурить и классифицировать, вычленить важнейшие направления.

Объектами химического анализа в рассматриваемой области являются биологические жидкости (кровь, моча, пот, слюна, слезы, грудное молоко, желудочный сок и другие); волосы, срезы ногтей; мягкие ткани; выдыхаемый воздух; газы, выделяемые организмом через кожу. Ну и, конечно, лекарственные вещества. Что касается болезней, при профилактике, диагностике и лечении которых применяется химический анализ, то это практически все патологические состояния (да и нормальные тоже, если речь идет о диспансеризации, о массовом скрининге). Однако особенно нужен анализ в случае социально опасных заболеваний - диабета, рака, сердечно-сосудистых и легочных болезней. Перечень веществ (аналитов), которые нужно обнаруживать и количественно определять, включает химические элементы и формы их существования (причем последние - чем дальше, тем больше); некоторые неорганические вещества, особенно газообразные и пероксид водорода, многочисленные низкомолекулярные органические соединения - глюкозу, холестерин, жирные кислоты, катехоламины и другие; биополимеры (белки, нуклеиновые кислоты, липиды и т.д.); субстанции лекарств и примеси в фармпрепаратах.

Методы анализа, используемые для решения медицинских задач, конечно, разнообразны по принципам действия и аналитическим характеристикам. Однако в ряде случаев существует стремление применять методы, "мягко" действу-

ющие на объект, как, например, ионизация электрораспылением в масс-спектрометрии по сравнению с электронной ионизацией. Кроме того, существенна нацеленность на неинвазивные методы, а также на методы, пригодные для массового применения, в том числе, с одной стороны, за счет автоматизации, а с другой, путем широкого использования простых и недорогих тестов. В ряде случаев существует стремление к "миниатюрным" методам и средствам, особенно для анализа in vivo, и даже к дистанционно действующим. Разумеется, очень востребованы и самые мощные современные методы анализа, как, скажем, ГХ-МС, ЖХ-МС, МС-ИСП, особенно в научных исследованиях.

Направления самой медицины, использующие химический анализ, довольно многочисленны, хотя и неодинаковы по важности. Рассмотрим их.

Химический анализ как средство диагностики.

Существо этого направления заключается в нахождении, обычно совместно с медиками, ве-ществ-мйркеров, появление которых или существенное изменение их содержания, или изменение соотношения, например, в биожидкостях или выдыхаемом воздухе, свидетельствуют о патологии. Коль скоро такие вещества найдены, практика будет состоять в определении этих веществ в конкретных образцах.

Чтобы найти вещества, содержание которых может служить показателем заболевания, обычно требуется систематическое исследование большого числа здоровых и больных людей (их органов, тканей, биологических жидкостей), набор большого массива данных, их математическая обработка, теперь, как правило, средствами хемо-метрики. Например, чтобы найти мйркеры рака

яичников, исследовали содержание 169 белков в плазме крови больших групп здоровых и больных женщин; было установлено, что концентрация четырех белков (лептина, пролактина и др.) у здоровых и больных отличается. На этой основе разработан диагностический тест; если результаты показывают, что концентрация, по крайней мере, двух белков из этих четырех лежит за пределами нормы, это с вероятностью 95% говорит о заболевании. Или еще один пример из сотен других: проанализированы пробы мочи 62 женщин, больных раком молочной железы, и 100 здоровых женщин на содержание измененных нуклеози-дов. Статистическая обработка результатов показала, что для этих групп женщин наблюдаются различия в содержании нуклеозидов, и диагностическая ценность этих различий достаточно высока.

Обычный клинический лабораторный анализ и массовый биохимический анализ сформировались на основе подобных объемистых исследований, проводившихся в течение десятилетий, и накопленного опыта.

Маркерами, индикаторами болезни могут служить низкомолекулярные неорганические и органические соединения (NO, NH3, CO, CH4, углеводороды, катехоламины, ацетон, сахара, органические кислоты); высокомолекулярные соединения органической природы - пептиды, многочисленные белки; отдельные химические элементы.

Значительный опыт накоплен, к примеру, по диагностике диабета путем контроля содержания глюкозы сначала в моче, потом в крови. Первые тесты на сахар в моче были созданы еще в XIX веке. Так, в 1841 г. Треммер предложил определять глюкозу в моче по реакции восстановления ме-ди(11) глюкозой в горячем щелочном растворе. Позднее для той же цели использовали бумагу, импрегнированную индигокармином; перед использованием бумажку смачивали щелочью. Потом были созданы гораздо более эффективные химические тест-средства, которые в ХХ веке выпускали многие фирмы. Современные же глюкоз-ные анализаторы имеют своим прародителем электрод Кларка - электрохимический сенсор для определения кислорода. В конце 50-х годов Кларк ввел в свой электрод глюкозоксидазу, что позволило определять глюкозу в крови с высокой чувствительностью. Первый массовый прибор для продажи создала фирма Yellow Springs Instrument. В настоящее время домашние глюкометры для определения глюкозы в крови составляют 95% мирового рынка электрохимических приборов. Известно, что при этом требуется очень малый объем крови, особенно в микрокулономет-рических глюкометрах, созданных А. Хеллером в Техасском университете (Остин, США). Решается, пока без особого успеха, задача определения

сахара в крови неинвазивным методом, т.е. вообще без отбора крови.

Для диагностики легочных заболеваний (да и не только легочных) перспективен анализ выдыхаемого воздуха. Еще древние врачи старались по запаху выдыхаемого воздуха определить, чем болен человек. Состав выдыхаемого воздуха начинал исследовать Лавуазье. В XIX веке в этом воздухе уже находили ацетон и этанол; большое число летучих органических веществ определял в выдыхаемом воздухе Лайнус Полинг в 70-х годах прошлого столетия, используя микроконцентрирование. Давно известно, что наличие ацетона в выдыхаемом воздухе служит признаком диабета. В последние годы анализу выдыхаемого воздуха уделяют много внимания и аналитики, и медики. Привлекаются разные методы, прежде всего газовая хромато-масс-спектрометрия, отчасти газовая хроматография с другими детекторами, а также лазерная спектроскопия.

Задача такого анализа довольно сложна, как минимум, по двум взаимосвязанным причинам. Во-первых, вещества, являющиеся маркерами заболеваний, могут находиться и в наружном воздухе, которым дышит пациент. Это означает, что необходимо не только проводить контрольные эксперименты, но и оценивать очень небольшие изменения в содержании этих веществ. Во-вторых, абсолютные количества выделяемых веществ-маркеров обычно очень малы, и обнаружить их можно лишь самыми чувствительными методами. Тем не менее, подобные определения не только возможны, но и уже осуществляются; данному направлению посвящены сотни работ.

При использовании хроматографических методов проблему решают, используя чаще всего сорбцию определяемых веществ, последующую термодесорбцию и определение газовой хромато-масс-спектрометрией. В исследовательском центре Менссана Рисерч (США) были исследованы пробы выдыхаемого воздуха нескольких десятков человек и обнаружено 3500 соединений, но только 27 из них были общими для всех обследованных людей. Самым распространенным летучим органическим компонентом выдыхаемого воздуха оказался изопрен - промежуточный продукт синтеза холестерина. Практически всегда в пробах присутствуют алканы, в том числе с большой молекулярной массой. Американское Агентство по пищевым продуктам и лекарственным препаратам (Food and Drug Administration) уже давно одобрило применение анализа выдыхаемого воздуха как теста для оценки состояния больных, перенесших операции на сердце.

С анализом выдыхаемого воздуха связывают и перспективы ранней диагностики рака легких. У больных в выдыхаемом воздухе возрастает концентрация алканов и метилалканов (С4-С20). Для

ХИМИЧЕСКИЙ АНАЛИЗ И МЕДИЦИНА

диагностики достаточно определить девять углеводородов: бутан, пентан, 3-метилтридекан, 7-метил-тридекан, 4-метилоктан, 3-метилгексан, гептан, 2-метилгексан, 5-метилдекан. Эти углеводороды присутствуют на уровне нано- или пикомолей, поэтому для их определения требуется предварительное концентрирование на адсорбентах, не поглощающих влагу.

Физики-спектроскописты для анализа выдыхаемого воздуха используют диодные лазеры, излучающие в ИК-диапазоне (Институт общей физики РАН). Этими методами можно определять, прежде всего, низкомолекулярные простые соединения, включая оксиды азота, аммиак, монооксид углерода, пероксид водорода, а также метан, метанол, этанол, сероуглерод и другие соединения в диапазоне от 0.1 до 10 мг/м3, а также проводить изотопный анализ (13С/12С).

Много работ посвящается оценке окислительного (оксидативного) стресса. Это та область, где профессиональные аналитики в России в последние годы активно работают.

БРУСНИКИНА ОЛЬГА АЛЕКСАНДРОВНА, ПЕСКОВ АНАТОЛИЙ НИКОЛАЕВИЧ - 2014 г.

  • МОРАЛЬНО-ЭТИЧЕСКИЕ, ПРАВОВЫЕ И МЕДИЦИНСКИЕ АСПЕКТЫ СТЕНДОВЫХ ИСПЫТАНИЙ И ПРАКТИЧЕСКОГО ВНЕДРЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ В СПОРТ ВЫСШИХ ДОСТИЖЕНИЙ

    ДРУЖИНИН А.Е., ОРДЖОНИКИДЗЕ Z.Г., РОЖКОВА Е.А., СЕЙФУЛЛА Р.Д. - 2008 г.

  • ХИМИЧЕСКИЙ АНАЛИЗ

    Аналитическая химия. Задачи и этапы химического ана­лиза. Аналитический сигнал. Классификации методов анали­ за. Идентификация веществ. Дробный анализ. Системати­ческий анализ.

    Основные задачи аналитической химии

    Одной из задач при проведении природоохранных меро­приятий является познание закономерностей причинно-след­ственных связей между различными видами человеческой деятельности и изменениями, происходящими в природной среде. Анализ - это главное средство контроля за загрязнен­ностью окружающей среды. Научной основой химического ана­лиза является аналитическая химия. Аналитическая химия - наука о методах и средствах определения химического состава веществ и материалов. Метод - это достаточно универсаль­ный и теоретически обоснованный способ определения состава.

    Основные требования к методам и методикам аналити­ческой химии:

    1) правильность и хорошая воспроизводимость;

    2) низкий предел обнаружения - это наименьшее содержа­ние, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной дове­рительной вероятностью;

    3) избирательность (селективность) - характеризует ме­шающее влияние различных факторов;

    4) диапазон измеряемых содержаний (концентраций) с по­мощью данного метода по данной методике;

    5)экспрессность;

    6) простота в анализе, возможность автоматизации, экономичность определения.

    Химический анализ - это сложный многостадийный про цесс, представляющий собой совокупность готовых приемов и соответствующих служб.

    Задачи анализа

    1. Идентификация объекта, т.е. установление природы объекта (проверка присутствия тех или иных основных компонентов, примесей).

    2. Количественное определение содержания того или иногокомпонента в анализируемом объекте.

    Этапы анализа любого объекта

    1. Постановка задачи и выбор метода и схемы анализа.

    2. Отбор проб (грамотный отбор части пробы позволяет сделать правильный вывод о составе всей пробы). Проба - эточасть анализируемого материала, представительно отра жающая его химический состав. В отдельных случаях в качестве пробы используют весь аналитический материал. Время хранения отобранных проб должно быть минималь ным. Условия и способы хранения должны исключать не контролируемые потери легколетучих соединений и любые другие физические и химические изменения в составе анализируемого образца.

    3. Подготовка проб к анализу: переведение пробы в нужное состояние (раствор, пар); разделение компонентов или от­деление мешающих; концентрирование компонентов;

    4. Получение аналитического сигнала. Аналитический сиг­нал - это изменение любого физического или физико-химического свойства определяемого компонента, функци­онально связанное с его содержанием (формула, таблица, график).

    5. Обработка аналитического сигнала, т.е. разделение сигнала и шумов. Шумы - побочные сигналы, возникающие в из­мерительных приборах, усилителях и других аппаратах.

    6. Применение результатов анализа. В зависимости от свой­ства вещества, положенного в основу определения, методы анализа подразделяются:

    На химические методы анализа, основанные на хими­ческой аналитической реакции, которая сопровожда­ется ярко выраженным эффектом. К ним относятся гравиметрический и титриметрический методы;

    - физико-химические методы, основанные на измере­нии каких-либо физических параметров химической системы, зависящих от природы компонентов системы и изменяющихся в процессе химической реакции (на­пример, фотометрия основана на изменении оптиче­ской плотности раствора в результате реакции);

    - физические методы анализа, не связанные с исполь­зованием химических реакций. Состав веществ уста­навливается по измерению характерных физических свойств объекта (например, плотность, вязкость).

    В зависимости от измеряемой величины все методы делятся на следующие виды.

    Методы измерения физических величин

    Измеряемая физическая величина

    Название метода

    Гравиметрия

    Титриметрия

    Равновесный потенциал электрода

    Потенциометрия

    Поляризационное сопротивление электрода

    Полярография

    Количество электричества

    Кулонометрия

    Электропроводность раствора

    Кондуктометрия

    Поглощение фотонов

    Фотометрия

    Испускание фотонов

    Эмиссионный спектральный анализ

    Идентификация веществ основывается на методах качественного распознавания элементарных объектов (атомом, молекул, ионов и др.), из которых состоят вещества и материалы.

    Очень часто анализируемую пробу вещества переводят в форму, удобную для анализа, путем растворения в подходящем растворителе (обычно это вода или водные растворы кислот) или сплавления с каким-либо химическим соединением с последующим растворением.

    Химические методы качественного анализа основаны на использовании реакций идентифицируемых ионов с опреде­ленными веществами - аналитическими реагентами. Такие реакции должны сопровождаться выпадением или растворением осадка; возникновением, изменением или исчезновением окраски раствора; выделением газа с характерным запахом; образованием кристаллов определенной формы.

    Реакции, протекающие в растворах, по способу выполнения классифицируются на пробирочные, микрокристаллоскопичсеские и капельные. Микрокристаллоскопические реакции проводят на предметном стекле. Наблюдают образование кристаллов характерной формы. Капельные реакции выполняют на фильтровальной бумаге.

    Аналитические реакции, применяемые в качественном анализе, по области применения делятся:

    1.) на групповые реакции - это реакции для осаждения целой группы ионов (применяется один реагент, который называется групповым);

    2;) характерные реакции:

    а) селективные (избирательные) - дают одинаковые или сходные аналитические реакции с ограниченным числом ионов (2~5 шт.);

    б) специфичные (высокоселективные) - избирательны по отношению к одному компоненту.

    Селективных и специфичных реакций немного, поэтому их применяют в сочетании с групповыми реакциями и со специальными приемами для устранения мешающего влиянии компонентов, присутствующих в системе наряду с определяемым веществом.

    Несложные смеси ионов анализируют дробным методом, без предварительного отделения мешающих ионов с помощью характерных реакций определяют отдельные ионы. Мешающий ион - это ион, который в условиях обнаружения искомого дает сходный аналитический эффект с тем же реак­тивом либо аналитический эффект, маскирующий нужную ре­акцию. Обнаружение разных ионов в дробном анализе проводят в отдельных порциях раствора. При необходимости устранения мешающих ионов пользуются следующими способами отделе­ния и маскировки.

    1. Перевод мешающих ионов в осадок. В основе лежит раз­личие в величине произведения растворимости получаю­щихся осадков. При этом ПР соединения определяемого иона с реагентом должно быть больше, чем ПР соединения мешающего иона.

    2. Связывание мешающих ионов в прочное комплексное соединение. Получаемый комплекс должен обладать необ­ходимой устойчивостью, чтобы осуществить полное связы­вание мешающего иона, а искомый ион - совсем не реаги­ровать с вводимым реагентом либо его комплекс должен быть непрочным.

    3. Изменение степени окисления мешающих ионов.

    4. Использование экстракции. Метод основан на извлечении из водных растворов мешающих ионов органическими растворителями и разделении системы на составные части (фазы), чтобы мешающий и определяемый компоненты были в разных фазах.

    Преимущества дробного анализа:

    Быстрота выполнения, так как сокращается время на дли­тельные операции последовательного отделения одних ионов от других;

    Дробные реакции легко воспроизводимы, т.е. их можно повторять несколько раз. Однако в случае трудности под­бора селективных (специфических) реакций обнаружения ионов, маскирующих реагентов, расчета полноты

    удаления ионов и других причин (сложность смеси) прибегают к выполнению систематического анализа.

    Систематический анализ - это полный (подробный) анализ исследуемого объекта, который проводится путем разделения всех компонентов в пробе на несколько групп в определенной последовательности. Деление на группы идет на основе сходства (внутри группы) и различия (между группами) аналитических свойств компонентов. В выделенной группе анализа применяется ряд последовательных реакций разделения, пока в одной фазе останутся лишь компоненты, дающие характер­ные реакции с селективными реагентами (рис. 23.1).

    Разработано несколько аналитических классификаций ка тионов и анионов на аналитические группы, в основе которых лежит применение групповых реагентов (т.е. реагентов для выделения в конкретных условиях целой группы ионов). Группповые реагенты в анализе катионов служат как для обнаружения, так и для разделения, а в анализе анионов - только для обнаружения (рис. 23.2).

    Анализ смесей катионов

    Групповыми реагентами в качественном анализе катионов являются кислоты, сильные основания, аммиак, карбонаты, фосфаты, сульфаты щелочных металлов, окислители и восстановители. Объединение веществ в аналитические группы осно­вано на использовании сходства и различий в их химических свойствах. К наиболее важным аналитическим свойствам отно­сятся способность элемента образовывать различные типы ионов, цвет и растворимость соединений, способность вступать в те или иные реакции.

    Групповые реагенты выбирают из общих реактивов, по­скольку необходимо, чтобы групповой реагент выделял относи­тельно большое число ионов. Основной способ разделения - осаждение, т.е. деление на группы, основано на различной раст­воримости осадков катионов в определенных средах. При рас­смотрении действия групповых реагентов можно выделить следующие группы (табл. 23.2).

    Кроме того, остаются три катиона (Na + , К + , NH4), не обра­зующие осадков с указанными групповыми реагентами. Их так­же можно выделить в отдельную группу.

    Группы катионов

    Помимо указанного общего подхода, при выборе групповых реагентов исходят из значений произведений растворимости осадков, так как, варьируя условия осаждения, можно разделить вещества из группы действием одного и того же реагента.

    Наибольшее распространение получила кислотно-ocновная классификация катионов. Достоинства кислотно-основного метода систематического анализа:

    а) используются основные свойства элементов - их отношение к кислотам, щелочам;

    б) аналитические группы катионов в большей степени со ответствуют группам периодической системы элементов Д.И. Менделеева;

    в) значительно сокращается время проведения анализа посравнению с сероводородным методом. Исследование начинают с предварительных испытаний, в которых устанавливают рН раствора по универсальному индикатору и обнаруживают ионы NH 4 , Fe 3+ , Fe 2+ специфическими и селективными реакциями.

    Разделение на группы. Общая схема деления на группы дана в табл. 23.3. В анализируемом растворе прежде всего отделяют катионы I и II групп. Для этого 10-15 капель раствора помещают в пробирку и добавляют по каплям смесь 2М HCl и 1М H 2 S0 4 . Оставляют осадок на 10 мин, затем его центрифугируют и промывают водой, подкисленной НС1. В осадке остается смесь хлоридов и сульфатов Ag + , Pb 2+ , Ва 2+ , Са 2+ . Возможно присутствие основных солей сурьмы. В растворе - катионы III-vi групп.

    Из раствора отделяют III группу прибавлением несколь­ких капель 3%-ного Н 2 0 2 и избытка NaOH при нагревании и пе­ремешивании. Избыток пероксида водорода удаляют кипяче­нием. В осадке - гидроксиды катионов IV-V групп, в раство­ре - катионы III и VI групп и частично Са 2+ , который может неполностью осадиться в виде CaS0 4 при отделении I и II групп.

    Из осадка отделяют катионы V группы. Осадок обрабаты­вают 2н Na 2 CO 3 и затем избытком NH 3 при нагревании. КатионыV группы переходят в раствор в виде аммиакатов, в осадке - карбонаты и основные соли катионов IV группы.

    Достоинство систематического анализа - получение достаточно полной информации о составе объекта. Недостаток - громоздкость, длительность, трудоемкость. Полностью схемы систематического качественного анализа осуществляются редко. Обычно их используют частично, если есть сведения о происхождении, приблизительном составе образца, a так же в учебных курсах аналитической химии.

    Гидроксид магния растворяется в смеси NH 3 + NH 4 C1. Таким образом, по­сле разделения катионов на группы получили четыре пробирки, содержа­щие а) осадок хлоридов и сульфатов катионов I-П групп; б) раствор смеси катионов III и VI групп; в) раствор аммиакатов катионов V группы; г) осадок карбонатов и основных солей катионов IV группы. Каждый из этих объек­тов анализируют отдельно.

    Анализ смесей анионов

    Общая характеристика изучаемых анионов. Aнионы образуются в основном элементами групп IV, V, VI и VII периодической системы. Один и тот же элемент может образовывать несколько анионов, отличающихся своими свойствами. Haпример, сера образует анионы S 2 -, S0 3 2 ~, S0 4 2 ~, S 2 0 3 2 ~ и др.

    Все анионы является составной частью кислот и соот ветствующих солей. В зависимости от того, в состав какого вещества входит анион, свойства его существенно меняются. Например, для иона SO 4 2 " в составе концентрированной cepной кислоты свойственны реакции окисления-восстановления, а в составе солей - реакции осаждения.

    Состояние анионов в растворе зависит от среды раствора. Некоторые анионы разлагаются при действии концентрированных кислот с выделением соответствующих газов: С0 2 (анион СО 2- 3), H 2 S (анион S 2 "), N0 2 (анион N0 3) и др. При действии разбавленных кислот анионы МоО 4 2- , W0 4 2 ~, SiO 3 2 " образуют не растворимые в воде кислоты (H 2 Mo0 4 , H 2 W0 4 * H 2 0, H 2 Si О 3 ). Анионы слабых кислот (С0 3 2 ~, Р0 4 ", Si0 3 2 ~, S 2 ") в водных растворах частично или полностью гидролизуются, например:

    S 2 " + H 2 0 →HS" + OH _ .

    Большинство элементов, образующих анионы, обладают переменной валентностью и при действии окислителей или восстановителей изменяют степень окисления, при этом меняется состав аниона. Хлорид-ион, например, можно окислить до С1 2 , СlО", СlO 3 , СlO 4 . Иодид-ионы, например, окисляются до I 2 , IO 4 ; сульфид-ион S 2 ~ - до S0 2 , SO 4 2- ; анионы N0 3 можно восстано-вить до N0 2 , NO, N 2 , NH 3 .

    Анионы-восстановители (S 2 ~, I - , CI -) восстанавливают в кислой среде ионы Мп0 4 - , вызывая их обесцвечивание. Ионы-окислители (NO 3 , CrO 4 2 ", V0 3 - , Mn0 4 ~) окисляют иодид-ионы в кислой среде до свободного иона, окрашивают дифениламин в синий цвет.Эти свойства используются для качественного анализа, окислительно-восстановительные свойства хромат-, нитрат-, йодид-, ванадат-, молибдат-, вольфрамат-ионов лежат в основе их характерных реакций.

    Групповые реакции анионов. Реагенты по своему действию па анионы разделяют на следующие группы:

    1) реактивы, разлагающие вещества с выделением газов. К таким реактивам относятся разбавленные минеральные кислоты (НС1, H 2 S0 4);

    2) реактивы, выделяющие анионы из растворов в виде мало-растворенных осадков (табл. 23.4):

    а) ВаС1 2 в нейтральной среде или в присутствии Ва(ОН) 2 осаждает: SO 2- , SO, 2 ", S 2 0 3 2 ~, СО 3 2 ", РО 4 2 ", В 4 0 7 2 ~, As0 3 4 ", SiO 3 2 ";

    б) AgNO 3 в 2н HNO 3 осаждает: СГ, Br - , I - , S 2- (SO 4 2 только в концентрированных растворах);

    3) реактивы-восстановители (KI) (табл. 23.5);

    4) реактивы-окислители (КМп0 4 , раствор I 2 в KI, НNО 3(конц) , H 2 S0 4).

    Анионы при анализе в основном не мешают обнаружению друг друга, поэтому групповые реакции применяют не для раз­деления, а для предварительной проверки наличия или отсут­ствия той или иной группы анионов.

    Систематические методы анализа смеси анионов, основан­ные на делении их на группы, используются редко, главным обра­зом для исследования несложных смесей. Чем сложнее смесь анионов, тем более громоздкими становятся схемы анализа.

    Дробный анализ позволяет обнаружить анионы, не мешаю­щие друг другу, в отдельных порциях раствора.

    В полусистематических методах имеет место разделение анионов на группы с помощью групповых реактивов и последующее дробное обнаружение анионов. Это приводит к сокра­щению числа необходимых последовательных аналитических операций и в конечном итоге упрощает схему анализа смеси анионов.

    Современное состояние качественного анализа не ограни­чивается классической схемой. В анализе как неорганических, так и органических веществ часто используются инструмен­тальные методы, такие как люминесцентный, абсорбционно-спектроскопический, различные электрохимические методы, «которые варианты хроматографии и т.д. Однако в ряде слу­чаев (полевые, заводские экспресс-лаборатории и др.) класси­ческий анализ ввиду простоты, доступности, дешевизны не утратил своего значения.

    Физико-химические или инструментальные методы анализа

    Физико-химические или инструментальные методы анализа основаны на измерении с помощью приборов (инструментов) физических параметров анализируемой системы, которые возникают или изменяются в ходе выполнения аналитической реакции.

    Бурное развитие физико-химических методов анализа было вызвано тем, что классические методы химического анализа (гравиметрия, титриметрия) уже не могли удовлетворять многочисленные запросы химической, фармацевтической, металлургической, полупроводниковой, атомной и других отраслей промышленности, требовавших повышения чувствительности методов до 10-8 – 10-9 %, их селективности и экспрессности, что позволило бы управлять технологическими процессами по данным химического анализа, а также выполнять их в автоматическом режиме и дистанционно.

    Ряд современных физико-химических методов анализа позволяют одно­временно в одной и той же пробе выполнять как качественный, так и количественный анализ компонентов. Точность анализа современных физико-химических методов сопоставима с точностью классических методов, а в некоторых, например в кулонометрии, она существенно выше.

    К недостаткам некоторых физико-химических методов следует отнести дороговизну используемых приборов, необходимость применения эталонов. Поэтому классические методы анализа по-прежнему не потеряли своего значения и применяются там, где нет ограничений в скорости выполнения анализа и требуется высокая его точность при высоком содержании анализируемого компонента.


    Классификация физико-химических методов анализа

    В основу классификации физико-химических методов анализа положена природа измеряемого физического параметра анализируемой системы, величина которого является функцией количества вещества. В соответствии с этим все физико-химические методы делятся на три большие группы:

    Электрохимические;

    Оптические и спектральные;

    Хроматографические.

    Электрохимические методы анализа основаны на измерении электрических параметров: силы тока, напряжения, равновесных электродных потенциалов, электрической проводимости, количе-ства электричества, величины которых пропорциональны содержанию вещества в анализируемом объекте.

    Оптические и спектральные методы анализа основаны на измерении параметров, характеризующих эффекты взаимодействия электромагнитного излучения с веществами: интенсивности излучения возбужденных атомов, поглощения монохроматического излучения, показателя преломления света, угла вращения плоскости поляризованного луча света и др.

    Все эти параметры являются функцией концентрации вещества в анали­зируемом объекте.

    Хроматографические методы - это методы разделения однородных многокомпонентных смесей на отдельные компоненты сорбционными методами в динамических условиях. В этих условиях компоненты распределяются между двумя несмешивающимися фазами: подвижной и неподвижной. Распределение компонентов основано на различии их коэффициентов распределения между подвижной и неподвижной фазами, что при- водит к различным скоростям переноса этих компонентов из неподвижной в подвижную фазу. После разделения количественное содержание каждого из компонентов может быть определено различными методами анализа: классическими или инструментальными.

    Молекулярно-абсорбционный спектральный анализ

    Молекулярно-абсорбционный спектральный анализ включает в себя спектрофотометрический и фотоколориметрический виды анализа.

    Спектрофотометрический анализ основан на определении спектра поглощения или измерении светопоглощения при строго определенной длине волны, которая соответствует максимуму кривой поглощения исследуемого вещества.

    Фотоколориметрический анализ базируется на сравнении интенсивности окрасок исследуемого окрашенного и стандартного окрашенного растворов определенной концентрации.

    Молекулы вещества обладают определенной внутренней энергией Е, составными частями которой являются:

    Энергия движения электронов Еэл находящихся в электростати-ческом поле атомных ядер;

    Энергия колебания ядер атомов друг относительно друга Е кол;

    Энергия вращения молекулы Е вр

    и математически выражается как сумма всех указанных выше энергий:

    При этом, если молекула вещества поглощает излучение, то ее первона­чальная энергия Е 0 повышается на величину энергии поглощенного фотона, то есть:


    Из приведенного равенства следует, что чем меньше длина волны λ, тем больше частота колебаний и, следовательно, больше Е, то есть энергия, сообщенная молекуле вещества при взаимодействии с электромагнитным излучением. Поэтому характер взаимодействия лучевой энергии с веществом в зависимости от длины волны света λ будет различен.

    Совокупность всех частот (длин волн) электромагнитного излучения называют электромагнитным спектром. Интервал длин волн разбивают на области: ультрафиолетовая (УФ) примерно 10-380 нм, видимая 380-750 нм, инфракрасная (ИК) 750-100000 нм.

    Энергии, которую сообщают молекуле вещества излучения УФ- и види­мой части спектра, достаточно, чтобы вызвать изменение электронного состояния молекулы.

    Энергия ИК-лучей меньше, поэтому ее оказывается достаточно только для того, чтобы вызвать изменение энергии колебательных и вращательных переходов в молекуле вещества. Таким образом, в различных частях спектра можно получить различную информацию о состоянии, свойствах и строении веществ.

    Законы поглощения излучения

    В основе спектрофотометрических методов анализа лежат два основных закона. Первый из них - закон Бугера – Ламберта, второй закон - закон Бера. Объединенный закон Бугера - Ламберта – Бера имеет следующую формулировку:

    Поглощение монохроматического света окрашенным раствором прямо пропорционально концентрации поглощающего свет вещества и толщине слоя раствора, через который он проходит.

    Закон Бугера - Ламберта - Бера является основным законом светопоглощения и лежит в основе большинства фотометрических методов анализа. Математически он выражается уравнением:


    или

    Величину lg I / I 0 называют оптuческой плотностью поглощающего вещества и обозначают буквами D или А. Тогда закон можно записать так:

    Отношение интенсивности потока монохроматического излучения, про­шедшего через испытуемый объект, к интенсивности первоначального потока излучения называется прозрачностью, или пропусканием, раствора и обозначается буквой Т: Т = I / I 0

    Это соотношение может быть выражено в процентах. Величина Т, характеризующая пропускание слоя толщиной 1 см, называется коэффициентом пропускания. Оптическая плотность D и пропускание Т связаны между собой соотношением

    D и Т являются основными величинами, характеризующими поглощение раствора данного вещества с определенной его концентрацией при определенной длине волны и толщине поглощаю­щего слоя.

    Зависимость D(С) имеет прямолинейный характер, а Т(С) или Т(l) - экспоненциальный. Это строго соблюдается только для монохроматических потоков излучений.

    Величина коэффициента погашения К зависит от способа выражения концентрации вещества в растворе и толщины поглощающего слоя. Если концентрация выражена в молях на литр, а толщина слоя - в сантиметрах, то он называется молярным коэффициентом погашения, обозначается символом ε и равен оптической плотности раствора с концентрацией 1 моль/л, помещенного в кювету с толщиной слоя 1 см.

    Величина молярного коэффициента светопоглощения зависит:

    От природы растворенного вещества;

    Длины волны монохроматического света;

    Температуры;

    Природы растворителя.

    Причины несоблюдения закона Бyгера - Ламберта - Бера.

    1. Закон выведен и справедлив только для монохроматического света, поэтому недостаточная монохроматизация может вызвать отклонение закона и тем в большей степени, чем меньше монохроматизация света.

    2. В растворах могут протекать различные процессы, которые изменяют концентрацию поглощающего вещества или его природу: гидролиз, ионизация, гидратация, ассоциация, полимеризация, комплексообразование и др.

    3. Светопоглощение растворов существенно зависит от рН раствора. При изменении рН раствора могут изменяться:

    Степень ионизации слабого электролита;

    Форма существования ионов, что приводит к изменению светопоглощения;

    Состав образующихся окрашенных комплексных соединений.

    Поэтому закон справедлив для сильно разбавленных растворов, и область его применения ограничена.

    Визуальная колориметрия

    Интенсивность окраски растворов можно измерять различными методами. Среди них выделяют субъективные (визуальные) методы колориметрии и объективные, то есть фотоколориметрические.

    Визуальными называют такие методы, при которых оценку интенсивности окраски испытуемого раствора делают невооруженным глазом. При объективных методах колориметрического определения для измерения интенсивности окраски испытуемого раствора вместо непосредственного наблюдения пользуются фотоэлементами. Определение в этом случае проводят в специальных приборах - фотоколориметрах, поэтому метод получил название фотоколориметрического.

    Цвета видимого излучения:

    К визуальным методам относятся:

    - метод стандартных серий;

    - метод колориметрического титрования, или дублирования;

    - метод уравнивания.

    Метод стандартных серий. При выполнении анализа методом стандартных серий интенсивность окраски анализируемого окрашенного раствора сравнивают с окрасками серии специально приготовленных стандартных растворов (при одинаковой толщине слоя).

    Метод колориметрического титрования (дублирования) основан на сравнении окраски анализируемого раствора с окраской другого раствора - контрольного. Контрольный раствор содержит все компоненты исследуемого раствора, за исключением определяемого вещества, и все использовавшиеся при подготовке пробы реактивы. К нему добавляют из бюретки стандартный раствор определяемого вещества. Когда этого раствора будет добавлено столько, что интенсивности окраски контрольного и анализируемого растворов уравняются, считают, что в анализируемом растворе содержится столько же определяемого вещества, сколько его было введено в контрольный раствор.

    Метод уравнивания отличается от описанных выше визуальных колориметрических методов, в которых подобие окрасок стандартного и испытуемого растворов достигается изменением их концентрации. В методе уравнивания подобие окрасок достигается изменением толщины слоев окрашенных растворов. Для этой цели при определении концентрации веществ используют колориметры сливания и погружения.

    Достоинства визуальных методов колориметрического анализа:

    Техника определения проста, нет необходимости в сложном дорогостоящем оборудовании;

    Глаз наблюдателя может оценивать не только интенсивность, но и оттенки окраски растворов.

    Недостатки:

    Необходимо готовить стандартный раствор или серии стандартных растворов;

    Невозможно сравнивать интенсивность окраски раствора в присутствии других окрашенных веществ;

    При длительном сравнивании интенсивности окраски глаз человека утомляется, и ошибка определения увеличивается;

    Глаз человека не столь чувствителен к небольшим изменениям оптической плотности, как фотоэлектрические устройства, вследствие это­го невозможно обнаружить разницу в концентрации примерно до пяти относительных процентов.


    Фотоэлектроколориметрические методы

    Фотоэлектроколориметрия применяется для измерения поглощения света или пропускания окрашенными растворами. Приборы, используемые для этой цели, называются фотоэлектроколориметрами (ФЭК).

    Фотоэлектрические методы измерения интенсивности окраски связаны с использованием фотоэлементов. В отличие от приборов, в которых сравнение окрасок производится визуально, в фотоэлектроколориметрах приемником световой энергии является прибор – фотоэлемент. В этом приборе световая энергия преобразует в электрическую. Фотоэлементы позволяют проводить колориметрические определения не только в видимой, но также в УФ- и ИК-областях спектра. Измерение световых потоков с помощью фотоэлектрических фотометров более точно и не зависит от особенностей глаза наблюдателя. Применение фотоэлементов позволяет автоматизировать определение концентрации веществ в химическом контроле технологических процессов. Вследствие этого фотоэлектрическая колориметрия значительно шире используется в практике заводских лабораторий, чем визуальная.

    На рис. 1 показан обычный порядок расположения узлов в приборах для измерения пропускания или поглощения растворов.

    Рис.1 Основные узлы приборов для измерения поглощения излучения: 1 - источник излучения; 2 - монохроматор; 3 - кюветы для растворов; 4 - преобразователь; 5 - индикатор сигнала.

    Фотоколориметры в зависимости от числа используемых при измерениях фотоэлементов делятся на две группы: однолучевые (одноплечие) - приборы с одним фотоэлементом и двухлучевые (двуплечие) - с двумя фотоэлементами.

    Точность измерений, получаемая на однолучевых ФЭК, невелика. В заводских и научных лабораториях наиболее широкое распространение получил фотоэлектрические установки, снабженные двумя фотоэлементами. В основу конструкции этих приборов положен принцип уравнивания интенсивности двух световых пучков при помощи переменной щелевой диафрагмы, то есть принцип оптической компенсации двух световых потоков путем изменений раскрытия зрачка диафрагмы.

    Принципиальная схема прибора представлена на рис. 2. Свет от лампы накаливания 1 с помощью зеркал 2 разделяется на два параллельных пучка. Эти световые пучки проходят через светофильтры 3, кюветы с растворами 4 и попадают на фотоэлементы 6 и 6", которые включены на гальванометр 8 по дифференциaльнoй схеме. Щелевая диафрагма 5 изменяет интенсивность светового потока, падающего на фотоэлемент 6. Фотометрический нейтральный клин 7 служит для ослабления светового потока, падающего на фотоэлемент 6".

    Рис.2. Схема двухлучевого фотоэлектроколориметра


    Определение концентрации в фотоэлектроколориметрии

    Для определения концентрации анализируемых веществ в фотоэлектроколориметрии применяют:

    Метод сравнения оптических плотностей стандартного и исследуемого окрашенных растворов;

    Метод определения по среднему значению молярного коэффициента светопоглощения;

    Метод градуировочного графика;

    Метод добавок.

    Метод сравнения оптических плотностей стандартного и исследуемого окрашенных растворов

    Для определения готовят эталонный раствор определяемогo вещества известной концентрации, которая приближается к концентрацииисследуемого раствора. Определяют оптическую плотность этого раствора при определенной длине волны D эт. Затем определяют оптическую плотность исследуемого раствора D х при той же длине волны и при той же толщине слоя. Сравнивая значения оптических плотностей исследуемого и эталонного растворов, находят неизвестную концентрацию определяемого вещества.

    Метод сравнения применим при однократных анализах и требует обязательного соблюдения основного закона светопоглощения.

    Метод градуировочноro графика. Для определения концентрации вещества этим методом готовят серию из 5-8 стандартных растворов различной концентрации. При выборе интервала концентраций стандартных растворов руководствуются следующими положениями:

    * он должен охватывать область возможных измерений концентрации исследуемого раствора;

    * оптическая плотность исследуемого раствора должна соответствовать примерно середине градуировочной кривой;

    * желательно, чтобы в этом интервале концентраций соблюдался основной закон светопоглощения, то есть график зависимости был прямолинейным;

    * величина оптической плотности должна находиться в пределах 0,14… 1,3.

    Измеряют оптическую плотность стандартных растворов и строят график зависимости D(С) . Определив D х исследуемого раствора, по градуировочному графику находят С х (рис. 3).

    Этот метод позволяет определить концентрацию вещества даже в тех случаях, когда основной закон светопоглощения не соблюдается. В таком случае готовят большое количество стандартных растворов, отличающихся по концентрации не более чем на 10 %.

    Рис. 3. Зависимость оптической плотности раствора от концентрации (калибровочная кривая)

    Метод добавок - это разновидность метода сравнения, осно-ванный на сравнении оптической плотности исследуемого раствора и того же раствора с добавкой известно количества определяемого вещества.

    Применяют его для устранения мешающего влияния посторонних примесей, определения малых количеств анализируемого вещества в присутствии больших количеств посторонних веществ. Метод требует обязательного соблюдения основного закона свето-поглощения.

    Спектрофотометрия

    Это метод фотометрического анализа, в котором определение содержания вещества производят по поглощению им монохроматического света в видимой, УФ- и ИК-областях спектра. В спектрофотометрии, в отличие от фотометрии, монохроматизация обеспечивается не светофильтрами, а монохроматорами, позволяющими непрерывно изменять длину волны. В качестве монохроматоров используют призмы или дифракционные решетки, которые обеспечивают значительно более высокую монохроматичность света, чем светофильтры, поэтому точность спектрофотометрических определений выше.

    Спектрофотометрические методы, по сравнению с фотоколориметрическими, позволяют решать более широкий круг задач:

    * проводить количественное определение веществ в широком интервал длин волн (185-1100 нм);

    * осуществлять количественный анализ многокомпонентных систем (одновременное определение нескольких веществ);

    * определять состав и константы устойчивости светопоглощающих комплексных соединений;

    * определять фотометрические характеристики светопоглощающих соединений.

    В отличие от фотометров монохроматором в спектрофо-тометрах служит призма или дифракционная решетка, позволяя-ющая непрерывно менять длину волны. Существуют приборы для измерений в видимой, УФ- и ИК-областях спектра. Принципи-альная схема спектрофотометра практически не зависит от спектральной области.

    Спектрофотометры, как и фотометры, бывают одно- и двулучевые. В двулучевых приборах световой поток каким-либо способом раздваивают или внутри монохроматора, или по выходе из него: один поток затем проходит через испытуемый раствор, другой - через растворитель.

    Однолучевые приборы особенно удобны при выполнении количественных определений, основанных на измерении оптической плотности при одной длине волны. В этом случае простота прибора и легкость эксплуатации представляют существенное преимущество. Большая скорость и удобство измерения при работе с двулучевыми приборами полезны в качественном анализе, когда для получения спектра оптическая плотность должна быть измерена в большом интервале длин волн. Кроме того, двулучевое устройство легко приспособить для автоматической записи непрерывно меняющейся оптической плотности: во всех современных регистрирующих спектрофото-метрах для этой цели используют именно двулучевую систему.

    И одно-, и двулучевые приборы пригодны для измерений видимого и УФ-излучений. В основе ИК-спектрофотометров, выпускаемых промышленностью, всегда лежит двулучевая схема, поскольку их обычно используют для развертки и записи большой области спектра.

    Количественный анализ однокомпонентных систем проводится теми же методами, что и в фотоэлектроколориметрии:

    Методом сравнения оптических плотностей стандартного и исследуемого растворов;

    Методом определения по среднему значению молярного коэффициента светопоглощения;

    Методом градуировочного графика,

    и не имеет никаких отличительных особенностей.


    Спектрофотометрия в качественном анализе

    Качественный анализ в ультрафиолетовой части спектра. Ультрафиолетовые спектры поглощения обычно имеют две-три, иногда пять и более полос поглощения. Для однозначной идентификации исследуемого вещества записывают его спектр поглощения в различных растворителях и сравнивают полученные данные с соответствующими спектрами сходных веществ известного состава. Если спектры поглощения исследуемого вещества в разных paстворителях совпадают со спектром известного вещества, то можно с большой долей вероятности сделать заключение об идентичности химического состава этих соединений. Для идентификации неизвестного вещества по его спектру поглощения необходимо располагать достаточным количеством спектров поглощения органических и неорганических веществ. Существуют атласы, в которых приведены спектры поглощения очень многих, в основном органических веществ. Особенно хорошо изучены ультрафиолетовые спектры аромати-ческих углеводородов.

    При идентификации неизвестных соединений следует также обратить внимание на интенсивность поглощения. Очень многие органические соединения обладают полосами поглощения, максимумы которых расположены при одинаковой длине волны λ, но интенсивность их различна. Например, в спектре фенола наблюдается полоса поглощения при λ = 255 нм, для которой молярный коэффициент поглощения при максимуме поглощения ε mах = 1450. При той же длине волны ацетон имеет полосу, для которой ε mах = 17.

    Качественный анализ в видимой части спектра. Идентификацию окрашенного вещества, например красителя, также можно проводить, сравнивая его спектр поглощения в видимой части со спектром сходного красителя. Спектры поглощения большинства красителей описаны в специальных атласах и руководствах. По спектру поглощения красителя можно сделать заключение о чистоте красителя, потому что в спектре примесей имеется ряд полос поглощения, которые отсутствуют в спектре красителя. По спектру поглощения смеси красителей можно также сделать заключение о составе смеси, особенно если в спектрах компонентов смеси имеются полосы поглощения, расположенные в разных областях спектра.

    Качественный анализ в инфракрасной области спектра

    Поглощение ИК-излучения связано с увеличением колебательной и вращательной энергий ковалентной связи, если оно приводит к изменению дипольного момента молекулы. Это значит, что почти все молекулы с ковалентными связями в той или иной мере способны к поглощению в ИК-области.

    Инфракрасные спектры многоатомных ковалентных соединений обычно очень сложны: они состоят из множества узких полос поглощения и сильно отличаются от обычных УФ- и видимых спектров. Различия вытекают из природы взаимодействия поглощающих молекул и их окружения. Это взаимодействие (в конденсированных фазах) влияет на электронные переходы в хромофоре, поэтому линии поглощения уширяются и стремятся слиться в широкие полосы поглощения. В ИК -спектре, наоборот, частота и коэффициент поглощения, соответствующие отдельной связи, обычно мало меняются с изменением окружения (в том числе с изменением остальных частей молекулы). Линии тоже расширяются, но не настолько, чтобы слиться в полосу.

    Обычно по оси ординат при построении ИК-спектров откладывают пропускание в процентах, а не оптическую плотность. При таком способе построения полосы поглощения выглядят как впадины на кривой, а не как максимумы на УФ-спектрах.

    Образование инфракрасных спектров связано с энергией колебаний молекул. Колебания могут быть направлены вдоль валентной связи между атомами молекулы, в таком случае они называются валентными. Различают симметричные валентные колебания, в которых атомы колеблются в одинаковых направлениях, и асиммeтpичныe валентные колебания, в которых атомы колеблются в противоположных направлениях. Если колебания атомов происходят с изменением угла между связями, они называются деформационными. Такое разделение весьма условно, потому что при валентных колебаниях происходит в той или иной степени деформация углов и наоборот. Энергия деформационных колебаний обычно меньше, чем энергия валентных колебаний, и полосы поглощения, обусловленные деформационными колебаниями, располагаются в области более длинных волн.

    Колебания всех атомов молекулы обусловливают полосы поглощения, индивидуальные для молекул данного вещества. Но среди этих колебаний можно выделить колебания групп атомов, которые слабо связаны с колебаниями атомов остальной части молекулы. Полосы поглощения, обусловленные такими колебаниями, называют характеристическими полосами. Они наблюдаются, как правило, в спектрах всех молекул, в которых имеются данные группы атомов. Примером характеристических полос могут служить полосы 2960 и 2870 см -1 . Первая полоса обусловлена асимметричными валентными колебаниями связи С-Н в метильной группе СН 3 , а вторая - симметричными валентными колебаниями связи С-Н этой же группы. Такие полосы с небольшим отклонением (±10 см -1) наблюдаются в спектрах всех насыщенных углеводородов и вообще в спектре всех молекул, в которых имеются СН 3 - группы.

    Другие функциональные группы могут влиять на положение характеристической полосы, причем разность частот может составлять до ±100 см -1 , но такие случаи немногочисленны, и их можно учитывать на основании литературных данных.

    В основе химических методов обнаружения и определения лежат химические реакции трех типов: кислотно-основные, ОВР и комплексообразования. Наибольшее значение имеют гравиметрический и титриметрический.

    Гравиметрический анализ заключается в выделении вещества в чистом виде и его взвешивании.

    Чаще всего выделение проводят осаждением. Недостатком гравиметрических методов является длительность определения, особенно при серийных анализах большого числа проб, а также неселективность – реагенты-осадители редко бывают специфичными, поэтому часто необходимо предварительные разделения.

    Титриметрический анализ заключается точном определении объема раствора химического реактива с известной концентрацией, который необходим для полного протекания реакции с данным объемом анализируемого раствора.

    Титриметрический анализ широко применяется в клинических и санитарно-гигиенических лабораториях для анализа крови, желудочного сока, мочи, пищевых продуктов, питьевых и сточных вод.

    Физико-химические методы

    Помимо химических методов качественного анализа известны другие методы идентификации химических элементов и их соединений. Так, то или иное вещество можно обнаружить физическими методами анализа, не прибегая к химическим реакциям, или физико-химическими методами путем изучения и наблюдения физических явлений, происходящих при химических реакциях.

    К таким методам, называемым часто инструментальными, относятся следующие методы качественного анализа:

    Спектральный;

    Люминесцентный;

    Хроматографический;

    Полярографический

    некоторые другие.

    Очень часто химические методы сочетают с физическими и физико-химическими методами анализа, что обеспечивает более высокую чувствительность и более точные результаты анализа. Повышение чувствительности и избирательности методов имеет большое значение для анализа особо чистых веществ, содержащих следовые количества примесей. Для определения малых количеств (следов) примесей используют методы предварительного выделения, концентрирования (обогащения) микропримесей. К числу этих методов относятся:

    хроматографические методы;

    экстрагирование;

    соосаждение;

    дистилляция (отгонка) летучих соединений и некоторые другие методы.

    Сочетая те или иные методы концентрирования с физическими или физико-химическими методами анализа, можно достичь высокой степени чувствительности, во много раз превышающей чувствительность отдельных методов.

    Электрохимические методы анализа и исследования основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Любой электрический параметр (потенциал, сила тока, сопротивление и др.), функционально связанный с концентрацией анализируемого раствора и измеренный, может служить аналитическим сигналом.



    Различают прямые и косвенные электрохимические методы . В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т.д.) измеряют с целью нахождение конечной точки титрования определяемого компонента подходящим титрантом, т.е. используют зависимость измеряемого параметра от объема титранта.

    Существуют различные способы классификации электрохимических методов.

    Классификация электрохимических методов анализа по измеряемому параметру электрохимической ячейки.

    Как применяют методы химического анализа в своей работе криминалисты, археологи, медики и искусствоведы

    Ответы:

    Криминалисты определяют состав веществ, причины смерти и личность человека. Археологи определяют возраст и состав артефактов при раскопках. Медики определяют химический состав крови или мочи, и таким образом проводят диагностику заболеваний человека. Искусствоведы определяют возраст предметов старины и устанавливают их подлинность. ­­­­ С помощью химического анализа криминалисты могут по пятнам определить качественный состав жидкости, которая оставила это пятно. Например, была ли эта жидкость кровью или вином и т.д. По следам и остаткам грунта могут определить где по какой почве проходил человек или проезжала машина и зная составы окрестных грунтов определить в каких местах проходил человек или проезжала машина. С помощью химического анализаархеологи могут определять, как жили, из чего строили, что носили люди в данную эпоху, по остаткам пиши оставленной в черепках и сосудах могут определять, чем питались люди. С помощью химического анализакачественного и количественного в, медицине, сравнивая с нормой анализы крови, мочи и др. жидких сред организма человека, можно поставить диагноз и проводить курс лечение под контролем, отслеживая динамику изменения анализов, наблюдать успешность или не успешность данного курса лечения и при необходимости корректировать курс лечения. Старые мастера сами готовили краски, лаки. Зная, какие составы готовил конкретный мастер, искусствоведы с помощью химического анализа, могут с большой долей уверенностью утверждать – авторство художественного произведения. Реставраторы так же пользуются химическим анализом и открывают секреты древних мастеров.’ Как применяют методы химического анализа в своей работе криминалисты, археологи, медики и искусствоведы? Подготовьте сообщение об этом, используя дополнительную литературу. Криминалисты определяют состав веществ, причины смерти и личность человека. Археологи определяют возраст и состав артефактов при раскопках. Медики определяют химический состав крови или мочи, и таким образом проводят диагностику заболеваний человека. Искусствоведы определяют возраст предметов старины и устанавливают их подлинность. ­­­­ С помощью химического анализа криминалисты могут по пятнам определить качественный состав жидкости, которая оставила это пятно. Например, была ли эта жидкость кровью или вином и т.д. По следам и остаткам грунта могут определить где по какой почве проходил человек или проезжала машина и зная составы окрестных грунтов определить в каких местах проходил человек или проезжала машина. С помощью химического анализаархеологи могут определять, как жили, из чего строили, что носили люди в данную эпоху, по остаткам пиши оставленной в черепках и сосудах могут определять, чем питались люди. С помощью химического анализакачественного и количественного в, медицине, сравнивая с нормой анализы крови, мочи и др. жидких сред организма человека, можно поставить диагноз и проводить курс лечение под контролем, отслеживая динамику изменения анализов, наблюдать успешность или не успешность данного курса лечения и при необходимости корректировать курс лечения. Старые мастера сами готовили краски, лаки. Зная, какие составы готовил конкретный мастер, искусствоведы с помощью химического анализа, могут с большой долей уверенностью утверждать – авторство художественного произведения. Реставраторы так же пользуются химическим анализом и открывают секреты древних мастеров.’