Какие структуры образуют зрительный нерв. Как происходит кровоснабжение зрительного нерва

Анатомия органов зрения. Строение глазного яблока, зрительного нерва

Развитие глаза человека начинается на второй недели эмбриональной жизни из мозговой трубки. В конце четвертой недели возникает хрусталик, вокруг которого формируется сосудистая оболочка. Постепенно дифференцируется склера, камеры глаза, становится прозрачным стекловидное тело. Из кожных складок формируются веки.

Орган зрения- Зрительный анализатор состоит из трех основных отделов: периферического или рецепторного (в сетчатке глаза), проводникового (включает зрительные пути и глазодвигательные нервы) и коркового (затылочная доля коры головного мозга).

Периферическая, рецепторная часть состоит из глазных яблок, а также придаточных и защитных аппаратов. Ими являются глазная впадина, наружные глазные мышцы с сосудами, нервами, с жировой тканью глазницы и с соединительной тканью, веки, а также органы, выделяющие и проводящие слезную жидкость. Эти придаточные и защитные органы обеспечивают выполнение физиологической функции глаз

Орбита.

Орбита, или глазница, – костное вместилище для глаза. По форме она напоминает четырехгранную пирамиду, вершина которой обращена в полость черепа, а основание обращено кпереди. Орбиту образуют кости черепа: лобная, скуловая, верхняя челюсть, носовая, слезная, решетчатая и клиновидная. Анатомическая связь орбиты с придаточными пазухами нередко является причиной перехода воспалительного процесса или прорастания опухоли из них в орбиту. В орбите различают четыре стенки: верхнюю, нижнюю, внутреннюю и наружную.

У вершины глазницы имеется круглой формы диаметром 4 мм зрительное отвер­стие, через которое в полость орбиты входит глазничная артерия и выходит зри­тельный нерв в полость черепа. Содержимое глазницы состоит из глазного яблока, клетчатки, фасции, мышц, сосудов, нервов. В глазнице находятся восемь мышц. Из них шесть глазодвигательных (4 прямые и 2 косые), мышца, поднимающая верхнее веко и орбитальная мышца.

Веки.

Веки – подвижные кожно-мышечные складки, покрывающие глазное яблоко спереди. Образуют глазную щель. Состоят из пяти слоев: кожа, рыхлая подкожная клетчатка (не содержит жира), круговая мышца глаза, хрящ, конъюнктива.

Функции век: - защищают глаза благодаря рефлекторному смыканию под влиянием раздражающих воздействий.

Конъюнктива.

Это соединительная оболочка, покрывает глазное яблоко спереди (за исключением роговицы) и веки с внутренней стороны. Она тонкая, прозрачная, розовая, гладкая, блестящая, влажная. При закрытых веках конъюнктива образует щелевидную полость – конъюнктивальный мешок.

Функции конъюнктивы:

Защитная (при попадании в конъюнктивальную полость инородного тела или при патологическом процессе)

Механическая (обильная секреция слезной и слизистой жидкости)

Увлажняющая (постоянная выработка секрета)

Питательная (из ее сосудов через роговицу питательные вещества попадают в глаз)

Барьерная (богата лимфоидными элементами).

Слезный аппарат.

Слезный аппарат состоит из слезной железы и слезоотводящих путей (слезных точек, слезных канальцев, слезного мешка и слезно-носового канала).

Слезная железа располагается в углублении в верхне-наружной стенке орбиты.

Функции слезной железы: продукция слезы (после второго месяца жизни). В покое у человека в сутки выделяется около 1 мл слезы.

Слеза равномерно распределяется по поверхности глазного яблока, всасывается верхней и нижней слезными точками, оттуда поступает в верхний и нижний слезный канальцы. Канальцы, соединяясь в общий слезный каналец, впадают в слезный мешок. Слезный мешок переходит в слезно-носовой канал, который открывается под нижнюю носовую раковину.

Функции слезы: бактерицидная (содержит фермент лизоцим), питательная (содержит 98% воды, 0,1% белка, 0,8% минеральных солей, калий, натрий, хлор, глюкозу и мочевину), увлажняющая (обеспечивает постоянное увлажнение глазного яблока).

Мышечный аппарат.

Глазное яблоко имеет шесть глазодвигательных мышц – четыре прямые (верхняя, нижняя, наружная, внутренняя) и две косые (нижняя и верхняя). Эти мышцы обеспечивают хорошую подвижность его во всех направлениях.

Строение глазного яблока.

Глазное яблоко имеет неправильную шаровидную форму. Средние размеры глазного яблока у взрослого человека – 24 мм.

Глазное яблоко имеет три оболочки :

1. наружная (фиброзная) – состоит из склеры и роговицы

2. средняя (сосудистая) – состоит из радужки, цилиарного тела и собственно сосудистой (хориоидеи).

3. внутренняя – сетчатка.

Наружная оболочка.

Склера – наружная, непрозрачная, плотная, состоит из коллагеновых волокон.

Функции: защитная, формообразующая, обеспечивает тургор глазного яблока. Место перехода склеры в роговицу называется лимб.

Роговица – передняя, более выпуклая часть наружной оболочки глаза. Она прозрачная, бессосудистая, гладкая, зеркальная, блестящая, сферичная, высокочувствительная (в ней имеется большое количество чувствительных нервных окончаний).

Функции: преломление света (сила преломления – 40Д у взрослых и 45Д у детей), защитная. Горизонтальный диаметр роговицы у новорожденных 9мм, в 1 год – 10мм, у взрослых – 11мм.

2. Сосудистая оболочка .

Она состоит из радужки, цилиарного тела и хориоидеи.

Все три отдела сосудистой оболочки объединяют под названием увеальный тракт.

Радужка – представляет собой диафрагму, в центре которой имеется отверстие – зрачок. Зрачок может расширяться (в темноте) и сужаться (при ярком освещении). Цвет радужки зависит от количества пигмента. Постоянная окраска радужки формируется лишь к 2-летнему возрасту. В радужке много чувствительных нервных окончаний.

Функции: принимает участие в фильтрации и оттоке внутриглазной жидкости.

Цилиарное тело – находится между радужкой и собственно сосудистой оболочкой. В цилиарном теле много чувствительных нервных окончаний. Цилиарное тело имеет тот же источник кровоснабжения, что и радужка (передние цилиарные артерии, задние длинные цилиарные артерии). Поэтому его воспаление (циклит), как правило, протекает одновременно с воспалением радужки (иридоциклит).

Функции: продукция внутриглазной жидкости, участие в акте аккомодации. От него идут цинновы связки и вплетаются в капсулу хрусталика.

Собственно сосудистая оболочка или хориоидея является задним отделом сосудистого тракта, располагается между сетчаткой и склерой.

Функции: обеспечивает питание сетчатки, принимает участие в ультрафильтрации и оттоке внутриглазной жидкости, регуляция офтальмотонуса. В хориоидее нет чувствительных нервных окончаний, вследствие этого воспаления ее, травмы и опухоли протекают безболезненно. Кровоснабжение хориоидеи осуществляется из задних коротких цилиарных артерий, поэтому ее воспаление (хориоидит) протекает изолированно от воспалительных процессов переднего отдела увеального тракта. Кровоток в хориоидее замедленный, что способствует возникновению в ней метастазов опухолей различной локализации и оседанию возбудителей различных инфекционных заболеваний.

Внутренняя оболочка.

Сетчатка представляет собой высокодифференцированную нервную ткань. Это периферический отдел зрительного анализатора. Имеет фоторецепторы – палочки и колбочки. Колбочки осуществляют центральное зрение, дневное зрение и цветоощущение. Палочки – периферическое зрение, ночное и сумеречное зрение. В сетчатке нет чувствительных нервных окончаний, поэтому все ее заболевания протекают безболезненно. Внутренняя поверхность глазного яблока получила название глазного дна. На глазном дне имеются два важных образования: диск зрительного нерва (место выхода нерва из сетчатки) и область желтого пятна. В центральной ямке желтого пятна располагаются только колбочки, что обеспечивает высокую разрешающую способность этой зоны. Начавшись на глазном дне в виде диска, зрительный нерв покидает глазное яблоко, затем глазницу и в области турецкого седла встречается с нервом второго глаза. В турецком седле осуществляется неполный перекрест зрительных нервов, именуемый хиазмой. После частичного перекреста зрительные пути меняют свое название и называются зрительные тракты. Зрительные тракты направляются к подкорковым зрительным центрам и далее к зрительным центрам коры головного мозга – затылочным долям.

Функции: световоспринимающая, светопроводящая.

Пространство между роговицей и радужкой называется передней камерой глаза.

Угол передней каме ры – пространство, где радужка переходит в цилиарное тело, а роговица в склеру. В углу камеры проходит шлемов канал.

Пространство между радужкой и хрусталиком называется задней камерой глаза . Задняя камера через зрачок сообщается с передней камерой. Камеры глаза заполнены прозрачной внутриглазной жидкостью. Полный обмен камерной влаги происходит за 10 часов. В ее состав входит вода, минеральные соли, витамины В2, С, глюкоза, кислород, белок. Внутриглазная жидкость через шлеммов канал и венозную систему уносит из глаза продукты обмена (молочную кислоту, углекислый газ и др.) Камеры глаза сообщаются друг с другом посредством зрачка.

Хрусталик – представляет собой двояковыпуклую линзу, расположенную между радужкой и стекловидным телом. Формируется на 3-4 неделе жизни зародыша из эктодермы. В нем нет ни нервов, ни кровеносных и лимфатических сосудов.

Функции: преломление (сила преломления – 20,0Д), участие в акте аккомодации.

Стекловидное тело – располагается позади хрусталика и составляет 65% содержимого глаза. Оно прозрачное, бесцветное, гелеобразное. Сосудов и нервов в стекловидном теле нет. Содержит до 98% воды, мало белка и солей.

Функции: опорная ткань глазного яблока, обеспечивает свободное прохождение световых лучей к сетчатке, пассивно участвует в акте аккомодации, защитная (предохраняет внутренние оболочки глаза от дислокации).

Оптическая система глаза – это роговица, влага передней и задней камер, хрусталик и стекловидное тело. Проходя через эти образования, световые лучи преломляются и попадают на сетчатку.

Акт зрения – сложный нейрофизиологический акт, состоящий из 4 этапов:

1 – с помощью оптических сред глаза на сетчатке образуется перевернутое изображение предметов.

2 – под воздействием световой энергии в палочках и колбочках происходит сложный фотохимический процесс, в результате которого возникает нервный импульс.

3 – импульсы, возникшие в сетчатке, проводятся по нервным волокнам к зрительным центрам коры головного мозга.

4 – в корковых центрах энергия нервного импульса превращается в зрительное ощущение и восприятие. Зрительный анализатор состоит из трех основных отделов: рецепторного (в сетчатке глаза), проводникового (включает зрительные пути и глазодвигательные нервы) и коркового (затылочная доля коры головного мозга).

Рис. 2.3. Схема строения глазного яблока (сагиттальный срез).

Зрительный нерв

Сложная система черепно-мозговых нервов включает в себя и зрительный нерв. Зрительный нерв не похож на остальные черепно-мозговые нервы, так как представляет собой скорее часть белого вещества мозга, вынесенную за его пределы. Зрительный нерв и сетчатка соединены посредством ганглиозных клеток сетчатки и диска зрительного нерва. Иннервация сетчатки передает нервный импульс на зрительный нерв и далее в мозг. Зрительный нерв «оплетает» ретинальная артерия, которая отвечает за подачу крови к сетчатке.

29. Формирование зрительного анализатора в онтогенезе .

Как известно, зрительный анализатор состоит из трех отделов: периферического, или рецепторного, промежуточного, или проводникового, и центрального, или коркового.

Периферический отдел представлен двумя сетчатками, заключенными в своеобразные оптические камеры, которые обеспечивают получение на рецепторе четких изображений предметов окружающего мира.

Промежуточный, или проводниковый, отдел начинается в слое ганглиозных клеток сетчатки и заканчивается в коре затылочной доли. Зрительные нервы, хиазма и зрительные тракты составляют первый неврон этого отдела.

Корковым ядром зрительного анализатора является участок затылочной доли коры головного мозга.

В онтогенезе раньше всего формируется и созревает периферическая часть анализатора, затем - проводниковая, и лишь после этого - корковая часть.

Созревание зрительного анализатора в эмбриогенезе происходит позже других сенсорных систем, однако к моменту рождения периферическая часть зрительного анализатора достигает значительного уровня развития. К возрастным особенностям зрительного анализатора относится следующее.

Периферический отдел . Эмбриональное развитие зрительного анализатора начинается сравнительно рано (на 3 неделе) и к моменту рождения ребенка зрительный анализатор морфологически сформирован. Однако совершенствование его структуры происходит и после рождения, заканчиваясь уже в школьные годы.

Органом зрения является глаз. Форма глаза шаровидная, у взрослых его диаметр составляет около 24 мм, у новорожденных 16 мм, причем форма глазного яблока более шаровидная, чем у взрослых. В результате этого новорожденные дети от 80 до 94% случаев обладают дальнозоркой реакцией. Рост глазного яблока продолжается и после рождения, но интенсивнее всего в первые 5 лет жизни и менее интенсивно до 10-12 лет.

У новорожденного движение глазных яблок происходит независимо друг от друга. При неподвижности одного глаза, другой может двигаться. Глаза могут двигаться даже в противоположные стороны. Другими словами у новорожденных наблюдается физиологическое косоглазие. К концу 1-го месяца жизни начинает появляться координация в движениях глаз, на втором месяце они движутся уже содружественно.

Роговица у детей (новорожденных) толще и более выпуклая. К 5 годам толщина роговицы уменьшается, за счет чего уменьшается и ее преломляющая сила (за счет уплотнения). Хрусталик у новорожденных и детей дошкольного возраста более выпуклой формы, прозрачен и обладает большей эластичностью.

Зрачок у новорожденных узкий. В 6-8 лет зрачки широкие вследствие преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки (радиальные и кольцевые). В 8-10 лет зрачок вновь становится узким и очень быстро реагирует на свет. К 12-13 годам быстрота и интенсивность зрачкового рефлекса на свет такая же, как у взрослых.

Слезные железы развиты уже у новорожденных, но нервные пути к ним созревают только к 3-5 месяцу. Поэтому дети первых месяцев жизни плачут без слез.

У новорожденных детей рецепторы в сетчатке дифференцированы, а число колбочек в желтом пятне начинает возрастать после рождения и к концу первого полугодия морфологическое развитие центральной части сетчатки заканчивается. На первом году жизни дети цветов не различают, так как еще функционально не созрели колбочки. На втором году жизни созревают колбочки и ребенок начинает различать простые цвета. Полностью функционировать колбочки начинают к концу 3-го года жизни (различает сложные цвета).

Аккомодация - это способность глаза к четкому видению разноудаленных предметов за счет изменения кривизны хрусталика. Максимальная сила аккомодации на втором этапе развития равна 20 диоптриям (ближайшая точка ясного видения находится на расстоянии 5 см от глаза, на 4 этапе развития – 8 см, у взрослого – 10 см). Понижение величины аккомодации начинается с 10-летнего возраста, хотя практически это не сказывается на зрении в течение многих лет. Основной причиной снижения аккомодации является уплотнение хрусталика, утрата эластических свойств - теряет изменять свою кривизну.

Поле зрения - формируется в онтогенезе на довольно поздних стадиях. У детей периферическое зрение появляется только к 5 месяцам жизни. До этого времени у них не удается вызвать оборонительного мигательного рефлекса при введении объекта с периферии. С возрастом поле зрения растет. Особенно сильное расширение границ поля зрения наблюдается в период от 6,5 до 7,5 лет, когда величина поля зрения возрастает примерно в 10 раз. Расширение продолжается до 20-30-летнего возраста. В старости величина этого показателя несколько уменьшается. Старческие изменения зависят от целого ряда факторов, в том числе и от профессии.

Проводниковый отдел . Первые дни дети не видят, так как еще не созрел проводниковый отдел зрительного анализатора. Рост и развитие его идет неравномерно.

Центральный отдел . Дифференцировка центрального отдела коркового представительства зрительного анализатора у человека не оканчивается и к моменту рождения. Корковый отдел развивается позднее периферического и проводникового. Хотя область коры имеет у новорожденного все признаки коры взрослого, она обладает меньшей толщиной (1,3 мм вместо 2 мм у взрослого) и более густым расположением клеток, заканчивается ее формирование к 7 летнему возрасту.

Наиболее рано в онтогенезе развивается светопринимающая функция. О наличии светоощущения у очень маленьких детей можно судить по рефлекторным реакциям, возникающим при ярком свете (зрачковый рефлекс, смыкание век и отведение глаз).

Измерение чувствительности к свету у детей с помощью адаптометров становится возможным с 4-5-летнего возраста. Исследования показали, что чувствительность к свету в первые два десятилетия резко нарастает, а затем постепенно падает.

На втором месяце жизни ребенок видит изображения предметов, но в перевернутом виде. Однако, в течении года, благодаря аналитико-синтетической деятельности центрального отдела зрительного анализатора, ребенок начинает видеть изображения предметов правильно.

Фиксирование взгляда на рассматриваемом предмете формируется к 3-4 месяцу. До этого взгляд ребенка блуждает и если случайно останавливается на предмете, то ребенок начинает рассматривать этот предмет. Способность фиксировать взгляд на рассматриваемом предмете связана с умственным развитием ребенка. Если он в течение года не научится фиксировать взгляд, то это свидетельствует о слабоумии.

Острота зрения является очень важной характеристикой зрительного анализатора, измеряемая способностью не только колбочкового аппарата, но и прозрачностью роговицы и стекловидного тела, фокусирующей способностью хрусталика, его астигматических свойств. Доставляет трудность определение этого показателя у детей. Для детей до 1 года в поле зрения ребенка на разном расстоянии от глаз вводится шарик на тонкой нити. Расстояние, на котором ребенок перестает следить за шариком, характеризует остроту его зрения. Измерение разных авторов показали, что острота зрения в первые месяцы и даже годы жизни ниже, чем у взрослого. В период с 18 до 60 лет острота зрения практически не изменяется, а затем снижается. Причем с возрастом изменяется и распределение людей, обладающих различной остротой зрения. Процент людей с нормальным зрением с возрастом уменьшается.

Зрительный нерв. Строение, анатомия, методы исследования.

Зрительный нерв обеспечивает передачу нервных импульсов светового раздражения, идущих от сетчатки к зрительному центру, который расположен в затылочной доле мозга.
Зрительный нерв состоит из нервных волокон чувствительных клеток сетчатки, которые собираются в пучок у заднего полюса глазного яблока. Общее число таких нервных волокон составляет более миллиона, однако их количество с возрастом уменьшается. Расположение нервных волокон от разных областей сетчатки имеет определенную структуру. Приближаясь к области диска зрительного нерва (ДЗН) толщина слоя нервных волокон увеличивается, и это место немного возвышается над сетчаткой. После собранные в диске зрительного нерва волокна преломляются под углом 90˚ и образуют внутриглазную часть зрительного нерва.

Диаметр диска зрительного нерва составляет 1,75-2,0 мм, он размещается на площади в 2-3 мм. Зона его проекции в поле зрения равна области слепого пятна, открытого еще в 1668 году физиком Э. Марриотом.

Протяженность зрительного нерва продолжается от ДЗН до хиазмы (место перекреста зрительного нерва). Его длина у взрослого человека может составлять 35 - 55 мм. У зрительного нерва имеется S-образный изгиб, препятствующий его натяжению во время движения глазного яблока. Почти на всем протяжении, как и у головного мозга, у зрительного нерва имеется три оболочки: твердая, паутинная и мягкая, пространства между которыми заполнены влагой сложного состава.

Зрительный нерв принято делить топографически на 4 части: внутриглазную, внутриорбитальную, внутриканальцевую и внутричерепную.

Зрительные нервы глаз выходят в черепную полость и образуют хиазму, соединившись в зоне турецкого седла. В области хиазмы происходит частичное перекрещивание волокон зрительного нерва. Перекрещиванию подвергаются волокна, ведущие от внутренних половин сетчатки (носовые). Волокна, ведущие от наружных половин сетчатки (височные), не перекрещиваются.

После перекрещивания зрительные волокна называются зрительными трактами. Каждый тракт составляют волокна наружной половины сетчатки той же стороны, а также внутренней половины противоположной стороны.

Функцией зрительного нерва является передача импульса от фоторецепторов сетчатки к вышестоящим структурам, которые расположены в коре затылочных долей головного мозга. В результате становится возможным формирование зрительного образа. Кроме того, на основании связей центральных структур друг с другом, формируется и зрительная память.

Методы исследования:

1) исследование остроты зрения при помощи таблиц (в наст. время таблица Головина, Сивцева)

Определение остроты зрения осуществляется при помощи специальных таблиц, на которых расположено 10 рядов букв или других знаков убывающей величины. Исследуемый помещается на расстоянии 5 м от таблицы и называет обозначения на ней, начиная от самых крупных и постепенно переходя к самым мелким. Проводят исследование каждого глаза в отдельности. Острота зрения равняется 1,если на таблице различают самые мелкие буквы; в тех же случаях, когда различают только наиболее крупные острота зрения составляет 0,1 и т. д. Зрение вблизи определяется с помощью стандартных текстовых таблиц или карт. Счёт пальцев, движения пальцев, восприятие света отмечаются у больных с существенным нарушением зрения.

Для детей после 5 лет используется табл. Орловой с наиболее знакомыми игрушками.

В этой таблице содержатся строки с картинками, размер которых уменьшается от строки к строке в направлении сверху вниз.

2) исследование полей зрения

Периметрия – это методика исследования полей зрения с проекцией их на сферическую поверхность. Полями зрения являются те части пространства, которые видит глаз при фиксированном взгляде и неподвижной голове. Когда взгляд зафиксирован на определенном предмете, помимо четкой визуализации данного предмета видны также другие предметы, которые находятся на различном расстоянии и попадают в поле зрения. Это обуславливает возможность периферического зрения, которое менее четкое, чем центральное.

Исследование проводят при помощи специальных приборов - периметров , имеющих вид дуги или полусферы. Данный метод исследования проводится для каждого глаза в отдельности, при этом на второй глаз фиксируют повязку. В ходе исследования пациент садится перед периметром, размещает подбородок на специальной подставке, при этом исследуемый глаз находится точно напротив точки, которую следует фиксировать взглядом.

При выполнении периметрии пациент не отрываясь смотрит на указанную точку. Врач находится сбоку, перемещает предмет по меридианам от периферии к центру. При этом пациенту нужно уловить момент, когда при фиксированном на точке в центре взгляде он видит движущийся предмет. Офтальмолог отмечает показатели на специальной схеме. Движение предмета следует продолжать до самой фиксационной точки, для того чтобы точно убедиться в том, что зрение сохранено на протяжении всего меридиана. Размер используемого объекта зависит от остроты зрения. При высокой остроте зрения применяют объект, диаметр которого 3 мм, при низкой – от 5 до 10 мм. Обычно исследование проводят по восьми меридианам, иногда для более точной картины – по 12 меридианам.

На периферических отделах сетчатки отсутствует цветоощущение. Крайняя периферия воспринимает лишь белый цвет, по мере приближения к центральным зонам появляется ощущение желтого, синего, зеленого и красного цветов. И лишь центральная зона воспринимает все цвета.
Поле зрения каждого глаза на объект белого цвета в норме имеет следующие границы:

  • кнаружи (к виску) – 900,
  • кнаружи кверху– 700,
  • кверху – 50-550,
  • кнутри кверху– 600,
  • кнутри (к носу) – 550,
  • кнутри книзу– 500,
  • книзу – 65-700,
  • кнаружи книзу– 900.

Допустимы отклонения от 5 до 100. Поля зрения на другие цвета исследуются точно так же, как на белый объект. Но при этом пациенту нужно зафиксировать не тот момент, когда он видит движение, а тот, когда различим цвет объекта. Довольно часто при сохраненных границах полей зрения на белый объект выявляются сужения на другие цвета.

3) Исследование глазного дна проводится офтальмоскопом.

При поражении аксонов ганглиозных клеток на любом участке их следования со временем наступает дегенерация ткани диска зрительного нерва - первичная атрофия. Диск зрительного нерва при первичной атрофии сохраняет свои размеры и форму, но цвет его бледнеет и может стать серебристо-белым.

Если же у больного повышается внутричерепное давление, то нарушается венозный и лимфатический отток из сетчатой оболочки глаза, что ведёт к отёку диска зрительного нерва. В результате развивается так называемый застойный диск зрительного нерва. Он увеличен в размере, границы его размыты, отёчная ткань диска нередко выступает в стекловидное тело. Артерии сужаются, вены в то же время оказываются расширенными, извитыми. При резко выраженных явлениях застоя возникают кровоизлияния в ткань диска.

Застойные диски, если своевременно не устранена их причина, могут переходить в состояние атрофии. При этом размеры их уменьшаются, но обычно всё-таки остаются несколько больше нормальных, вены сужаются, границы становятся более чёткими, цвет бледным. В таких случаях говорят о развитии вторичной атрофии дисков зрительных нервов. Офтальмоскопическая картина неврита зрительного нерва и застоя на глазном дне имеет много общего, но при неврите визус обычно падает остро и оказывается низким с начала заболевания, а при застое визус может длительно сохраняться удовлетворительным, и значительное падение его наступает лишь с переходом застойного диска в атрофичный.

При длительно существующей опухоли основания мозга сдавливающей один из зрительных нервов возникает первичная атрофия диска зрительного нерва на стороне поражения и вторичная атрофия на противоположной за счёт развития внутричерепной гипертензии.

4) Исследование цветоощущения

Для исследования цветового зрения применяют два основных метода: специальные пигментные таблицы и спектральные приборы - аномалоскопы. Из пигментных таблиц наиболее совершенными признаны полихроматические таблицы Рабкина.

Таблицы представляют собой своеобразные рисунки, где изображены точки и круги разного цвета и диаметра. При наличии дальтонизма человек без проблем может различить яркость цвета, но сам цвет охарактеризовать ему сложно. Схема Рабкина учитывает эти особенности - яркость значков одинаковая, а цвет различается. Человек с отклонением в восприятии цвета не увидит скрытое в другом цвете изображение в схеме.

  • IV. Биогенетические методы, способствующие увеличению продолжительности жизни
  • VII. ЭКСПЕРИМЕНТАЛЬНО-ПСИХОЛОГИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ МЫШЛЕНИЯ И РЕЧИ
  • Альтернативные методы в токсикологических исследованиях химических веществ. Пробанты - добровольцы и опытные носки.

  • Соединяет сетчатку с большим мозгом и образован в основном из аксонов мультиполярных клеток — ганглиозных нейроцитов (8-й слой), которые, не прерываясь, доходят до латерального коленчатого тела, а также из центробежных волокон, являющихся элементами обратной связи.

    Топографически зрительный нерв (рис. 8) можно разделить на следующие отрезки: внутриглазной (intraocularis), глазничный (orbitalis), внутрикостный, или внутриканальный (intercostalis seu intercanalis) и внутричерепной (intracranialis).


    Рис. 8. Основание черепа. Глазница вскрыта и отпрепарирована.
    1 — слезный мешок; 2 — слезная часть круговой мышцы глаза (мышца Горнера); 3 — слезное мясцо; 4 — полулунная складка; 5 — роговица; б — радужка; 7 — ресничное тело (хрусталик удален); 8 — зубчатый край; 9 — вид сосудистой оболочки в горизонтальной плоскости; 10 — сосудистая оболочка; 11 — склера; 12 — тенонова капсула; 13 — центральные сосуды сетчатки в стволе зрительного нерва; 14 — твердая оболочка глазничной части зрительного нерва; 13 — клиновидная пазуха; 16 — внутричерепная часть зрительного нерва; 17 — зрительный тракт; 18 — внутренняя сонная артерия; 19 — кавернозный синус; 20 — глазная артерия; 21, 23, 24 — нижнечелюстной, глазной, верхнечелюстной нервы; 22 — тригеминальный узел; 25 — глазничная вена; 26 — верхняя глазничная щель (вскрыта); 27 — ресничная артерия; 28 — ресничный нерв; 29 — слезная артерия; 30 — слезный иерв; 31 — слезная железа; 32 — верхняя прямая мышца; 33 — сухожилие мышцы, поднимающей верхнее веко; 34 — надглазничная артерия; 35 — надглазничный нерв; 36 — надблоковый нерв; 37 — подблоковый нерв; 38 — блоковый нерв; 39 — мышца, поднимающая верхнее веко; 40 — височная доля большого мозга; 41 — медиальная прямая мышца; 42 — латеральная прямая мышца; 43 — зрительный перекрест (хиазма).


    Внутриглазная часть зрительного нерва представлена диском. В центре диска имеется воронкообразное углубление белесоватого цвета — экскавация (excavatio disci nervi optici), которое у детей раннего возраста не выражено. В области экскавации в глаз входит центральная артерия и выходит центральная вена сетчатки, поэтому это место называется также сосудистой воронкой.

    Область диска зрительного нерва не содержит фоторецепторов и является «слепой» зоной глазного дна. Проекция соска (диска) на плоскость носит название слепого пятна или скотомы Бьеррума (дефект поля зрения). Величина этой скотомы зависит от размеров диска, состояния сосудов и окружающей сетчатки и при различных патологических процессах может изменяться (увеличивается при глаукоме, застое и др.).

    Глазничная часть зрительного нерва, или его начальный отдел, начинается сразу по выходе из решетчатой склеральной пластинки. Он сразу приобретает соединительнотканную (мягкую) оболочку, нижнее паутинное влагалище и наружную (твердую) оболочку. Зрительный нерв, покрытый оболочками, имеет толщину до 4,5 мм. В центральной части зрительного нерва проходят сосуды (центральные артерия и вена сетчатки), окруженные соединительнотканным чехлом. На расстоянии 8—15 мм от глазного яблока сосуды почти под прямым углом поворачивают книзу и располагаются вне зрительного нерва.

    Далее артерия идет по нижнему краю зрительного нерва к глазной или ресничной артерии, а вена направляется к верхнеглазничной щели (fissura orbitalis superior), входит в нее и далее впадает в верхний пещеристый синус (sinus cavernosus superior). Глазничная часть зрительного нерва имеет S-образную форму и длину около 3 см. Такие размеры и форма способствуют хорошей подвижности глаза без натяжения волокон зрительного нерва.

    Рис. 9. Проводящие пути зрительного анализатора и поля зрения.
    А — поле зрения левого глаза; Б — поле зрения правого глаза. 1 — зрительный нерв; 2 — зрительный перекрест; 3 — зрительный тракт; 4 — подушка зрительного бугорка; 5 — латеральное коленчатое тело; 6 — зрительная лучистость (пучок Грасиоле); 7 — четверохолмие в области ядер глазодвигательных нервов; 8 — зрительный центр в коре затылочной доли мозга; 9 — ресничный узел; 10 — зрачковые волокна.


    Внутрикостная часть зрительного нерва начинается от зрительного отверстия (foramen opticum), проходит по зрительному каналу (canalis opticus) и заканчивается у внутричерепного края канала. Длина этого отрезка около 1 см. Внутричерепной отдел зрительного нерва имеет длину до 1,5 см, в костном канале не имеет твердой оболочки и покрыт только двумя оболочками. В области диафрагмы турецкого седла зрительные нервы, конвергируя, перекрещиваются друг с другом, образуя так называемый зрительный перекрест (chiasma opticum).

    Волокна зрительного нерва от наружных (височных) отделов сетчаток обоих глаз не перекрещиваются и идут по наружным участкам зрительного перекреста кзади, а от внутренних (носовых) отделов сетчатки полностью перекрещиваются (рис. 9).

    После частичного перекреста зрительных нервов образуются правый и левый зрительный тракты (tractus opticus). В правом зрительном тракте содержатся неперекрещенные волокна правой (височной) половины сетчатки правого глаза и перекрещенные волокна от правой (носовой) половины левого глаза. Соответственно в левом зрительном тракте проходят неперекрещенные волокна от левой (височной) половины сетчатки левого глаза и перекрещенные волокна левой (носовой) половины правого глаза. Оба зрительных тракта, дивергируя, направляются к подкорковым зрительным центрам — латеральным коленчатым телам (corpus geniculatum laterale). Существуют данные о том, что имеется также связь с медиальными коленчатыми телами, передним двухолмием, таламусом, гипоталамусом. В подкорковых центрах замыкается третий нейрон зрительного пути, начавшийся в мультиполярных клетках сетчатки, и заканчивается периферическая часть зрительного анализатора.

    Центральная часть зрительного анализатора начинается от аксонов подкорковых зрительных центров. Эти центры соединяются зрительной лучистостью (radiatio optica, пучок Грациоле) с корой шпорной борозды (sulcus calcarinus) на медиальной поверхности затылочной доли мозга, проходя при этом заднюю ножку внутренней капсулы (crus posterior capsulae internae), что соответствует в основном полю 17 (по Бродману) коры большого мозга (рис. 10). Эта зона коры является центральной частью ядра зрительного анализатора, орган высшего синтеза и анализа световых раздражений. Существуют данные о единстве структуры и деятельности полей 17, 18 и 19. Поля 18 и 19 имеют у человека большие размеры.


    Рис. 10. Корковое представительство зрительного анализатора (поля 17—19 по Бродману).
    а — наружная поверхность полушарии; б — внутренняя поверхность полушарий большого мозга.


    Обильные ассоциативные связи между корковыми полями, передними и задними отделами полушарий большого мозга являются одной из существенных особенностей мозга человека. Зрительный анализатор условно можно разделить на две части: ядро зрительного анализатора первой сигнальной системы — шпорная борозда, и ядро зрительного анализатора второй сигнальной системы — левая угловая извилина (gyrus angularis sinister). При поражении поля 17 может наступить физиологическая слепота, а при повреждении полей 18 и 19 нарушается пространственная ориентация или возникает «душевная» слепота.

    Ковалевский Е.И.

    Зрительный нерв относится к оптической системе и является звеном, которое связывает центральные структуры мозга с . Зрительный центр располагается в коре больших полушарий (затылочная область) и является высшим органом, отвечающим за зрение.

    Строение зрительного нерва

    Зрительный нерв состоит из большого количества (более миллиона) чувствительных нейронов. От этих клеток отходят длинные чувствительные окончания, являющиеся отростками клеток, которые располагаются в . По мере старения организма, количество нервных клеток постепенно уменьшается, а новые нейроны уже не образуются. Это является одной из причин возрастного снижения остроты зрения. При увеличении диаметра нервных волокон происходит формирование диска оптического нерва, который локализуется в центральной зоне сетчатки. При врач оценивает в том числе и состояние этого диска. Внутриглазная часть зрительного нерва отходит под углом в 90 градусов.

    Диаметр диска оптического нерва составляет около 1,5-2 мм. В связи с отсутствием в этой области фоторецепторов, эта зона соответствует , которое проецируется в поле зрения. После отхождения волокон, они направляются в глубь головного мозга, на основании которого образуют так называемую хиазму (перекрест). В связи с наличием хиазмы, при повреждении правой части оптического нерва происходит снижение зрения слева, и наоборот.

    При этом не стоит забывать, что перекрест нервных волокон в области хиазмы не полный. Он затрагивает только те нейроны, которые получают информацию о зрительном образе от половины сетчатки, располагающейся медиально, то есть ближе к носу. Также в области перекреста возникает S-образное отклонение нервного волокна, что способствует уменьшению натяжения отростков. За счет такого механизма, нерв не травмируется и не натягивается при движении глазными яблоками.

    Сам оптический нерв имеет в своем составе три оболочки, которые сходны с покровом головного мозга:

    • Твердая оболочка – самая наружная;
    • Паутинная – промежуточная;
    • Мягкая – внутренняя оболочка.

    В составе оптического нерва выделяют четыре отдела:

    • Черепной;
    • Орбитальный;
    • Канальцевый;

    Физиологическая роль зрительного нерва

    Функцией зрительного нерва является передача импульса от фоторецепторов сетчатки к вышестоящим структурам, которые расположены в коре затылочных долей головного мозга. В результате становится возможным формирование зрительного образа. Кроме того, на основании связей центральных структур друг с другом, формируется и зрительная память.

    Видео о строении зрительного нерва

    Симптомы поражения зрительного нерва

    При поражении зрительного нерва у пациента могут возникать следующие симптомы:

    • Сужение поля зрения;
    • Нарушение цветовосприятия;
    • Снижение остроты зрения;
    • Появление вспышек, молнии, бликов и т.д.;
    • Появление .

    Методы диагностики при поражении зрительного нерва

    При подозрении на вовлечение в патологический процесс оптического нерва следует выполнить ряд исследований:

    • Когерентная оптическая томография;
    • Офтальмоскопия.

    Следует еще раз напомнить, что зрительный нерв является неотъемлемой составляющей оптической системы. Он отвечает за связь между рецепторами сетчатки и центральными структурами, которые локализованы в коре головного мозга. Только благодаря работе оптического нерва, становится возможным формирование изображения и зрительной памяти.

    Заболевания зрительного нерва

    Среди заболеваний, которые приводят к поражению зрительного нерва, выделяют:

    • Атрофия зрительного нерва;
    • Колобома диска;
    • Аплазия и гипоплазия нейронов и диска;
    • Неврит.

    Все эти заболевания приводят к нарушению работы оптической системы, в том числе и к необратимой утрате зрения. Это, в свою очередь, сильно влияет на качество жизни.

    Важнейшее место в глазу занимает зрительный нерв. Он имеет сложное строение и серьезное значение для зрительного процесса, выполняет функции передачи нервных импульсов от глаза к мозгу и в обратную сторону. Но из-за врожденных патологий, невротических заболеваний и воспалительных процессов работа нерва ухудшается. Без лечения это приводит к атрофии и потере зрения. Терапию проходят в стационарных условиях под контролем врача-офтальмолога.

    Анатомия и строение нерва

    Зрительный нерв (ЗН) складывается из нервных волокон, которые отходят от сетчатки глаза.

    Анатомия нерва довольно сложная и занимает много пространств. Нервная система глаза образована из 1 миллиона волокон, но с возрастом их количество уменьшается. Пучок расположен на 3 мм от задней части глаза. Начало находится в диске зрительного нерва (ДЗН), проходит через зрительный канал, а заканчивает свой путь в хиазме. Кровоснабжение органа осуществляется глазничной артерией. Она также нужна для проводимости питательных веществ. Сеть сосудов тоже выходит из глазничного диска. Волокна, которые входят в ДНЗ, плотнее, чем возле сетчатки. Это глазничная часть органа. Диаметр диска в норме составляет около 2 миллиметров, а толщина - 3 мм. Зрительный нерв имеет продолжительность от 34 и до 55 миллиметров.

    Пучок имеет S-образное строение, что позволяет ему быть пластичным во время движения глаз. Ветви разделяются на такие отделы: периферический (папилломакулярный пучек) и центральный. Нервные волокна проходят из обоих глаз в черепную оболочку и образуют хиазму возле выхода зрительного нерва. Скопления нейронов расположены в центре органа. В этой части, кроме перекрестка, также находятся зрительные тракты и наружное коленчатое тело, которое состоит из 6 слоев.

    Схема нейронов разделяется на 4 основные ветви:

    • внутриглазной;
    • внутриорбитальный - пространство от зрачка до зрительного канала;
    • внутриканальцевый, что создает ход в канале;
    • внутричерепной - расположение пространства, что включает влагалище мозга со спинномозговой жидкостью.

    Функции ЗН

    Все что мы видим невозможно без участия зрительного нерва.

    Основной задачей органа считается передача первичных нервных импульсов из мозга. Он выполняет важные функции, чтобы организм своевременно реагировал на внешние раздражители. Зрительный нерв служит для реакции на угрозы, которая исходит от окружающей среды. Глазной нерв посылает сигналы в мозг и принимает их обратно. Таким образом формируется отображение внешней реальности. Из-за нарушений работы этого органа ухудшаются зрительные способности, появляются галлюцинации и сужаются поля, развивается слабое зрение.

    Хиазма представляет собой перекрест зрительных нервов, что образован вследствие их конъюгации в профазе мейоза.

    Поражения: виды

    Заболевания этого органа разделяют на врожденные аномалии и приобретенные недуги. Так, некоторые люди с рождения страдают от патологии в развитии системы, присутствует ямка в ДНЗ или мегалопопилла. В сознательном возрасте из-за травм может развиваться атрофия ЗН или неврит. Все эти отклонения приводят к полной или частичной потере зрения, а также ухудшению восприятия цвета.

    Различают такие нарушения:

    • увеличение диаметра ДНЗ (мегалопопилла);
    • аплазия;
    • гипоплазия;
    • неврит;
    • атрофия;
    • друзы ДНЗ;
    • расширение или сужение сосудов.

    Причины и симптомы поражения

    Воспалительные процессы

    Наиболее часто встречаются воспалительные заболевания зрительного нерва. Чаще всего врачи диагностируют неврит. Различают папиллярный и ретробульбарный тип заболевания. Первый вид поражает область возле оптического диска, а второй - около перекреста нерва и яблока глаза. Перед глазами возникают белые пятна или вспышки света. Некоторые пациенты жалуются на головную боль. Такая болезнь возникает на фоне ангины, менингита, абсцесса мозга, энцефалита и воспалений сосудистой системы. А также различают псевдоневрит. Особенности заболевания - большая извитость волокон, что отходят от диска на сетчатку. Так, врачи отмечают прохождение волокон мимо сетчатки либо ее перекрытие.

    Спазмы в глазах могут быть сигналом неврита.

    Симптомы неврита включают:

    • неожиданное понижение качества зрения;
    • спазмы в глазах;
    • уменьшение способности проекции света и цветовосприятия;
    • отек подоболочечных пространств нерва.

    Кроме этого, неврит вызывают:

    Атрофия ЗН

    Другое опасное отклонение, которое поражает этот глазничный нерв, называется атрофия. Это прогрессирующая патология, которая со временем приводит к полной слепоте. Атрофию вызывают неврит, повреждение лицевой части, вирусные инфекции, гипертония. При этом нервные окончания постепенно отмирают, тем самым развивая слабые зрительные способности. Этот процесс проходит медленно и незаметно для человека, потому мало кто обращается за помощью к врачу. Кроме этого, больные жалуются на головную боль, спазмы в глазах при движении и понижение цветовосприятия.

    Выделяют 2 типа атрофии:

    • Первичная. Развивается на фоне гипертонической болезни, атеросклероза, ухудшения циркуляции в ЗН.
    • Вторичная. Причинами появления становятся опухоли, воспаления сетчатки и самого нерва.

    К врожденным патологиям относят удвоение ДНЗ. При обследовании заметно два диска, что образованы волокнами и имеют самостоятельное кровоснабжение. Круг слепого пятна увеличен. Обычно такое поражение зрительного нерва сопровождается врожденной глаукомой. Распространенным заболеванием считается мегалопопилла. Это аномалия, при которой диаметр ДНЗ значительно больше нормы. При осмотре складывается впечатление, что в диске мало сосудов. Заболевание, выраженное такими симптомами, напоминает клиническую картину атрофии ЗН. Но мегалопопилла вызывает незначительное ухудшение зрения. Подоболочечные кровоизлияния говорят о нарушении работы мозга.

    Зрительный нерв – это первое звено системы передачи визуальной информации от глаза к коре головного мозга. Процесс формирования, строение, организация проведения импульса отличают его от остальных чувствительных нервов.

    Формирование

    Закладка происходит на пятой неделе беременности. Зрительный нерв – второй из двенадцати пар черепно-мозговых нервов – образуется из участка промежуточного мозга вместе с , напоминая ножку глазного бокала.

    Фактически, это особый нейрон, тесно связанный с глубокими отделами центральной нервной системы.

    Как часть мозга, зрительный нерв не имеет промежуточных нейронов и напрямую доставляет визуальную информацию от фоторецепторов глаза к таламусу. Глазной нерв не имеет болевых рецепторов, что изменяет клинические симптомы при его заболеваниях, например, при его воспалении.

    В процессе развития эмбриона вместе с нервом вытягиваются оболочки мозга, которые позже образуют особый футляр нервного пучка. Строение футляров периферических нервных пучков отличается от оболочки зрительного нерва. Они обычно образуются листками плотной соединительной ткани, а просвет футляров изолирован от пространств головного мозга.

    Начало нерва и его глазничная часть

    Функции зрительного нерва включают восприятие сигнала от сетчатой оболочки глаза и проведение импульса до следующего нейрона. Строение нерва полностью соответствует его функциям. Зрительный нерв образован из большого количества волокон, которые начинаются от третьего нейрона сетчатой оболочки глаза. Длинные отростки третьих нейронов собираются в один пучок на глазном дне, передают электрический импульс с сетчатки дальше на волокна, собирающиеся в глазной нерв.

    Эта область визуально выделяется на глазном дне и называется зрительным диском.

    В области зрительного диска сетчатка лишена воспринимающих клеток, потому что аксоны первого передающего нейрона собираются поверх нее и закрывают от света нижележащие слои клеток. Зона имеет еще одно название — слепое пятно. В двух глазах слепые пятна располагаются несимметрично. Обычно человек не замечает дефектов изображения, потому что головной мозг его подправляет. Обнаружить слепое пятно можно с помощью несложных специальных тестов.

    Слепое пятно было открыто в конце XVII века. Существует история о французском короле Людовике XIV, который развлекался, наблюдая придворных «без головы». Чуть выше зрительного диска против зрачка на дне глаза расположена зона максимальной остроты зрения, в которой максимально сконцентрированы фоторецепторные клетки.

    Зрительный нерв образован из тысяч тончайших волокон. Строение каждого волокна аналогично аксону – длинному отростку нервных клеток. Миелиновые оболочки изолируют каждое волокно и ускоряют проведение электрического импульса по нему в 5-10 раз. Функционально глазной нерв разделен на правую и левую половины, по которым импульсы от носовой и височной областей сетчатки передается раздельно.

    Многочисленные нервные пряди проходят через внешние оболочки глаза и собираются в компактный пучок. Толщина нерва в глазничной части составляет 4-4,5 миллиметра. Длина глазничной части нерва у взрослого около 25-30 миллиметров, а общая длина может колебаться от 35 до 55 миллиметров. За счет изгиба в области глазницы он не натягивается при движениях глаз. Рыхлая клетчатка жирового тела глазницы фиксирует и дополнительно защищает нерв.

    В глазнице до входа в зрительный канал нерв окружают оболочки мозга – твердая, паутинная и мягкая. Оболочки нерва плотно срастаются со склерой и оболочкой глаза с одной стороны. С противоположной стороны они прикрепляются к надкостнице клиновидной кости в месте общего сухожильного кольца у входа в череп. Пространства между оболочками соединяются с аналогичными пространствами в черепе, из-за чего воспаление может легко распространиться вглубь через зрительный канал. Глазной нерв вместе с одноименной артерией покидает глазницу через зрительный канал длиной 5-6 миллиметров и диаметром около 4 миллиметров.

    Перекрест (хиазма)

    Нерв, пройдя через костный канал клиновидной кости, переходит в особое образование – хиазму, в которой нити перемешиваются и частично перекрещиваются. Длина и ширина хиазмы составляет около 10 миллиметров, толщина обычно не превышает 5 миллиметров. Строение хиазмы очень сложно, оно обеспечивает уникальный защитный механизм при некоторых видах повреждений глаз.

    Роль хиазмы долгое время была неизвестна. Благодаря экспериментам В.М. Бехтерева, в конце XIX века стало ясно, что в хиазме нервные волокна частично перекрещиваются. Отходящие от носовой части сетчатки волокна перемещаются на противоположную сторону. Волокна височной части следуют дальше с той же стороны. Частичный перекрест создает интересный эффект. Если хиазму пересечь в переднезаднем направлении, изображение с обеих сторон не исчезает.

    Пройдя перекрест, нервный пучок меняет название на «зрительный тракт», хотя по сути это те же самые нейроны.

    Путь к центрам зрения

    Зрительный тракт образован теми же нейронами, что лежащий вне черепа глазной нерв. Зрительный тракт начинается в хиазме и заканчивается в подкорковых зрительных центрах промежуточного мозга. Обычно его длина составляет около 50 миллиметров. От перекреста проводящие пути под основанием височных долей проходят к коленчатому телу и таламусу. Нервный пучок передает информацию с сетчатки глаза своей стороны. При повреждении тракта после выхода из хиазмы у больного выпадают поля зрения со стороны нервного пучка.

    В первичном центре коленчатого тела с первого нейрона цепи импульс передается на следующий нейрон. От тракта к вспомогательным подкорковым центрам таламуса отходит еще одно ответвление. Непосредственно перед коленчатым телом отходят зрачково-чувствительные и зрачково-двигательные нервы и направляются к таламусу.

    Эти волокна отвечают за замыкание рефлекторных цепей содружественной фотореакции зрачков, конвергенции (скашивания) глазных яблок и аккомодации (изменения фокусировки на объектах, находящихся на разном расстоянии от глаза).

    Рядом с подкорковыми ядрами таламуса расположены центры слуха, обоняния, равновесия и другие ядра черепных и спинномозговых нервов. Координированная работа этих ядер обеспечивает базовое поведение, например, быструю реакцию на резкие движения. Таламус связан с другими мозговыми структурами, участвует в соматических и висцеральных рефлексах. Имеются сведения, что сигналы, поступающие по зрительным путям с сетчатки глаза, влияют на чередование бодрствования и сна, вегетативную регуляцию внутренних органов, эмоциональное состояние, менструальный цикл, водно-электролитный, липидный и углеводный обмен, продукцию гормона роста, половых гормонов, менструальный цикл.

    Зрительные раздражители от первичного зрительного ядра передаются по центральному зрительному пути в полушария. Высший центр зрения у человека расположен в коре внутренней поверхности затылочных долей, шпорной борозды, язычной извилины.

    Высший центр получает от глаза перевернутое зеркальное изображение и преобразует его в нормальную картину мира.

    До 90% информации об окружающем мире человек получает с помощью зрения. Оно необходимо для практической деятельности, общения, воспитания, творчества. Поэтому люди должны знать, как устроен зрительный аппарат, как сохранить зрение, когда нужно обращаться к врачу.