Вещества в которых хорошо растворимы жиры. Жиры и масла

В группу важных органических веществ - липидов - наряду со стероидами и восками входят жиры. Их содержание в живых клетках колеблется от 5 до 10% от сухой массы клетки. Эти вещества изучают, исходя из особенностей их которые и обуславливают химические свойства жиров. Химия рассматривает эти вещества как продукт реакции этерификации между трехатомным спиртом глицерином и высшими предельными или непредельными карбоновыми кислотами.

В данной статье мы изучим не только их применение в промышленности и значение, но также получение жиров и химические свойства, характерные для данного класса соединений.

История открытия

Строение было изучено в середине 19 столетия. Французский химик Э. Шеврель нагревал их с водой в присутствии щелочи и нашел в продуктах реакции молекулы жирных карбоновых кислот и глицерола. М. Бертло провел при нагревании глицерина со смесью стеориновой и пальметиновой кислот он получил триглицерид - жир. На основании этих экспериментов было сделано заключение, что изучаемые вещества относятся к классу эстеров. Химические свойства жиров подтвердили этот вывод.

Жиры - сложные эфиры

Как было доказано опытами М. Бертло и Э. Шевреля, триглицериды представляют собой эстеры трехатомного спирта глицерина и высших одноосновных карбоновых кислот. Жир, содержащий стеориновую или пальметиновую кислоты, является твердым, например, говяжий, свиной, бараний. Если в состав триглицеридов входят ненасыщенные жирные кислоты - олеиновая, линолевая, линоленовая - такие жиры жидкие и называются маслами (подсолнечное, арахисовое, льняное).

Химические свойства жиров отличаются от других эстеров еще и тем, что в состав их молекул могут входить сразу нескольких различных карбоновых кислот.

Физические свойства

Как натуральные, так и синтетические, например, маргарин, триглицериды имеют общие признаки. Главный из них - гидрофобность, невысокая температура плавления и низкая удельная плотность. Они хорошо растворяются в органических растворителях, например, в бензоле, тетрахлорметане. Все жиры легко впитываются пористыми или волокнистыми материалами. Согласно теории органических веществ М. Бутлерова, физические и химические свойства жиров взаимосвязаны между собой. Подтверждение этому факту будет приведено ниже.

Химические реакции триглицеридов

Количественный и качественный состав молекулы жира, а также ее пространственная конфигурация подтверждает факт принадлежности триглицеридов классу эстеров. Их главное химическое свойство - это реакция с водой (гидролиз). Она легко происходит в присутствие катализаторов - щелочей, оксидов магния, цинка или кальция. В продуктах реакции обнаруживается смесь карбоновых кислот и глицерина. Так как реакция жиров с водой обратима, в промышленности создают условия, при которых она проходит до конца - в сторону образования глицерола и высших одноосновных карбоновых кислот. Для этого в реактивную смесь постоянно подают раствор щелочи, а продукты сразу выводят из сферы реакции. Эти приемы предотвращают возможность протекания обратного процесса, приводящего к образованию жира. Гидролиз широко используется в химии органического синтеза для получения вышеназванных веществ.

Реакция щелочного омыления

Продолжим изучать органические вещества - сложные эфиры. Жиры, химические свойства которых представлены реакцией гидролиза, способны также вступать во взаимодействие с щелочами. Эта реакция называется омылением и она противоположна процессу эстерификации. Полученные в результате щелочного омыления глицерол и жирные кислоты обрабатывают содой или едким натром. В результате образуется мыло.

Оно твердое, имеет формулу C 17 H 35 COONa и называется хозяйственным. Если добавить к нему красители, глицерин, косметические отдушки, получим туалетное мыло. Жидкое мыло, в отличие от твёрдых видов, получают в том случае, если жиры в реакции омыления смешивают не с гидроксидом натрия, а с едким калием. Например, пальмитат калия C 15 H 31 COOK - жидкое калиевое мыло. Исходным сырьем для реакции омыления служат дешевые жиры животного или растительного происхождения.

Жидкие жиры - масла

В их состав входят молекулы непредельных карбоновых кислот, имеющих двойные связи. синтезируются в каналах эндоплазматической сети под действием ферментов из глицерина и жирных кислот. А они, в свою очередь, образуются в реакциях цикла Кальвина, происходящих вследствие фотосинтеза. Капли масла накапливаются в семенах, плодах, реже в вегетативных частях растений и служат запасом питательных веществ. Физико-химические свойства жиров, образуемых растениями, обусловлены наличием в их молекулах двойной пи-связи. По месту ее разрыва происходят реакции присоединения, например, атомов водорода. Это приводит к образованию твердых гидрогенизированных триглицеридов.

Химические свойства растительных жиров

Как было сказано ранее, триглицериды растительного происхождения содержат в своем составе высшие ненасыщенные карбоновые кислоты. Масла можно перерабатывать благодаря гидрогенизации. Этот процесс проводят при нагревании и в присутствии катализатора - порошкообразного никеля.

Продукт реакции - твердый жир (саломас). Его используют в производстве стеорина, глицерола и в мыловарении. Если в саломас добавляют сахар, соль, молоко и пищевые красители, то получают пищевой жир - маргарин. При добавлении к нему витаминов и натурального сливочного масла получают так называемое легкое масло - спред.

Синтетические жиры

Они являются более дешевыми, чем натуральные, и отличаются от природных триглицеридов своим составом. Один из главных источников получения синтетических жиров - это природные и попутные нефтяные газы, а также сама нефть. Высшие парафины, содержащиеся в этих природных ископаемых, подвергают окислению. В результате получают синтетические жирные кислоты. Их взаимодействие с этиленгликолем приводит к получению синтетического жира. Он используется в кожевенной промышленности (для жирования меховых шкурок и кож). В косметической промышленности синтетические триглицериды применяются в производстве туалетного мыла, кремов, лосьонов. В промышленности строительных материалов искусственные жиры идут на производство лаков, мастик, краски.

Химические свойства жиров, полученных искусственным способом, не отличаются от природных. Они также вступают в в присутствии кислоты и подвергаются действию щелочей (реакция омыления).

Как образуются триглицериды в организме человека

Вследствие метаболических реакций жиры в клетках тела могут синтезироваться из избытка углеводов. Это объясняет тот факт, что неконтролируемое потребление пищи, богатой крахмалом и сахарозой (мучные изделия, рис, картофель, сладости), приводит к избыточному весу. В процессе пищеварения продукты, содержащие жиры, расщепляются в двенадцатиперстной кишке до глицерина и жирных кислот. Их гидролиз происходит при обязательном участии липазы - фермента поджелудочной железы и желчи, выделяемой печенью. Являясь детергентом, желчь эмульгирует жиры, то есть разбивает крупные молекулы на мелкодисперсные капли, легко расщепляемые липазой.

В ворсинках тонкого кишечника из них синтезируются молекулы жира, характерные для организма человека, а затем они всасываются в лимфу. По лимфатическим сосудам жиры поступают в клетки, а их избыток откладывается в подкожную жировую клетчатку или сальник.

Биологическая роль липидов

Изучая химические свойства жиров, остановимся на их способности выделять большое количество энергии: один грамм жира дает 37,8 кДж энергии при полном окислении. Поэтому триглицериды - ее универсальные поставщики. Таким образом, жиры — это ценные продукты питания. Известно, что при неправильном и длительном их хранении триглицериды «стареют» и прогоркают, приобретая неприятный запах. Это происходит вследствие контакта жира с кислородом воздуха. Начавшее портиться масло легко определить, если добавить к нему иодид калия. Пероксиды, содержащиеся в продукте, окисляют это соединение до свободного йода, вызывающего синее окрашивание при контакте с крахмалсодержащими веществами.

Жиры являются также важнейшим строительным материалом и входят в состав клеточных мембран и органоидов. Велика их роль и в теплорегуляции организмов. Например, животные, обитающие на больших глубинах, где температура воды очень низка, имеют хорошо развитый слой подкожного жира, например, у китов он может достигать толщины 1,5 м. Животные степей, пустынь и полупустынь также накапливают в своем организме достаточное количество жира. Он необходим для них как источник эндогенной воды, так как при окислении жира кроме энергии выделяется большое количество жидкости. К таким животным относятся верблюды, тушканчики, землеройки.

Липиды играют важную роль в защите внутренних органов. У человека хорошо развит сальник, защищающий желудок, пищеварительные железы от внутренних повреждений. Такие жизненно важные органы, как почки, обязательно должны находится в слое жира. При резкой потере веса у человека вследствие истончения этого слоя может наблюдаться опущение почек, что является серьёзной патологией, нарушающей работу выделительной системы.

Велико значение липидов в образовании клеточных мембран. Наряду с углеводами и белками они формируют два слоя, имеющих мозаичное строение. Соединения жиров с белками называются липопротеидами. Они обуславливают клеточных мембран.

В данной статье были рассмотрены химический состав и свойства жиров, а также их применение в промышленности.

Вступление

Жиры - органические соединения, полные сложные эфиры глицерина (триглицериды) и одноосновных жирных кислот; входят в класс липидов. Наряду с углеводами и белками, жиры -- один из главных компонентов клеток животных, растений и микроорганизмов. Все известные природные жиры содержат в своём составе три различных кислотных радикала, имеющих неразветвленную структуру и, как правило, чётное число атомов углерода. Из насыщенных жирных кислот в молекуле жира чаще всего встречаются стеариновая и пальмитиновая кислоты, ненасыщенные жирные кислоты представлены в основном олеиновой, линолевой и линоленовой кислотами.

жир консистенция гидрирование мыло

Строение, физические, химические свойства жиров

Строение:

Строение жиров отвечает общей формуле:

Жиры состоят почти исключительно из триглицеридов жирных кислот, то есть это сложные эфиры глицерина и высокомолекулярных жирных кислот. В природных жирах обнаружено более 200 различных жирных кислот. Этим объясняется разнообразие и химическая специфичность природных жиров. Жиры являются смесью триглицеридов, и характерно, что в природе не обнаружено жира, состоящего только из одного триглицерида. Преобладающими являются жирные кислоты с четным числом углеродных атомов от 8 до 24. 75% жиров составляют триглицериды всего трех кислот - пальмитиновой (CH 3 (CH 2) 14 COOH), олеиновой (СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН) и линолевой (СН 3 (СН 2) 3 -(СН 2 -СН=СН) 2 -(СН 2) 7 -СООН). Встречающиеся в природе жирные кислоты можно разделить на три группы : насыщенные, мононенасыщенные (с одной двойной связью- моноевые), полиненасыщенные (с двумя или более двойными связями).

Физические свойства жиров:

При комнатной температуре жиры- это твердые, мазеобразные или жидкие вещества. Как любая смесь веществ, они не имеют четкой температуры плавления (т.е. плавятся в некотором диапазоне температур). Определенной температурой плавления характеризуются лишь индивидуальные триглицериды.

Консистенция жиров зависит от их состава:

В твердых жирах преобладают триглицериды с остатками насыщенных кислот, имеющие относительно высокие температуры плавления.

Для жидких жиров (масел), напротив, характерно высокое содержание триглицеридов ненасыщенных кислот с низкими температурами плавления.

Жиры практически не растворимы в воде, но при добавлении мыла или других поверхностно-активных веществ (эмульгаторов), они способны образовывать стойкие водные эмульсии. Так же жиры ограниченно растворимы в спирте и хорошо растворимы во многих неполярных и малополярных растворителях - эфире, бензоле, хлороформе, бензине.

Химические свойства

1. Гидролиз жиров. Жиры гидролизуются с образованием глицерина и карбоновых кислот:

2. Гидрирование масел . Жидкие растительные масла превращаются в твёрдые


3. Получение мыла . Мыла - соли щелочных металлов высших карбоновых кислот.

«Химия везде, химия во всем:

Во всем, чем мы дышим,

Во всем, что мы пьем,

Во всем, что едим».

Во всем, что мы носим,






Люди давно научились выделять жир из натуральных объектов и использовать его в повседневной жизни. Жир сгорал в примитивных светильниках, освещая пещеры первобытных людей, жиром смазывали полозья, по которым спускали на воду суда. Жиры – основной источник нашего питания. Но неправильное питание, малоподвижный образ жизни приводит к избыточному весу. Животные пустынь запасают жир как источник энергии и воды. Толстый жировой слой тюленей и китов помогает им плавать в холодных водах Северного Ледовитого океана.

Жиры широко распространены в природе. Наряду с углеводами и белками они входят в состав всех животных и растительных организмов и составляют одну из основных частей нашей пищи. Источниками жиров являются живые организмы. Среди животных это коровы, свиньи, овцы, куры, тюлени, киты, гуси, рыбы (акулы, тресковые, сельди). Из печени трески и акулы получают рыбий жир – лекарственное средство, из сельди – жиры, используемые для подкормки сельскохозяйственных животных. Растительные жиры чаще всего бывают жидкими, их называют маслами. Применяются жиры таких растений, как хлопок, лен, соя, арахис, кунжут, рапс, подсолнечник, горчица, кукуруза, мак, конопля, кокос, облепиха, шиповник, масличная пальма и многих других.

Жиры выполняют различные функции: строительную, энергетическую (1 г жира дает 9 ккал энергии), защитную, запасающую. Жиры обеспечивают 50% энергии, требуемой человеку, поэтому человеку необходимо потреблять 70–80 г жиров в день. Жиры составляют 10–20% от массы тела здорового человека. Жиры являются незаменимым источником жирных кислот. Некоторые жиры содержат витамины А, D, Е, К, гормоны.

Многие животные и человек используют жир в качестве теплоизолирующей оболочки, например, у некоторых морских животных толщина жирового слоя достигает метра. Кроме того, в организме жиры являются растворителями вкусовых веществ и красителей. Многие витамины, например витамин А, растворяются только в жирах.

Некоторые животные (чаще водоплавающие птицы) используют жиры для смазки своих собственных мышечных волокон.

Жиры повышают эффект насыщения пищевыми продуктами, т. к. они перевариваются очень медленно и задерживают наступление чувства голода .

История открытия жиров

Еще в 17 в. немецкий ученый, один из первых химиков-аналитиков Отто Тахений (1652–1699) впервые высказал предположение, что жиры содержат «скрытую кислоту».

В 1741 французский химик Клод Жозеф Жоффруа (1685–1752) обнаружил, что при разложении кислотой мыла (которое готовили варкой жира со щелочью) образуется жирная на ощупь масса.

То, что в состав жиров и масел входит глицерин, впервые выяснил в 1779 знаменитый шведский химик Карл Вильгельм Шееле.

Впервые химический состав жиров определил в начале прошлого века французский химик Мишель Эжен Шеврёль , основоположник химии жиров, автор многочисленных исследований их природы, обобщенных в шеститомной монографии " Химические исследования тел животного происхождения" .

1813 г Э. Шеврёль установил строение жиров, благодаря реакции гидролиза жиров в щелочной среде. Он показал, что жиры состоят из глицерина и жирных кислот, причем это не просто их смесь, а соединение, которое, присоединяя воду, распадается на глицерин и кислоты.


Общая формула жиров (триглицеридов)



Жиры
– сложные эфиры глицерина и высших карбоновых кислот. Общее название таких соединений – триглицериды.


Классификация жиров


Животные жиры содержат главным образом глицериды предельных кислот и являются твердыми веществами. Растительные жиры, часто называемые маслами, содержат глицериды непредельных карбоновых кислот. Это, например, жидкие подсолнечное, конопляное и льняное масла.

Природные жиры содержат следующие жирные кислоты

Насыщенные:

стеариновая (C 17 H 35 COOH)

пальмитиновая (C 15 H 31 COOH)

Масляная (C 3 H 7 COOH)

В СОСТАВЕ

ЖИВОТНЫХ

ЖИРОВ

Ненасыщенные :

олеиновая (C 17 H 33 COOH, 1 двойная связь)

линолевая (C 17 H 31 COOH, 2 двойные связи)

линоленовая (C 17 H 29 COOH, 3 двойные связи)

арахидоновая (C 19 H 31 COOH, 4 двойные связи, реже встречается)

В СОСТАВЕ

РАСТИТЕЛЬНЫХ

ЖИРОВ

Жиры содержатся во всех растениях и животных. Они представляют собой смеси полных сложных эфиров глицерина и не имеют чётко выраженной температуры плавления.

  • Животные жиры (бараний, свиной, говяжий и т.п.), как правило, являются твердыми веществами с невысокой температурой плавления (исключение – рыбий жир). В твёрдых жирах преобладают остатки насыщенных кислот.
  • Растительные жиры – масла (подсолнечное, соевое, хлопковое и др.) – жидкости (исключение – кокосовое масло, масло какао-бобов). Масла содержат в основном остатки ненасыщенных (непредельных) кислот.

Химические свойства жиров

1. Гидролиз, или омыление , жиров происходит под действием воды, с участием ферментов или кислотных катализаторов (обратимо) , при этом образуются спирт - глицерин и смесь карбоновых кислот:

или щелочей (необратимо) . При щелочном гидролизе образуются соли высших жирных кислот, называемые мылами. Мыла получаются при гидролизе жиров в присутствии щелочей:

Мыла - это калиевые и натриевые соли высших карбоновых кислот.

2. Гидрирование жиров – превращение жидких растительных масел в твердые жиры – имеет большое значение для пищевых целей. Продукт гидрогенизации масел – твердый жир (искусственное сало, саломас ). Маргарин – пищевой жир, состоит из смеси гидрогенизированных масел (подсолнечного, кукурузного, хлопкого и др.), животных жиров, молока и вкусовых добавок (соли, сахара, витаминов и др.).

Так в промышленности получают маргарин:

В условиях процесса гидрогенизации масел (высокая температура, металлический катализатор) происходит изомеризация части кислотных остатков, содержащих цис-связи С=С, в более устойчивые транс-изомеры. Повышенное содержание в маргарине (особенно, в дешевых сортах) остатков транс-ненасыщенных кислот увеличивает опасность атеросклероза, сердечно-сосудистых и других заболеваний.


Реакция получения жиров (этерификация)


Применение жиров


    1. Пищевая промышленность
    1. Фармацевтика
    1. Производство мыла и косметических изделий
    1. Производство смазочных материалов

Жиры - продукт питания. Биологическая роль жиров.


Животные жиры и растительные масла, наряду с белками и углеводами – одна из главных составляющих нормального питания человека. Они являются основным источником энергии: 1 г жира при полном окислении (оно идет в клетках с участием кислорода) дает 9,5 ккал (около 40 кДж) энергии, что почти вдвое больше, чем можно получить из белков или углеводов. Кроме того, жировые запасы в организме практически не содержат воду, тогда как молекулы белков и углеводов всегда окружены молекулами воды. В результате один грамм жира дает почти в 6 раз больше энергии, чем один грамм животного крахмала – гликогена. Таким образом, жир по праву следует считать высококалорийным «топливом». В основном оно расходуется для поддержания нормальной температуры человеческого тела, а также на работу различных мышц, поэтому даже когда человек ничего не делает (например, спит), ему каждый час требуется на покрытие энергетических расходов около 350 кДж энергии, примерно такую мощность имеет электрическая 100-ваттная лампочка .

Для обеспечения организма энергией в неблагоприятных условиях в нем создаются жировые запасы, которые откладываются в подкожной клетчатке, в жировой складке брюшины – так называемом сальнике. Подкожный жир предохраняет организм от переохлаждения (особенно эта функция жиров важна для морских животных). В течение тысячелетий люди выполняли тяжелую физическую работу, которая требовала больших затрат энергии и соответственно усиленного питания. Для покрытия минимальной суточной потребности человека в энергии достаточно всего 50 г жира. Однако при умеренной физической нагрузке взрослый человек должен получать с продуктами питания несколько больше жиров, но их количество не должно превышать 100 г (это дает треть калорийности при диете, составляющей около 3000 ккал). Следует отметить, что половина из этих 100 г содержится в продуктах питания в виде так называемого скрытого жира. Жиры содержатся почти во всех пищевых продуктах: в небольшом количестве они есть даже в картофеле (там их 0,4%), в хлебе (1–2%), в овсяной крупе (6%). В молоке обычно содержится 2–3% жира (но есть и специальные сорта обезжиренного молока). Довольно много скрытого жира в постном мясе – от 2 до 33%. Скрытый жир присутствует в продукте в виде отдельных мельчайших частиц. Жиры почти в чистом виде – это сало и растительное масло; в сливочном масле около 80% жира, в топленом – 98%. Конечно, все приведенные рекомендации по потреблению жиров – усредненные, они зависят от пола и возраста, физической нагрузки и климатических условий. При неумеренном потреблении жиров человек быстро набирает вес, однако не следует забывать, что жиры в организме могут синтезироваться и из других продуктов. «Отрабатывать» лишние калории путем физической нагрузки не так-то просто. Например, пробежав трусцой 7 км, человек тратит примерно столько же энергии, сколько он получает, съев всего лишь одну стограммовую плитку шоколада (35% жира, 55% углеводов) .Физиологи установили, что при физической нагрузке, которая в 10 раз превышала привычную, человек, получавший жировую диету, полностью выдыхался через 1,5 часа. При углеводной же диете человек выдерживал такую же нагрузку в течение 4 часов. Объясняется этот на первый взгляд парадоксальный результат особенностями биохимических процессов. Несмотря на высокую «энергоемкость» жиров, получение из них энергии в организме – процесс медленный. Это связано с малой реакционной способностью жиров, особенно их углеводородных цепей. Углеводы, хотя и дают меньше энергии, чем жиры, «выделяют» ее намного быстрее. Поэтому перед физической нагрузкой предпочтительнее съесть сладкое, а не жирное.Избыток в пище жиров, особенно животных, увеличивает и риск развития таких заболеваний как атеросклероз, сердечная недостаточность и др. В животных жирах много холестерина (но не следует забывать, что две трети холестерина синтезируется в организме из нежировых продуктов – углеводов и белков).

Известно, что значительную долю потребляемого жира должны составлять растительные масла, которые содержат очень важные для организма соединения – полиненасыщенные жирные кислоты с несколькими двойными связями. Эти кислоты получили название «незаменимых». Как и витамины, они должны поступать в организм в готовом виде. Из них наибольшей активностью обладает арахидоновая кислота (она синтезируется в организме из линолевой), наименьшей – линоленовая (в 10 раз ниже линолевой). По разным оценкам суточная потребность человека в линолевой кислоте составляет от 4 до 10 г. Больше всего линолевой кислоты (до 84%) в сафлоровом масле, выжимаемом из семян сафлора – однолетнего растения с ярко-оранжевыми цветками. Много этой кислоты также в подсолнечном и ореховом масле.

По мнению диетологов, в сбалансированном рационе должно быть 10% полиненасыщенных кислот, 60% мононенасыщенных (в основном это олеиновая кислота) и 30% насыщенных. Именно такое соотношение обеспечивается, если треть жиров человек получает в виде жидких растительных масел – в количестве 30–35 г в сутки. Эти масла входят также в состав маргарина, который содержит от 15 до 22% насыщенных жирных кислот, от 27 до 49% ненасыщенных и от 30 до 54% полиненасыщенных. Для сравнения: в сливочном масле содержится 45–50% насыщенных жирных кислот, 22–27% ненасыщенных и менее 1% полиненасыщенных. В этом отношении высококачественный маргарин полезнее сливочного масла.

Необходимо помнить

Насыщенные жирные кислоты отрицательно влияют на жировой обмен, работу печени и способствуют развитию атеросклероза. Ненасыщенные (особенно линолевая и арахидоновая кислоты) регулируют жировой обмен и участвуют в выведении холестерина из организма. Чем выше содержание ненасыщенных жирных кислот, тем ниже температура плавления жира. Калорийность твердых животных и жидких растительных жиров примерно одинакова, однако физиологическая ценность растительных жиров намного выше. Более ценными качествами обладает жир молока. Он содержит одну треть ненасыщенных жирных кислот и, сохраняясь в виде эмульсии, легко усваивается организмом. Несмотря на эти положительные качества, нельзя употреблять только молочный жир, так как никакой жир не содержит идеального состава жирных кислот. Лучше всего употреблять жиры как животного, так и растительного происхождения. Соотношение их должно быть 1:2,3 (70% животного и 30% растительного) для молодых людей и лиц среднего возраста. В рационе питания пожилых людей должны преобладать растительные жиры.

Жиры не только участвуют в обменных процессах, но и откладываются про запас (преимущественно в брюшной стенке и вокруг почек). Запасы жира обеспечивают обменные процессы, сохраняя для жизни белки. Этот жир обеспечивает энергию при физической нагрузке, если с пищей жира поступило мало, а также при тяжелых заболеваниях, когда из-за пониженного аппетита его недостаточно поступает с пищей.

Обильное потребление с пищей жира вредно для здоровья: он в большом количестве откладывается про запас, что увеличивает массу тела, приводя порой к обезображиванию фигуры. Увеличивается его концентрация в крови, что, как фактор риска, способствует развитию атеросклероза, ишемической болезни сердца, гипертонической болезни и др.

Физико-химические свойства животных жиров определяют режим и условия их производства и, в известной мере, сами зависят от режима и условий переработки сала-сырца.

Физические свойства жиров


1. Удельный вес.

Удельный вес животных жиров колеблется в пределах 0,915—0,964 (при 15°).

Удельный вес жира тем выше, чем выше в нем содержание глицеридов низших кислот, оксикислот и ненасыщенных кислот и чем сильнее степень их ненасыщенности.

При изменении температуры жидкого жира его удельный вес меняется в зависимости от изменения его объема. коэффициент объемного расширения жира в среднем равен 0,0007.

При окислении удельный вес жира повышается; при гидролизе понижается.

Удельные веса нейтральных жиров выше, чем удельные веса соответствующих смесей жирных кислот, причем разница между обеими величинами пропорциональна числу омыления.


2. Температура плавления жиров, температура застывания и титр.

Способность жира к эмульгированию, а следовательно, и к усвоению его организмом, зависит от его температуры плавления: чем ниже температура плавления жира, тем легче он эмульгируется с водой и тем выше его усвояемость.

Пищевые жиры в зависимости от усвояемости делятся на три группы:
к первой группе относятся жиры, температура плавления которых ниже или равна температуре человеческого тела (37°).
Такие жиры усваиваются организмом на 97—98% (например, костный, свиной жир, олео-маргарин).

Ко второй группе относятся жиры, температура плавления которых выше 37° (говяжий, бараний и др.).

Эти жиры усваиваются на 89—93%.

К третьей группе относятся жиры, температура плавления которых значительно выше, чем 37°. Такие жиры или совсем не усваиваются, или усваиваются незначительно.

Так, усвояемость тристеарина, температура плавления которого 711,5°, составляет всего лишь 14%.

Усвояемость жиров мясных животных составляет (в %):

Говяжьего

Бараньего

Температура плавления жиров зависит от природы жира, упитанности скота, породы, возраста животного и ряда других причин.

Чем больше в жире насыщенных глицеридов, тем жир более тугоплавок.

Самцы обладают более твердым жиром, чем самки.

Сало, снятое с внутренних органов, богаче твердыми глицеридами, чем подкожное сало.

Жир одного и того же животного тем беднее глицеридами ненасыщенных кислот, чем ближе соответствующие части, с которых снят жир, лежат к желудочно-кишечному тракту.

Животные теплого климата обладают более твердым жиром, чем животные умеренных или холодных стран.

Твердость жира зависит и от корма животного: у животных, получающих в корм жмыхи масличных семян, менее твердый жир, чем у животных, которым скармливают сено. Жиры упитанных животных более богаты ненасыщенными глицеридами.

Температура плавления жира зависит не столько от наличия двойных связей в триглицеридах, сколько от их местоположения.

Простые (однокислотные) глицериды плавятся при несколько более высокой температуре, чем соответствующие им кислоты.

Так, например, тристеарин плавится при 71,6°, а стеариновая кислота— при 69,6°.

Наличие гидроксильных групп повышает температуру плавления, Смешанные (разнокислотные) глицериды плавятся при более низкой температуре, чем однокислотные глицериды, и температура плавления многих смешаннокислотных глицеридов лежит ниже температуры плавления самой низкоплавкой кислоты из числа входящих в состав глицерида.

Так, тристеарин плавится при 71,6°, трипальмитин — при 63°, а стеародипальмитин — при 55°.

Для глицеридов и их смесей характерным является наличие двойных точек плавления: расплавленный жир при дальнейшем нагревании на несколько градусов вновь затвердевает и затем окончательно плавится.

При повторном плавлении вскоре после затвердевания жиры плавятся при более высокой температуре.

Нормальная температура плавления появляется только после длительного или глубокого охлаждения.

Эти двойные точки плавления глицеридов объясняются полиморфизмом, который состоит в том, что вещество одного и того же химического состава может существовать в твердом состоянии в нескольких формах, или модификациях.

Последние обладают различными физическими свойствами, в частности различными температурами плавления.

При быстром охлаждении глицеридов и жирных кислот выпадает, обычно, лишь неустойчивая, или лабильная модификация, которая обладает самой низкой температурой плавления. При длительном хранении такого глицерида в закристаллизованном состоянии лабильная модификация начинает переходить в стабильную, при этом длительность перехода зависит не только от температуры, но и от молекулярного веса глицеридов.

По данным проф. Г. Б. Равича и его сотрудников, температуры плавления тристеарина и трипальмитина характеризуются следующими данными:

Тристеарин

Трипальмитин

.
где: α, β. γ — модификации глицеридов, причем эти модификации тем устойчивее, чем выше температура плавления, т. е. наиболее стабильной является α=модификация и наименее стабильной γ-модификация.

Так как жиры являются смесью различных глицеридов с различными температурами плавления, то переход из твердого состояния в жидкое совершается не сразу, и уловить конец перехода трудно.

Поэтому температура плавления жиров не является точной константой.

Жиры застывают также не сразу, а постепенно: сначала в твердое состояние переходит наиболее тугоплавкие составные части, что выражается в помутнении массы, которое делается все сильнее, пока не затвердеет вся масса.

Конечную точку этого беспрерывного застывания определить очень трудно.

Более характерной является та температура, которая в течение некоторого времени после застывания жира остается неизменной, или та максимальная температура, которая достигается при застывании жира вследствие выделения скрытой теплоты плавления.

Эти температуры и называют температурой застывания жиров.

Температуры плавления и застывания быстро охлажденных жиров более или менее разнятся между собой.

Чем медленнее изменение температуры, тем больше эти точки сближаются.

В практике зачастую определяют не температуру застывания жира, а температуру застывания выделенных из него жирных кислот, так называемый титр жира.

Смесь жирных кислот имеет более резко выраженную температуру застывания, так как состоит из меньшего числа компонентов.

Кроме того, наличие в жире свободных жирных кислот влияет на температуру застывания жира, и одни и те же жиры, в зависимости от кислотности, обладают различными температурами застывания.

3. Вязкость.
В практике принято вязкость жира измерять в градусах, которые дают отношение времени истечения определенного объема жира при точно определенных условиях ко времени истечения такого же объема воды при тех же условиях.

Обычно вязкость жира измеряют в градусах Энглера.

Вязкость жиров имеет большое значение в технологии выработки жиров, так как она влияет на теплопередачу, скорость отстаивания, скорость фильтрации и сепарирования и т. п.

Вязкость большей части жиров колеблется в относительно узких пределах.

Какого-либо закономерного отношения между вязкостью и составом жира не установлено.

Известно только, что вязкость, в общем, увеличивается с повышением молекулярного веса, а с увеличением йодного числа уменьшается.

Сильно влияют на увеличение вязкости оксикислоты в жирах.

При повышении температуры жира вязкость уменьшается. Так, по данным А. А. Соколова, при повышении температуры от 50 до 90°, т. е. менее чем в два раза, вязкость животных жиров падает почти в 2,8 раза.

4. Коэффициент рефракции,
или коэффициент преломления, является отношением скорости света в воздухе к скорости света в некотором веществе. Преломляющая способность выражается отношением синуса угла падения к синусу угла преломления. Коэффициент преломления глицеридов выше, чем соответствующих жирных кислот. Жиры с большим содержанием летучих жирных кислот, например коровье масло, обладают наиболее низкими коэффициентами преломления. При окислении жира коэффициент преломления увеличивается.

Химические свойства жиров

Химические свойства жиров определяют то влияние, которое оказывают условия производства и хранения на качество пищевых жиров, или на ход производственного процесса.

С этой точки зрения наибольший интерес представляют те свойства, от которых зависит порча жиров и их расщепление.

Различают следующие виды порчи жиров:
1) гидролитическое расщепление жиров;
2) окисление жиров:
а) прогоркание — альдегидное и кетонное,
б) осаливание.

Гидролиз жиров

Гидролитическое расщепление жиров вызывается действием воды. Гидролиз жира протекает по следующей схеме:

С3H5(ОСОR)3 + 3H2О = С3H5(ОН)3 + 3RCOOH


Реакция гидролиза обратима.
Состояние равновесия зависит от количественного соотношения реагирующих веществ, в частности, от воды.

Реакция гидролиза жира без наличия побуждающих факторов идет с очень небольшой скоростью.

Увеличивают скорость реакции следующие факторы:

а) Ферменты.
В числе многих ферментов, находящихся в животных клетках, имеется жирорасщепляющий фермент липаза.
При выработке жиров часть липазы переходит в жир, не утрачивая своей активности.
Если в жире содержится хотя бы небольшое количество воды, то при липазе гидролиз жира протекает с большой скоростью и особенно интенсивно в различных видах животной жировой ткани.
Жир, вытопленный и в достаточной степени очищенный, на протяжении длительного периода времени расщепляется незначительно.

Так, по данным проф. А. А. Зиновьева, кислотное число шпига при его хранении в комнатных условиях, с доступом света в течение 25 суток, увеличилось с 1,19 до 6,67. Кислотное число свиного жира, вытопленного из жировой ткани и очищенного, при тех же условиях хранения в течение 60 суток увеличилось лишь с 0,85 до 0,94.

Активность липазы находится в зависимости от ее происхождения, величины рН, свойств субстрата, наличия примесей и от температуры.

Так, липаза поджелудочной железы наиболее активна в щелочной среде (рН 8—9); липаза желудка — в кислой (рН 4,7— 5). Если же липазу желудка подвергнуть очистке, то оптимальное для ее действия рН увеличивается. Оптимальный температурный режим для деятельности липазы лежит в пределах 35—40°. Повышение температуры сверх 50° и снижение ниже 15° значительно ослабляет активность фермента. Однако деятельность липазы не прекращается даже при минусовой температуре (—17°).

б) Влияние температуры.

При повышении температуры. реакция расщепления жиров протекает с большей скоростью.

При воздействии насыщенного водяного пара на говяжий жир в автоклаве при давлении 7 и 15 ати кислотные числа жира изменяются следующим образом:

Давление

Кислотные числа жира при продолжительности процесса


По данным проф. А. А. Зиновьева, кислотные числа свиного жира, хранившегося в течение 60 суток, повышаются: после хранения в холодильнике при минус 110° — от 0,85 до 0,87, после хранения в комнатных условиях — до 0,94 и в термостате (37°) — до 1,53.

В) Влияние оснований.
Присутствие оснований в реакционной среде, даже в небольших количествах, значительно усиливает гидролиз жиров.
Этим свойством оснований широко пользуются в жировой технике для расщепления жиров при выработке глицерина.
Такой метод расщепления жиров осуществляется в автоклавах, под давлением 7—8 ати в течение 8—11 часов в присутствии 2—3% окиси кальция (извести).
При этом достигают расщепления жиров на 90%.

Ускоряющее действие оснований вызывается тем, что при взаимодействии жира с окислами металлов образуются соответствующие соли жирных кислот (мыла). Образующиеся мыла способствуют эмульгированию жира и тем самым увеличению поверхности раздела фаз в этой гетерогенной системе.

г) Влияние серной кислоты.

Присутствие небольших количеств концентрированной серной кислоты при взаимодействии жира с водой вызывает расщепление жира.
Влияние серной кислоты сказывается в том, что образующиеся водородные ионы действуют каталитически на реакцию гидролиза, а получаемые продукты сульфирования (сульфожирные кислоты) обладают значительной эмульгирующей способностью. Образование сульфожирных кислот происходит в результате взаимодействия серной кислоты с ненасыщенными жирными кислотами.
Так, при действии серной кислоты на олеиновую получается сульфостеариновая кислота:

Сульфостеариновая кислота снижает поверхностное натяжение на границе жира и воды и тем способствует образованию эмульсии и увеличению поверхности раздела фаз.

Ранее этим свойством серной кислоты пользовались в технике для получения жирных кислот и глицерина.

В настоящее время в технике для расщепления жиров применяют более усовершенствованный, так называемый реактивный метод расщепления, сущность которого состоит в кипячении жира с водой и реактивом, эмульгирующим жир с водой.

В качестве эмульгатора применяют так называемый контакт проф. Г. С. Петрова, который является одним из наиболее зарекомендовавших себя в мировой технике. Контакт представляет собой смесь сульфонафтеновых кислот, получаемую из отходов при очистке соляровых или веретенных дистиллятов дымящейся серной кислотой.

При работе с контактом, добавляемым к жиру в количестве около 1% (плюс, примерно, 0,5% купоросного масла), степень расщепления достигает 92% и выше, с получением при этом светлых жирных кислот и хорошего качества глицериновой воды.

Окисление жиров

Окислительные процессы ведут к появлению резкого неприятного вкуса и запаха так называемого прогорклого жира.

Однако большей частью при порче жиров наблюдается наличие специфического запаха и неприятного, но не горького вкуса.

Процессы прогоркания и расщепления жиров идут независимо друг от друга, но так как ряд факторов, вызывающих активизацию этих процессов, является идентичным, то зачастую при прогоркании жира увеличивается и кислотность жира. Кроме того, глубокое окисление жира сопровождается образованием низкомолекулярных кислот.

Прогоркание жира является сложным окислительным процессом, при котором жиры приобретают специфический вкус и неприятный запах, вызываемые летучими веществами — альдегидами или кетонами.

Эти вещества получаются под воздействием кислорода воздуха на жиры.

Атмосферный кислород обладает слабой активностью, и реакция окисления без поступления энергии извне идет с небольшой измеримой скоростью. Способность жиров к окислению возрастает с повышением температуры, под влиянием облучения и т. п.

Различают альдегидное и кетонное прогоркание.

а) Альдегидное прогоркание.

Кислород воздуха, насыщая двойные связи, сначала приводит к образованию перекиси:

При действии воды на пероксид получается атомный кислород и образуются перекись водорода и озон:

Молекула озона присоединяется к непредельным жирным кислотам, и в результате образуется озонид, который под влиянием влаги расщепляется на молекулы с меньшим числом углеродных атомов, образуя альдегиды:

При дальнейшем окислении получаются низкомолекулярные кислоты — пеларгоновая и азелаиновая:

б) Кетонное прогоркание.

До недавнего времени считали, что кетонное прогоркание жиров происходит под влиянием микроорганизмов, например, плесеней Penicillium, Aspergillus; теперь установлено, что кетонное прогоркание происходит и в стерильной среде, т. е. чисто химическим путем.

Кетонное прогоркание, протекающее под влиянием микроорганизмов, происходит по следующей схеме: микроорганизмы вырабатывают ферменты, которые способствуют гидролизу триглицеридов.
Получаемые при этом жирные кислоты превращаются в аммонийные соли, реагируя с аммиаком, который образуется в результате распада белков, находящихся в жире.
Затем аммонийные соли подвергаются β-окислению.

Необходимые для этого процесса ферменты доставляются микроорганизмами, которые могут развиваться в жире, если он содержит воду и питательные вещества. Поэтому такой типичный бактериальный процесс наблюдается преимущественно на сливочном масле, неочищенном кокосовом масле, маргарине. Высокомолекулярные жирные кислоты (насыщенные — пальмитиновая, стеариновая) не способны подвергаться β-окислению.

В настоящее время доказано, что кетонное прогоркание может происходить без воздействия микроорганизмов, чисто химическим путем, и что получаемые при этом кетоны могут образоваться как из высокомолекулярных насыщенных жирных кислот, так и из ненасыщенных.

text_fields

text_fields

arrow_upward

Жиры при обычной температуре имеют плотную или мягкую консистенцию. Жирные масла являются густыми, прозрачными жидкостями.

На бумаге жиры оставляют жирное пятно, которое при нагревании еще сильнее расплывается (отличие от эфирных масел).

Окраска, запах и вкус жиров зависят от сопутствующих веществ. Окраска чаще белая или желтоватая. Запах отсутствует или слабый, специфический. Вкус нежный и маслянистый, реже неприятный, как у касторового масла.

Жиры легче воды , плотность от 0,910 до 0,970.

Большинство жиров оптически неактивны. Исключение составляет касторовое масло.

Показатель преломления (коэффициент рефракции) характерен и постоянен для каждого масла. Так, у оливкового масла он составляет 1,46-1,71. Чем выше молекулярная масса глицеридов и чем больше двойных связей, тем выше показатель преломления.

Все жиры нерастворимы в воде , мало растворимы в этаноле, легко растворимы в эфире, хлороформе, петролейном эфире. Исключение: касторовое масло легко растворимо в 96 % этаноле, трудно — в петролейном эфире.

Сами жиры являются хорошими растворителями для многих лекарственных веществ (камфора, гормоны, эфирные масла и др.). Жиры хорошо смешиваются между собой.

Химические свойства

text_fields

text_fields

arrow_upward

Химические свойства жиров обусловлены наличием:

  1. сложных эфирных связей;
  2. двойных связей в углеводородных радикалах жирных кислот;
  3. наличием глицерина в составе жира.

1.1. Жиры легко подвергаются гидролитическому расщеплению при участии ферментов с образованием глицерина и жирных кислот. Ферментативный гидролиз происходит ступенчато. Фермент липаза содержится во всех семенах масличных растений. Гидролизу способствуют влага и повышенная температура. Происходит гидролитическое прогоркание жира. Указанное свойство учитывается при хранении жиров.

1.2. Жиры расщепляются под действием щелочей с образованием глицерина и солей жирных кислот. Соли называют мылами: калиевые мыла — жидкие, натриевые — твердые. Процесс называют омылением.

Свойство используется при анализе жиров. На нем основано производство мыл и шампуней.

2. По двойным связям жирных кислот могут присоединяться водород, галогены, кислород.

2.1. Присоединение водорода — гидрирование жиров (гидрогенизация жиров) идет при повышенной температуре в присутствии катализатора (никель). Непредельные жирные кислоты переходят в предельные, жидкие масла превращаются в твердые. Получают саломассы, их используют в медицинской практике как мазевые и суппозиторные основы (бутирол) и в пищевой промышленности (производство маргарина).

2.2. Присоединение галогенов используют в анализе жиров при определении химической константы — йодного числа.

2.3. Присоединение кислорода воздуха приводит к окислению и прогорканию жиров. Различают химическое окисление (альдегидное) и биохимическое при участии микроорганизмов (кетонное).

Жиры приобретают специфический вкус и запах и становятся непригодными к употреблению. Изменяется цвет жира (чаще жиры обесцвечиваются); изменяются физические и химические свойства: увеличиваются плотность и кислотное число, уменьшаются йодное число и вязкость.

Различают 3 вида окислительного прогоркания:

а) неферментативное — кислород присоединяется по месту двойных связей, образуя пероксиды; при разложении пероксидов жирных кислот получаются альдегиды.

б) ферментативное с участием липоксидаз и липоксигеназ, образуются гидропероксиды.

Гидропероксиды способны окислять биологически активные вещества, содержащиеся в масле, например каротиноиды. Гидропероксиды подвергаются разложению с образованием альдегидов и кетонов.

Свойство учитывают при хранении жиров и при их анализе.

в) ферментативное (кетонное) — происходит при участии микроорганизмов.

3. Глицерин, входящий в состав жира, подвергается окислению и дегидратации при нагревании жира с концентрированной кислотой серной. При этом образуется альдегид акролеин, имеющий неприятный запах. Акролеиновая проба позволяет отличить жиры от жироподобных веществ.