Типы и характеристики лазеров. Как дома измерить мощность лазерной указки

ЧПУ лазер является основным элементом всей конструкции станка, с помощью которого и происходит сам процесс обработки материала. На сегодняшний день лазерные станки с числовым программным управлением применяются для производства самых разных товаров, начиная от декоративной продукции и заканчивая крупногабаритными сложными изделиями.

Оптическая составляющая лазерных станков

Перед тем, как подойти к подробному описанию работы лазера, разберем его основные оптические компоненты:

  • лазерная трубка (она же СО 2 лазер), которая отвечает за генерацию луча;
  • зеркала-отражатели, которые отражают луч;
  • головка излучателя, которая подает луч на поверхность обрабатываемой заготовки;
  • линза фокусировки, название которой говорит само за себя: она отвечает за фокусирование лазерного луча на поверхность материала.

Мощность лазера

Если говорить о материалах, которые можно обрабатывать лазерными машинами, то их довольно большое количество. Мощность лазера должна меняться в зависимости от того, с каким материалом вы собираетесь работать. Давайте разберемся с основными материалами и необходимой мощностью лазера для их обработки:

  1. Мощность 200 мВТ – данный параметр отлично подходит для резки не особо прочных материалов (таких, как тонкая полиэтиленовая пленка). Важно уточнить, что такие лазеры бывают только твердотельными.
  2. Мощность от 300 до 500 мВт – средняя мощность лазера, отлично подходит для гравировки дерева, кожи и пластика. Это наиболее приемлемая мощность для ЧПУ выжигателя.
  3. Мощность в 1000 мВт – подходит для резки тонкой бальзы (самая легкая древесина в мире!). С такой мощностью можно так же осуществлять резку синтетического шпона, но существует вероятность его подгорания.

Необходимо сделать важный вывод: чем мощнее лазер, тем более «плотный» материал можно обработать. То есть, выбирайте мощность лазера исходя из материала, который вы хотите обрабатывать.

Лазерный модуль малой мощности

Принцип работы лазера

Основной принцип работы лазера на станке заключается в том, что лазер не режет, а прожигает. Для того, чтобы получить лазерный луч, нужны следующие элементы:

  • источник внешней энергии;
  • активная среда;
  • оптический резонатор.

Все вышеуказанные элементы работают следующим образом:

Источник внешней энергии несет в активную среду частицы, которые имеют некий заряд. В свою очередь эти частицы притягивают из активной среды подобных себе. С помощью усилителя они начинают двигаться более живо, сталкиваются с атомами среды и выбивают новые кристаллы. Благодаря полупрозрачному стеклу резонатора кристаллы выходят вовне в форме узкого луча.

Этот луч, который фокусируется в одну точку, имеет высокое содержание энергии. Такая энергия достаточна для вхождения в любой вид материала. То место, куда попал луч, плавится или горит.

Важно знать, что при небольшой толщине материала или мощном луче, вы можете совершить даже сквозную резку металла.

Причины исчезновения лазерного луча

При отсутствии излучения в момент запуска станка, первой причиной исчезновения лазера является лазерная трубка. Проблемы и пути их решения с ней мы обсудим подробней немного ниже.

Второй причиной исчезновения может стать повреждение блока розжига. Перед проверкой электронных частей лазерной машины просмотрите индикацию (нормальное состояние – это свет светодиода на блочке питания и пары светодиодов на материнской плате) . Для подтверждения проблемы с блоком розжига можно осуществить такие действия: даете ЧПУ легкую задачу, и если она выполняется, но при этом заготовка остается целой, то можно судить об отсутствии проблем с блоком розжига.

Изделие, изготовленное на настольном лазерном станке

Общие проблемы при работе лазерной трубки

    1. Слабая мощность лазерного излучения. Решением такой проблемы может стать следующее: убедитесь нет ли царапин, или грязи на линзах или лазерной трубке; посмотрите на выходной ток, напряжение, скорость и чистоту потока воды; проверьте ровность лазерного луча и др.
    2. Электрическое зажигание имеет высокое напряжение. Предлагаем следующее варианты действий: проверка помех возле электрического соединения; убедитесь, что лазерная трубка не находится на маленьком расстоянии возле металлических частей станка; проверьте влажность помещения (высокая влажность может вызвать электрические пробои и помехи); убедитесь в целости всех контактов и замкнутости цепи внутренних соединений.
    3. Поломка или растрескивание концов лазерной трубки. Возможно вам смогут помочь следующие действия: проверка температуры воды (норма – 15-25 градусов); убедитесь, что водопроводная трубка не сложена и не прижата чем-либо; убедитесь в отсутствии пузырей в трубке; обратите внимание на воду: на ее расход и циркуляцию (от низкого до высокого).

Лазерные указки являются портативными приборами, в которых имеются излучатели, генерирующие волны электромагнитного когерентного и монохроматического происхождения в видимом диапазоне в лучевой форме. Излучателями могут выступать лазерные диоды, либо полноценные твердотельные лазеры.

Имеется несколько видов лазерных указок, которые отличаются типами излучателей и бывают таких цветов:

  • Красных;
  • Зеленых;
  • Синих;
  • Бирюзовых;
  • Голубых;
  • Фиолетовых;
  • Желтых;
  • Оранжевых.

ЛУ красного цвета

Эти ЛУ являются самыми дешевыми и самыми распространенными. Работают от обычной батареи таблеточного типа, на базе красных лазерных диодов со спектром излучения 650-660 нм. Они оснащены драйверными платами, управляющими питанием. Для излучения в форме узкого луча используются выпуклые с обеих сторон линзы, называемые коллиматорами.

Красные ЛУ в основном маломощные до 1-100 мВт. Их характерной особенностью является то, что красные диоды довольно-таки скоро «прогорают», снижая интенсивность излучения, отчего большинство таких указок, спустя пару месяцев работы, начинают хуже светить, невзирая на заряд батареек.

ЛУ зеленого цвета (green laser)

Днем человеческий глаз более чувствителен к зеленым цветам, чем к красным (где-то в 6-10 раз). Благодаря этому green laser светит более ярко. Однако в ночи все происходит наоборот.

Зеленые лазерные диоды чрезвычайно дорогостоящие, поэтому для создания green laser используют твердотелые лазеры с диодами. Они не такие дорогие как зеленые лазерные диоды, но ценнее, чем красные. Длина волны green laser - 532 нм, с КПД приблизительно 20%. Зеленые ЛУ энергозатратнее красных, вследствие этого трудно подбирать агрегаты, питающиеся от таблеточных батарей.

ЛУ синего цвета

Начали выпускаться с 2006 года, схема действия схожа с green laser. Длина волны голубая- 490 нм, бирюзовая - 473 нм, а синяя - 445 нм. Излучателем является твердотелый мощный лазер. Синие ЛУ весьма дорогостоящие, диоды не такие дорогие, но не имеют широкого распространения. Излучение ЛУ синего цвета крайне опасно для глаз. КПД приблизительно 3%.

ЛУ желтого цвета

Длина волны желтых ЛУ - 593.5 нм. Имеются также их оранжевые «коллеги» с длиной волны 635 нм. КПД – чуть более 1%.

ЛУ фиолетового цвета

ЛУ с фиолетовыми лазерными диодам имеют длину волны 400-410 нм. Это почти предел в диапазоне, который воспринимает человеческий глаз, поэтому это свет видится как тусклый.

Свет фиолетовых ЛУ вызывает флуоресценцию, и яркость светящихся объектов становится интенсивнее, чем в самом лазере. В серию ЛУ пошли с появлением привода для оптического носителя Blu-ray, в котором применили лазерный диод с длиной волны соответственного излучения.

ЛУ: применение

  • ЛУ часто пользуются образовательные учреждения, например для физических экспериментов, а также для презентаций;
  • Световая точка, которую образует лазерный луч, привлекает внимание домашних животных. Особенно на них реагируют кошки и собаки, что зачастую приводит людей к играм с этими домашними питомцами;
  • Зелеными ЛУ пользуются как в любительских, так и в профессиональных астрономических исследованиях. Зеленые ЛУ используются для определения направлений звезд и созвездий;
  • ЛУ применяются в качестве лазерных целеуказателей, для точного прицеливания огнестрельного или пневматического оружия;
  • ЛУ применяются радиолюбителями, как элемент связи в видимых границах;
  • Красные ЛУ с отсоединенными коллиматорами пользуется при создании любительских голографий;
  • Лабораторная практика пользуется ЛУ (особенно зелеными) для выявления в жидкостях, газах или любых прозрачных веществах в малых количествах примесей или взвесей механического происхождения, которые незаметны для невооруженного глаза.

Безопасность лазеров

Лазерное излучение опасно при попадании в глаза.

Обыкновенные ЛУ обладают мощностью 1-5 мВт, их относят ко 2-3А классам опасности. Они могут быть опасными, в случаях направления луча в глаза людям на довольно-таки продолжительные периоды или при помощи оптических приборов. ЛУ мощностью 50-300 мВт относят к 3B-классу. Они опасны причинением сильных повреждений сетчатки глаз, причем даже при кратковременных попаданиях прямого лазерного луча.

Следует знать, что в маломощных зеленых DPSS-указках используются значительно мощные ИК-лазеры, которые не гарантируют достаточную фильтрацию ИК-излучений. Такие виды излучений не видимы и в результате этого куда более опасны для глаз людей и животных.

Кроме того, ЛУ могут оказывать исключительно раздражающие воздействия. Особенно, если луч попадет в глаза водителей или летчиков, что может отвлечь их внимание или даже привести к ослеплению. В некоторых странах такие деяния влекут за собой уголовную ответственность. Например, в 2018-ом году одного американца приговорили к почти двум годам тюремного заключения за непродолжительное ослепление мощным лазером летчика в полицейском вертолете.

В последние годы случается все больше многочисленных «лазерных инцидентов» в развитых странах, вызываемых требованиями по ограничению или запрещению ЛУ. В настоящее время законодательством Нового Южного Уэльса предусмотрен штраф за владение ЛУ, а за совершение «лазерного нападения» - заключение до 14-ти лет.

Применение ЛУ запрещено по правилам во время проведения футбольных матчей. Так, например Алжирская федерация футбола была оштрафована на 50 000 швейцарских франков за то, что болельщиками при помощи лазерной указки ослепили вратаря российской сборной Игоря Акинфеева во время ЧМ-2014.

Самая мощная лазерная указка

Не так давно стало известно о появлении самого мощного карманного лазера, «короля» ЛУ или «меча джедая». Небольшой мощный лазер может прожигать тонкие пластмассы, взрывать детские шарики, поджигать бумагу и ослеплять людей. Устройство китайского производителя Wicked Lasers лишь бегло напоминает популярные ЛУ, но имеет более крупный корпус.

Часто лазерная указка с крошечным цилиндриком, выдающая красный лазерный луч, используется детьми для игр или для презентаций в школе. Однако указатель новой генерации компании Wicked Lasers для детей не будет игрушкой. И это не случайно, ведь выходная мощность китайской лазерной указки в десятки и сотни раз значительнее, чем у обычных недорогих ЛУ.

Удивительно, что китайская «зеленая супермодель» с мощностью луча от 0,3 ватт достигает «дальности воздействия» до 193-х километров.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Способов немало:

  1. Фотодиод (сюда же фотоэлементы и солнечные батареи)
      Подходит для:
      • измерения малых мощностей (от 1 мкВт до 100 мВт)
      • измерения в видимом спектре, ближнем ультрафиолете и ближнем инфракрасном (примерно 300-1200 нм) (бывает и шире, но обычному человеку такие не достать)
      плюсы:
      • можно измерить мощность дешевой китайской лазерной указки, дохлого светодиода и т. п.
      • высокое быстродействие - на практике покажет мощность сразу - можно не ждать
      • датчик легко делается из распространенных в продаже фотодиодов
      минусы:
      • показания (в милливольтах или миллиамперах) при одной и той же мощности сильно зависят от длины волны (цвета луча), температуры самого фотодиода, а для многих фотодиодов еще и от точки попадания луча и угла попадания, а значит - требует постоянной калибровки
      • для калибровки нужен эталонный источник света (лазер), а лучше набор лазеров всех цветов, которые собираетесь измерять.
      • капризен в калибровке - без четкого знания, что делаешь, легко откалиброваться так, что прибор будет врать на 1 - 2 порядка.
  2. Фотосопротивление - если без экзотики то все сказанное про фотодиод относится и сюда, схема включения, правда, другая.
  3. Термосопротивление (болометр)
      Подходит для:
      • измерения вразумительных мощностей (от 10 мВт до 1 Вт)
      плюсы: минусы:
      • показания сильно зависят от температуры самого термосопротивления
      • низкое быстродействие - надо ждать прогрева лучом
      • нелинейная характеристика затрудняет калибровку и пересчет результатов
      • встречающиеся в продаже термосопротивления обычно плохо подходят для изготовления датчика, самодельный (проволочный) болометр делать - геморрой.
  4. Термоэлектрический (Термопарный или Пельтьешный) калориметр.
      Подходит для:
      • измерения вразумительных мощностей (от 50 мВт до 1 Вт)
      • измерения в почти любом спектре (главное, чтобы хорошо поглощалось поверхностью)
      плюсы:
      • показания слабо зависят от длины волны,
      • калибровка возможна по эталонному источнику тепла (например, по наклеенному резистору известного номинала, по которому пропускается известный ток)
      • практически линейная характеристика.
      • показания слабо зависят от температуры самого датчика, (зависят только от разности температур)
      минусы:
      • низкое быстродействие - надо ждать прогрева лучом.
      • измерена может быть только мощность дающая существенный нагрев (при некотором опыте и аккуратных измерениях
      • удается довольно точно измерить прогрев и от 1 мВт, но обычно надо 50 мВт и более)

Есть и другие способы, например пироэлектрический прибор, но обычно такие измерители надо просто покупать, если только не работаете где-нибудь на лазерной или полупроводниковой фирме.
Сам я дома пользуюсь самодельным Пельтьешным калориметром, который и опишу как делать.

Делаем термоэлектрический калориметр

Большинство измерителей мощности, которыми пользуются профессиональные лазерщики построены как раз по принципу термоэлектрического калориметра. Раньше такой прибор собрать дома было почти невозможно (с ума сойдешь пару сотен термопар сварить, установить, сделать электрическую разводку и обеспечить тепловой контакт при этом. Да и на выходе было - единицы милливольт на Ватт. Нужен был очень хороший усилитель. Сейчас в продаже в магазинах радиодеталей появились пельтье-модули, которые как раз и представляют собой такую сборку термопар, да еще и не металлических а полупроводниковых. Сделать термоэлектрический калориметр теперь проще простого.

I. Ресурсы

В качестве исходников нам потребуются:

Вот собственно и все что нужно:

II. Сборка

III. Калибровка


IV. Измерения

V. Комментарии

Примитивно. Зато доступно и эффективно.
Продвинутые в электронике могут заменить мультиметр на небольшую платку с АЦП-чипом и микроконтроллером (PIC или Atmel), организовать вывод данных и управление по USB, написать программку для автокалибровки и анализа ошибок и... и... продавать по 1000 USD как профессиональный прибор. Основной вклад в погрешность дает дрейф нуля. На фотографиях виден дрейф в 0.5мВ, что в пересчете на милливатты дает 3 мВт. То есть указку мощностью в 5 мВт обмерять с помощью такого датчика - слишком грубо. Дрейф нуля идет в основном за счет сквозняков. При измерениях "закройте все окна" и двери, старайтесь не слишком шевелить атмосферу. Если застабилизировать показания не удается - измерьте амплитуду дрейфа нуля (разность между максимальными и минимальными показаниями) и отнесите в погрешность измерения.

Еще имеет свойство "плыть" калибровка самого мультиметра. В особенности если он дешевый. Тут спасает повторение калибровки датчика (раздел III). Перекалибровываться надо при смене батарейки в мультиметре, смене погодных условий, ну и просто время от времени.

Если измерения проводятся не по "сокращенной версии" а по честному - с калибровкой, установлением нуля и с двойным тройным повтором для усреднения результата, то измеренная этим датчиком мощность лазера будет отличаться от измеренной профессиональным прибором не больше чем на 10%-15%. Кстати если есть профессиональный прибор, то можно измерить еще и поправку на не 100%-ный коэффициент поглощения черненой поверхностью. Хотя при хорошем чернении эта поправка невелика и ей можно пренебречь не напрягая себя попусту.

Если жаба не душит - можно на один подходящих размеров радиатор поставить два пельтье модуля (проще - одинаковых) и включить в балансную схему. Один элемент будет измерителем, другой - компенсатором. Сильно поможет в борьбе со сквозняками.

Показания прибора в первом приближении не зависят от точки попадания. Измеренное напряжение равно сумме термо-э.д.с. всех включнееых последовательно пельтье-столбиков в пельтье модуле. Термо-э.д.с. каждого из столбиков равна произведению его удельной термо-э.д.с. ei на разность температур на нем. А разность температур ("холодного" и "горячего" спаев)- произведению теплового сопротивления столбика Rti на тепловой поток через него Wi:

Столбики в Пельтье модуле делаются автоматом из одного и того же материала (пары n-кремний и p-кремний) значит они с высокой точностью одинаковы. После вынесения за скобки ei и Rti получается что измеряемое напряжение прямо пропорционально полному тепловому потоку, как бы он ни был распределен по столбикам.

Для чернения НЕ РЕКОМЕНДУЕТСЯ пользОВАТЬСЯ фломастерами, маркерами, чернилами от авторучек и вообще любыми красками кроме туши и сажи. На самом деле краски часто только выглядят черными и запросто могут оказаться вовсе не такими черными именно для той линии спектра, где излучает Ваш лазер. Измерения рекомендуется проводить сидя или лежа, предварительно успокоившись и удалив на безопасное расстояние режущие и колющие предметы. Когда мощность любимого трехсотмилливаттного лазера из дивиди-драйва оказывается всего 120 мВт бывает трудно удержаться от неадекватных действий.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

Институт транспортной техники и систем управления

Кафедра «Технология транспортного машиностроения и ремонта подвижного состава»


Реферат

по дисциплине: «Электрофизические и электрохимические методы обработки»

Тема: «Типы и характеристики лазеров»


Введение


Изобретение лазера стоит в одном ряду с наиболее выдающимися достижениями науки и техники XX века. Первый лазер появился в 1960 г., и сразу же началось бурное развитие лазерной техники. В короткое время были созданы разнообразные типы лазеров и лазерных устройств, предназначенных для решения конкретных научных и технических задач. Лазеры уже успели завоевать прочные позиции во многих отраслях народного хозяйства. Как заметил академик А.П. Александров, всякий мальчишка теперь знает слово лазер. И все же, что такое лазер, чем он интересен и полезен? Один из основоположников науки о лазерах - квантовой электроники - академик Н.Г. Басов отвечает на этот вопрос так: Лазер - это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля - лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает несравненно более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметра порядка длины световой волны и получить плотность энергии, превышающую на сегодняшний день плотность энергии ядерного взрыва.

С помощью лазерного излучения уже удалось достичь самых высоких значений температуры, давления, напряженности магнитного поля. Наконец, лазерный луч является самым емким носителем информации и в этой роли - принципиально новым средством ее передачи и обработки. Широкое применение лазеров в современной науке и технике объясняется специфическими свойствами лазерного излучения. Лазер - это генератор когерентного света. В отличии от других источников света (например, ламп накаливания или ламп дневного света) лазер дает оптическое излучение, характеризующееся высокой степенью упорядоченности светового поля или, как говорят, высокой степенью когерентности. Такое излучение отличается высокой монохроматичностью и направленностью. В наши дни лазеры успешно трудятся на современном производстве, справляясь с самыми разнообразными задачами. Лазерным лучом раскраивают ткани и режут стальные листы, сваривают кузова автомобилей и приваривают мельчайшие детали в радиоэлектронной аппаратуре, пробивают отверстия в хрупких и сверхтвердых материалах. Причем лазерная обработка материалов позволяет повысить эффективность и конкурентоспособность по сравнению с другими видами обработки. Непрерывно расширяется область применения лазеров в научных исследованиях - физических, химических, биологических.

Замечательные свойства лазеров - исключительно высокая когерентность и направленность излучения, возможность генерирования когерентных волн большой интенсивности в видимой, инфракрасной и ультрафиолетовой областях спектра, получение высоких плотностей энергии как в непрерывном, так и в импульсном режиме - уже на заре квантовой электроники указывало на возможность широкого их применения для практических целей. С начала своего возникновения лазерная техника развивается исключительно высокими темпами. Появляются новые типы лазеров и одновременно усовершенствуются старые: создаются лазерные установки с необходимым для различных конкретных целей комплексом характеристик, а также различного рода приборы управления лучом, все более и более совершенствуется измерительная техника. Это послужило причиной глубокого проникновения лазеров во многие отрасли народного хозяйства, и в частности в машино- и приборостроение.

Надо особо отметить, что освоение лазерных методов или, иначе говоря, лазерных технологий значительно повышает эффективность современного производства. Лазерные технологии позволяют осуществлять наиболее полную автоматизацию производственных процессов.

Огромны и впечатляющи достижения лазерной техники сегодняшнего дня. Завтрашний день обещает еще более грандиозные свершения. С лазерами связаны многие надежды: от создания объемного кино до решения таких глобальных проблем, как установление сверхдальней наземной и подводной оптической связи, разгадку тайн фотосинтеза, осуществление управляемой термоядерной реакции, появление систем с большим объемом памяти и быстродействующими устройствами ввода - вывода информации.


1. Классификация лазеров


Принято различать два типа лазеров: усилители и генераторы. На выходе усилителя появляется лазерное излучение, когда на его вход (а сам он уже находится в возбужденном состоянии) поступает незначительный сигнал на частоте перехода. Именно этот сигнал стимулирует возбужденные частицы к отдаче энергии. Происходит лавинообразное усиление. Таким образом - на входе слабое излучение, на выходе - усиленное. С генератором дело обстоит иначе. На его вход излучение на частоте перехода уже не подают, а возбуждают и, более того, перевозбуждают активное вещество. Причем если активное вещество находится в перевозбужденном состоянии, то существенно растет вероятность самопроизвольного перехода одной или нескольких частиц с верхнего уровня на нижний. Это приводит к возникновению стимулированного излучения.

Второй подход к классификации лазеров связан с физическим состоянием активного вещества. С этой точки зрения лазеры бывают твердотельными (например, рубиновый, стеклянный или сапфировый), газовыми (например, гелий-неоновый, аргоновый и т.п.), жидкостными, если в качестве активного вещества используется полупроводниковый переход, то лазер называют полупроводниковым.

Третий подход к классификации связан со способом возбуждения активного вещества. Различают следующие лазеры: с возбуждением за счет оптического излучения, с возбуждением потоком электронов, с возбуждением солнечной энергией, с возбуждением за счет энергий взрывающихся проволочек, с возбуждением химической энергией, с возбуждением с помощью ядерного излучения. Различают также лазеры по характеру излучаемой энергии и ее спектральному составу. Если энергия излучается импульсно, то говорят об импульсных лазерах, если непрерывно, то лазер называют лазером с непрерывным излучением. Есть лазеры и со смешанным режимом работы, например полупроводниковые. Если излучение лазера сосредоточено в узком интервале длин волн, то лазер называют монохроматичным, если в широком интервале, то говорят о широкополосном лазере.

Еще один вид классификации основан на использовании понятия выходной мощности. Лазеры, у которых непрерывная (средняя) выходная мощность более 106 Вт, называют высокомощными. При выходной мощности в диапазоне 105…103 Вт имеем лазеры средней мощности. Если же выходная мощность менее 10-3 Вт, то говорят о маломощных лазерах.

В зависимости от конструкции открытого зеркального резонатора различают лазеры с постоянной добротностью и лазеры с модулированной добротностью - у такого лазера одно из зеркал может быть размещено, в частности, на оси электродвигателя, который вращает это зеркало. В данном случае добротность резонатора периодически меняется от нулевого до максимального значения. Такой лазер называют лазером с Q-модуляцией.


2. Характеристики лазеров


Одной из характеристик лазеров является длина волны излучаемой энергии. Диапазон волн лазерного излучения простирается от рентгеновского участка до дальнего инфракрасного, т.е. от 10-3 до 102 мкм. За областью 100 мкм лежит, образно говоря, целина. Но она простирается только до миллиметрового участка, который осваивается радистами. Этот неосвоенный участок непрерывно сужается, и есть надежда, что его освоение завершится в ближайшее время. Доля, приходящаяся на различные типы генераторов, неодинакова. Наиболее широкий диапазон у газовых квантовых генераторов.

Другой важной характеристикой лазеров является энергия импульса. Она измеряется в джоулях и наибольшей величины достигает у твердотельных генераторов - порядка 103 Дж. Третьей характеристикой является мощность. Газовые генераторы, которые излучают непрерывно, имеют мощность от 10-3 до 102 Вт. Милливаттную мощность имеют генераторы, использующие в качестве активной среды гелий-неоновую смесь. Мощность порядка 100 Вт имеют генераторы на CO2. С твердотельными генераторами разговор о мощности имеет особый смысл. К примеру, если взять излучаемую энергию в 1 Дж, сосредоточенную в интервале в одну секунду, то мощность составит 1 Вт. Но длительность излучения генератора на рубине составляет 10-4 с, следовательно, мощность составляет 10000 Вт, т.е. 10 кВт. Если же длительность импульса уменьшена с помощью оптического затвора до 10-6 с, мощность составляет 106 Вт, т.е. мегаватт. Это не предел! Можно увеличить энергию в импульсе до 103 Дж и сократить ее длительность до 10-9с и тогда мощность достигнет 1012 Вт. А это очень большая мощность. Известно, что когда на металл приходится интенсивность луча, достигающая 105 Вт/см2, то начинается плавление металла, при интенсивности 107 Вт/см2 - кипение металла, а при 109 Вт/см2 лазерное излучение начинает сильно ионизировать пары вещества, превращая их в плазму.

Еще одной важной характеристикой лазера является расходимость лазерного луча. Наиболее узкий луч имеют газовые лазеры. Он составляет величину в несколько угловых минут. Расходимость луча твердотельных лазеров около 1…3 угловых градусов. Полупроводниковые лазеры имеют лепестковый раскрыв излучения: в одной плоскости около одного градуса, в другой - около 10…15 угловых градусов.

Следующей важной характеристикой лазера является диапазон длин волн, в котором сосредоточено излучение, т.е. монохроматичность. У газовых лазеров монохроматичность очень высокая, она составляет 10-10, т.е. значительно выше, чем у газоразрядных ламп, которые раньше использовались как стандарты частоты. Твердотельные лазеры и особенно полупроводниковые имеют в своем излучении значительный диапазон частот, т. е. не отличаются высокой монохроматичностью.

Очень важной характеристикой лазеров является коэффициент полезного действия. У твердотельных он составляет от 1 до 3,5%, у газовых 1…15%, у полупроводниковых 40…60%. Вместе с тем принимаются всяческие меры для повышения кпд лазеров, ибо низкий кпд приводит к необходимости охлаждения лазеров до температуры 4…77 К, а это сразу усложняет конструкцию аппаратуры.


2.1 Твердотельные лазеры


Твердотельные лазеры делятся на импульсные и непрерывные. Среди импульсных лазеров более распространены устройства на рубине и неодимовом стекле. Длина волны неодимового лазера составляет l = 1,06 мкм. Эти устройства представляют собой относительно большие стержни, длина которых достигает 100 см, а диаметр - 4-5 см. Энергия импульса генерации такого стержня - 1000 дж за 10-3 сек.

Лазер на рубине также отличается большой мощностью импульса, при длительности 10-3 сек его энергия составляет сотни дж. Частота повторения импульсов может достигать нескольких кГц.

Самые известные лазеры непрерывного действия изготавливаются на флюорите кальция с примесью диспрозия и лазеры на иттриево-алюминиевом гранате, в котором присутствуют примеси атомов редкоземельных металлов. Длина волны этих лазеров находится в области от 1 до 3 мкм. Мощность импульса составляет примерно 1 вт либо его доли. Лазеры на иттриево-алюминиевом гранате способы обеспечить мощность импульса до нескольких десятков вт.

Как правило, в твердотельных лазерах используется многомодовый режим генерации. Одномодовая генерация может быть получена при введении в резонатор селектирующих элементов. Подобное решение было вызвано снижением генерируемой мощности излучения.

Сложность производства твердотельных лазеров заключается в необходимости выращивания больших монокристаллов или варки больших образцов прозрачного стекла. Преодолеть эти трудности позволило изготовление жидкостных лазеров, где активная среда представлена жидкостью, в которую введены редкоземельные элементы. Тем не менее жидкостные лазеры имеют ряд недостатков, ограничивающих область их использования.


2.2 Жидкостные лазеры


Жидкостными называются лазеры с жидкой активной средой. Основным преимуществом этого вида устройств является возможность циркуляции жидкости и, соответственно, ее охлаждение. В результате и в импульсном, и в непрерывном режиме можно получить больше энергии.

Первые жидкостные лазеры производились на основе редкоземельных хелатов. Недостатком этих лазеров является низкий уровень достижимой энергии и химическая неустойчивость хелатов. В результате эти лазеры не нашли применения. Советские ученые предложили использовать в лазерной среде неорганические активные жидкости. Лазеры на их основе отличаются высокими импульсными энергиями и обеспечивают показатели средней мощности. Жидкостные лазеры на такой активной среде способны генерировать излучение с узким спектром частот.

Еще один вид жидкостных лазеров - устройства, работающие на растворах органических красителей, отличающихся широкими спектральными линиями люминесценции. Такой лазер способен обеспечить непрерывную перестройку длин излучаемых волн света в широком диапазоне. При замене красителей обеспечивается перекрытие всего видимого спектра и части инфракрасного. Источником накачки в таких устройствах являются, как правило, твердотельные лазеры, но возможно использование газосветных ламп, обеспечивающих короткие вспышки белого света (менее 50 мксек).


2.3 Газовые лазеры


Существует много разновидностей. Одна из них - фотодиссоционный лазер. В нем применяется газ, молекулы которого под влиянием оптической накачки диссоциируют (распадаются) на две части, одна из которых оказывается в возбужденном состоянии и используется для лазерного излучения.

Большую группу газовых лазеров составляют газоразрядные лазеры, в которых активной средой является разреженный газ (давление 1-10 мм рт. ст.), а накачка осуществляется электрическим разрядом, который может быть тлеющим или дуговым и создается постоянным током или переменным током высокой частоты (10-50 МГц).

Существует несколько типов газоразрядных лазеров. В ионных лазерах излучение получается за счет переходов электронов между энергетическими уровнями ионов. Примером служит аргоновый лазер, в котором используется дуговой разряд постоянного тока.

Лазеры на атомных переходах генерируют за счет переходов электронов между энергетическими уровнями атомов. Эти лазеры дают излучение с длиной волны 0,4-100 мкм. Пример - гелий-неоновый лазер, работающий на смеси гелия и неона под давлением около 1 мм рт. ст. Для накачки служит тлеющий разряд, создаваемый постоянным напряжением примерно 1000 В.

К газоразрядным относятся также молекулярные лазеры, в которых излучение возникает от переходов электронов между энергетическими уровнями молекул. Эти лазеры имеют широкий диапазон частот, соответствующий длинам волн от 0,2 до 50 мкм.

Наиболее распространен из молекулярных лазер на диоксиде углерода (СО2-лазер). Он может давать мощность до 10 кВт и имеет довольно высокий КПД - около 40%. К основному углекислому газу обычно ещё добавляют примеси азота, гелия и других газов. Для накачки применяют тлеющий разряд постоянного тока или высокочастотный. Лазер на диоксиде углерода создает излучение с длиной волны около 10 мкм. Схематически он показан на рис. 1.


Рис. 1 - Принцип устройства СО2-лазера


Разновидность СО2-лазеров - газодинамические. В них инверсная населенность, необходимая для лазерного излучения, достигается за счет того, что газ, предварительно нагретый до 1500 К при давлении 20-30 атм, поступает в рабочую камеру, где он расширяется, а его температура и давление резко снижаются. Такие лазеры могут дать непрерывное излучение мощностью до 100 кВт.

К молекулярным относятся так называемые эксимерные лазеры, у которых рабочей средой является инертный газ (аргон, ксенон, криптон и др.), либо его соединение с хлором или фтором. В таких лазерах накачка осуществляется не электрическим разрядом, а потоком так называемых быстрых электронов (с энергией в сотни кэВ). Излучаемая волна получается наиболее короткой, например, у лазера на аргоне 0,126 мкм.

Большие мощности излучения можно получить, если повысить давление газа и применить накачку с помощью ионизирующего излучения в сочетании с внешним электрическим полем. Ионизирующим излучением служит поток быстрых электронов либо ультрафиолетовое излучение. Такие лазеры называются электроионизационными или лазерами на сжатом газе. Схематически лазеры такого типа показаны на рис. 2.


Рис. 2 - Электроионизационная накачка


Возбужденные молекулы газа за счет энергии химических реакций получаются в химических лазерах. Здесь используются смеси некоторых химически активных газов (фтор, хлор, водород, хлористый водород и др.). Химические реакции в таких лазерах должны протекать очень быстро. Для ускорения применяются специальные химические агенты, которые получаются при диссоциации молекул газа под действием оптического излучения, или электрического разряда, или электронного пучка. Примером химического лазера может служить лазер на смеси фтора, водорода и углекислого газа.

Особый тип лазера - плазменный лазер. В нем активной средой служит высокоионизированная плазма паров щелочноземельных металлов (магний, барий, стронций, кальций). Для ионизации применяют импульсы тока силой до 300 А при напряжении до 20 кВ. Длительность импульсов 0,1-1,0 мкс. Излучение такого лазера имеет длину волны 0,41-0,43 мкм, но может также быть в ультрафиолетовой области.


2.4 Полупроводниковые лазеры


Хотя полупроводниковые лазеры и являются твердотельными, их принято выделять в особую группу. В этих лазерах когерентное излучение получается вследствие перехода электронов с нижнего края зоны проводимости на верхний край валентной зоны. Существует два типа полупроводниковых лазеров. Первый имеет пластину беспримесного полупроводника, в котором накачка производится пучком быстрых электронов с энергией 50-100 кэВ. Возможна также оптическая накачка. В качестве полупроводников используются арсенид галлия GaAs, сульфид кадмия CdS или селенид кадмия CdSe. Накачка электронным пучком вызывает сильный нагрев полупроводника, отчего лазерное излучение ухудшается. Поэтому такие лазеры нуждаются в хорошем охлаждении. Например, лазер на арсениде галлия принято охлаждать до температуры 80 К.

Накачка электронным пучком может быть поперечной (рис. 3) или продольной (рис. 4). При поперечной накачке две противоположные грани полупроводникового кристалла отполированы и играют роль зеркал оптического резонатора. В случае продольной накачки применяются внешние зеркала. При продольной накачке значительно улучшается охлаждение полупроводника. Пример такого лазера - лазер на сульфиде кадмия, генерирующий излучение с длиной волны 0,49 мкм и имеющий КПД около 25%.


Рис. 3 - Поперечная накачка электронным пучком


Рис. 4 - Продольная накачка электронным пучком


Второй тип полупроводникового лазера - так называемый инжекционный лазер. В нем имеется p-n-переход (рис. 5), образованный двумя вырожденными примесными полупроводниками, у которых концентрация донорных и акцепторных примесей составляет 1018-1019см-3. Грани, перпендикулярные плоскости p-n-перехода, отполированы и служат в качестве зеркал оптического резонатора. На такой лазер подается прямое напряжение, под действием которого понижается потенциальный барьер в p-n-переходе и происходит инжекция электронов и дырок. В области перехода начинается интенсивная рекомбинация носителей заряда, при которой электроны переходят из зоны проводимости в валентную зону и возникает лазерное излучение. Для инжекционных лазеров применяют главным образом арсенид галлия. Излучение имеет длину волны 0,8-0,9 мкм, КПД довольно высок - 50-60%.


Рис. 5 - Принцип устройства инжекционного лазера

усилитель генератор луч волна

Миниатюрные инжекционные лазеры с линейными размерами полупроводников около 1 мм дают мощность излучения в непрерывном режиме до 10 мВт, а в импульсном режиме могут иметь мощность до 100 Вт. Получение больших мощностей требует сильного охлаждения.

Следует отметить, что в устройстве лазеров имеется много различных особенностей. Оптический резонатор лишь в простейшем случае составлен из двух плоскопараллельных зеркал. Применяются и более сложные конструкции резонаторов, с другой формой зеркал.

В состав многих лазеров входят дополнительные устройства для управления излучением, расположенные либо внутри резонатора, либо вне его. С помощью этих устройств отклоняется и фокусируется лазерный луч, изменяются различные параметры излучения. Длина волны у разных лазеров может составлять 0,1-100 мкм. При импульсном излучении длительность импульсов бывает в пределах от 10-3 до 10-12 с. Импульсы могут быть одиночными или следовать с частотой повторения до нескольких гигагерц. Достижимая мощность составляет 109 Вт для наносекундных импульсов и 1012 Вт для сверхкоротких пикосекундных импульсов.


2.5 Лазеры на красителях


Лазеры, использующие в качестве лазерного материала органические красители, обычно в форме жидкого раствора. Они принесли революцию в лазерную спектроскопию и стали родоначальником нового типа лазеров c длительностью импульса менее пикосекунды (Лазеры сверхкоротких импульсов).

В качестве накачки сегодня обычно применяют другой лазер, например Nd: YAG с диодной накачкой, или Аргоновый лазер. Очень редко можно встретить лазер на красителях с накачкой лампой-вспышкой. Основная особенность лазеров на красителях - очень большая ширина контура усиления. Ниже приведена таблица параметров некоторых лазеров на красителях.

Существует две возможности использовать такую большую рабочую область лазера:

перестройка длины волны на которой происходит генерация -> лазерная спектроскопия,

генерация сразу в широком диапазоне -> генерация сверх коротких импульсов.

В соответствии с этими двумя возможностями различаются и конструкции лазеров. Если для перестройки длины волны используется обычная схема, только добавляются дополнительные блоки для термостабилизации и выделения излучения со строго определённой длиной волны (обычно призма, дифракционная решётка, или более сложные схемы), то для генерации сверх коротких импульсов требуется уже гораздо более сложная установка. Изменяется конструкция кюветы с активной средой. Из-за того, что длительность импульса лазера в конечном итоге составляет 100÷30·10?15 (свет в вакууме успевает пройти лишь 30÷10мкм за это время), инверсия населённости должна быть максимальна, этого можно добиться только очень быстрой прокачкой раствора красителя. Для того чтобы это осуществить применяют специальную конструкцию кюветы со свободной струёй красителя (краситель прокачивается из специального сопла со скоростью порядка 10м/с). Наиболее короткие импульсы получаются при использовании кольцевого резонатора.

2.6 Лазер на свободных электронах


Вид лазера, излучение в котором генерируется моноэнергетическим пучком электронов, распространяющимся в ондуляторе - периодической системе отклоняющих (электрических или магнитных) полей. Электроны, совершая периодические колебания, излучают фотоны, энергия которых зависит от энергии электронов и параметров ондулятора.

В отличие от газовых, жидкостных или твердотельных лазеров, где электроны возбуждаются в связанных атомных или молекулярных состояниях - у FEL источником излучения является пучок электронов в вакууме, проходящий сквозь ряд расположенных специальным образом магнитов - ондулятор (вигглер), заставляющий пучок двигаться по синусоидальной траектории, теряя энергию, которая преобразуется в поток фотонов. В результате вырабатывается мягкое рентгеновское излучение, применяемое, например, для исследования кристаллов и других наноструктур.

Меняя энергию электронного пучка, а также параметры ондулятора (силу магнитного поля и расстояние между магнитами), можно в широких пределах менять частоту лазерного излучения, вырабатываемого FEL, что является главным отличием FEL от лазеров других систем. Излучение, получаемое с помощью FEL, применяется для изучения нанометровых структур - есть опыт получения изображений частиц размером всего 100 нанометров (этот результат был достигнут с помощью рентгеновской микроскопии с разрешением около 5 нм). Проект первого лазера на свободных электронах был опубликован в 1971 году Джоном М. Дж. Мэйди в рамках своего PhD-проекта в Стэнфордском университете. В 1976 году Мэйди и его коллеги продемонстрировали первые опыты с FEL, используя электроны с энергией 24 МэВ и 5-метровый вигглер для усиления излучения.

Мощность лазера составляла 300 мВт, а эффективность всего 0,01 %, но была показана работоспособность такого класса устройств, что привело к огромному интересу и резкому увеличению количества разработок в области FEL.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Холодным сентябрьским вечером посетители картодрома« Маяк» недалеко от подмосковной Икши были изрядно удивлены. К фанерному щиту с мишенью, на которой была изображена кабина авиалайнера, откуда-то из темноты протягивались разноцветные лазерные лучи. Нет, это не школа террористов — просто« Популярная механика» решила проверить распространенный миф о том, может ли лазерная указка служить средством ПВО. А заодно рассказать, как устроены портативные лазеры и для чего они нужны на самом деле

Снайперская стрельба Для проверки мифа об ослеплении пилотов авиалайнера была изготовлена специальная мишень, в которую с расстояния 680 м светили зеленым лазером мощностью 300 мВт, красным – 200 мВт и фиолетовым – 200 мВт

За последние несколько лет в мире стало регистрироваться огромное количество «лазерных атак» на воздушные суда. Не обошло это явление и Россию — в 2011 году Росавиация насчитала несколько десятков таких случаев. И это еще довольно умеренное количество: в США, например, ежегодно регистрируется почти 3000 случаев воздействия лазерного луча на пилотов. Как правило, для этого используются достаточно мощные лазерные указки — они недороги (порядка нескольких сотен долларов) и широко доступны. Обеспокоенные власти принимают к нарушителям самые жесткие меры — от очень крупных штрафов до многолетнего тюремного заключения. Европейские страны в срочном порядке запрещают использование указок вблизи аэропортов (и даже просто на улицах), фактически приравнивая их к настоящему оружию! В Австралии и Великобритании, например, продажи лазерных указок мощностью более 1 мВт просто запрещены. Но можно ли на самом деле «сбить» самолет, ослепив пилота достаточно мощной лазерной указкой?


Для проверки мифа об ослеплении пилотов авиалайнера была изготовлена специальная мишень, в которую с расстояния 680 м светили зеленым лазером мощностью 300 мВт, красным — 200 мВт и фиолетовым — 200 мВт.

Указки как… указки

Откуда вообще хулиганы берут это страшное оружие, и зачем его продают в магазинах всем желающим? На самом деле лазерные указки, конечно, не предназначены для сбивания самолетов или вертолетов. Лучше всего они проявляют себя именно по прямому назначению — то есть как указки. Однако ассортимент их сейчас огромен, что зачастую приводит к проблемам и ошибкам при выборе мощности и длины волны. Если нужна именно указка, то оптимальным выбором будет зеленый (с длиной волны 532 нм) лазер. Дело в том, что чувствительность глаза к различным цветам спектра различна, и максимальна она именно в области зеленого. По­это­му излучение зеленого лазера будет ярче даже при меньшей мощности — например, для человеческого глаза 5-мВт 532-нм зеленый лазер в два раза ярче, чем 20-мВт 650-нм красный.

Определиться с мощностью тоже несложно. Для использования во время проведения семинаров, конференций и других мероприятий в закрытых помещениях вполне достаточно будет 5 мВт. Более мощные лазеры могут представлять потенциальную опасность для зрения и, что тоже немаловажно, своей излишней яркостью вызывать раздражение у зрителей. На открытом воздухе ночью — скажем, при проведении «экскурсий» по звездному небу — тоже будет достаточно 5-мВт зеленого лазера. Но это за городом, где не мешает городская засветка. В городских условиях на относительно светлом небе нужно будет чуть больше — порядка 20−50 мВт. Днем для указаний отдельных деталей архитектуры («обратите внимание на чудесную лепнину в районе пятого этажа соседнего здания!») не лишними будут указки мощностью 50−100, а в яркий солнечный день и все 200−300 мВт. Но помните: такие лазеры уже представляют реальную опасность для зрения, а в окна домов могут смотреть люди!

Не смотри на лазер оставшимся глазом

Даже маломощные лазеры могут представлять опасность для здоровья. Любое устройство, в конструкции которого есть лазер, в обязательном порядке снабжено этикеткой с указанием класса ее опасности.
2/II класс — лазерные указки мощностью до 1 мВт, которые потенциально представляют опасность при длительном воздействии на глаз прямого луча.
3R/IIIa класс — лазерные указки мощностью до 5 мВт, которые представляют опасность при длительном воздействии на глаз прямого луча, либо при воздействии луча, дополнительно сфокусированного оптическими приборами (например, биноклем).
3B/IIIb класс — портативные лазеры мощностью до 500 мВт, которые безусловно опасны при попадании луча в глаза.
4/IV класс — портативные лазеры мощностью свыше 500 мВт, которые потенциально способны вызывать ожоги кожи и травмировать зрение даже отраженным от матовых поверхностей светом.
При использовании лазеров с классом опасности выше IIIa настоятельно рекомендуется использовать специальные защитные очки, рассчитанные на защиту зрения от излучения лазера соответствующего типа. Прямой, отраженный или преломленный Луч лазера ни в коем случае нельзя направлять в глаза. Лазеры класса IV, при попадании прямого луча в глаз с небольшого расстояния, гарантированно вызывают серьезные нарушения вплоть до полной потери зрения, их луч может стать причиной ожогов и пожара.

Фигурное выжигание

Тем не менее в сознании большин­ства читателей лазеры ассоциируются с «прожигающим» лучом. И вполне справедливо: станки с лазерным раскроем работают на множестве производств, разрезая самые различные материалы — от полимерных пленок до стальных листов. Правда, и мощность лазеров там исчисляется вовсе не милливаттами. Впрочем, прогресс в этой области шагнул настолько далеко, что в настоящее время такой станок можно построить и в домашних условиях. Для этого идеальны мощные полупроводниковые фиолетовые (405 нм) и сине-фиолетовые лазеры (445 нм). Они отличаются хорошим соотношением цены и мощности, а их излучение хорошо поглощается большинством материалов. К тому же, как правило, производители предусматривают в таких портативных лазерах (называть их указками уже не совсем корректно) возможность регулировать фокусировку луча.


Самым интересным из попавших в наши руки однозначно стал сине-фиолетовый (445 нм) лазер мощно­стью 1 Вт. При тщательном соблюдении техники безопасности этот лазер может стать инструментом для множества научно-популярных экспериментов и отличным развлечением. Необычный цвет, высокая стабильность, регулируемая фокусировка и сокрушающая мощь способны на долгое время заставить забыть обо всех других лазерах! Его луч прекрасно виден в вечернем небе, отраженный от потолка свет легко освещает довольно большую комнату, а при соответствующей фокусировке он легко режет бумагу и за пару минут даже может проделать отверстие в дереве толщиной более 3 мм. К тому же такие лазеры принципиально имеют довольно большую расходимость — в 3−10 раз больше, чем у других типов, но в данном случае это скорее плюс, поскольку снижает опасность для окружающих. Впрочем, большая мощность и малая длина волны приводят к высокой опасности для зрения даже при наблюдении отраженного и рассеянного света, поэтому при работе с этим лазером нужно обязательно использовать защитные очки, отсекающие большую часть опасного излучения.

В качестве импровизированной защиты можно использовать стандартные очки с желтыми фильтрами для повышения контраста (например, стрелковые).


Фиолетовые (405 нм) лазеры мощнее 300 мВт сейчас найти затруднительно, но за счет лучшей фокусировки по своим «зажигательным» способностям они весьма близки к 1-Вт сине-фиолетовому (445 нм) лазеру. На расстоянии 5−10 м 300-мВт фиолетовая указка догоняет одноваттного монстра, а далее и вовсе обходит и при этом стоит дешевле. Однако и прожечь что-нибудь на таком расстоянии можно только в том случае, если и лазер, и мишень будут закреплены неподвижно. Так что пока лазерные копья Звездной Гвардии остаются уделом фантастических сериалов. Кроме выжигания, фиолетовая указка интересна тем, что заставляет ярко светиться многие материалы, подобно ультрафиолетовой лампе. Для защиты зрения от отраженного и рассеянного света также подойдут очки с желтыми светофильтрами.


Испытать всю испепеляющую мощь одноваттной указки мы решили на современный манер, построив двухкоординатный выжигательный станок с ЧПУ из конструктора Fischertechnik. За основу мы взяли набор ROBO TX Automation Robots, укомплектовав его компьютерным контроллером ROBO TX. Несмотря на слегка игрушечный вид, это серьезный контроллер с исчерпывающим набором входов и выходов для сервоприводов, световых индикаторов, переключателей, сенсоров (фоторезистор, ультразвуковой радар, датчик цвета, микрофон). Контроллер подключается к компьютеру по USB или Bluetooth. Мы запрограммировали станок на точечное выжигание: на каждом «пикселе» рисунка указка задерживалась на 5 секунд и успевала прожечь отчетливое черное пятно, после чего лазерный луч смещался на шаг и продолжал выжигание. Работу несколько осложнил тот факт, что во избежание перегрева указка не должна непрерывно работать дольше 30 секунд, поэтому каждые полминуты приходилось ставить программу на паузу. Выжигание простого рисунка заняло у нас чуть больше часа.

Все цвета радуги

Чтобы подобрать идеальное оружие, редакция вооружилась изрядным арсеналом из целого ряда лазерных указок — красных, зеленых и фиолетовых, мощностью от 100 до 300 мВт. Зеленые лазеры с длиной волны 532 нм стали причиной второго бума указок. И вполне заслуженно: при одинаковой мощности они в 4−15 раз ярче, чем красные, в 20 раз ярче сине-фиолетовых и в 190 раз ярче фиолетовых указок! Так что если лазер для вас не только способ заставить что-то дымиться, но и рабочий инструмент презентаций (или лазерного шоу), то зеленая указка — это как раз то что нужно. А вот для выжигания они подходят не слишком хорошо — при одинаковой мощности отстают от фиолетовых и сине-фиолетовых, да и защитные очки к ним нужны специальные.

Остерегайтесь подделок!

Неодимовые лазерные указки производятся уже более десяти лет. За это время, несмотря на сложность технологии, ведущие производители успели отточить производство и добиться стабильно высокого качества продукции.
Однако большинство дешевых неодимовых лазеров относится к категории «no name». Их производители зачастую неспособны обеспечить сколько-нибудь стабильные характеристики. Несколько моделей из протестированных редакцией «ПМ» зеленых указок мощностью 100 и 300 мВт показали менее 50% от заявленной мощности. Кроме того, работа многих моделей весьма нестабильна во времени и при изменении температуры, расходимость луча иногда в разы превосходит заявленную. Поэтому рекомендуем протестировать лазер перед покупкой и подробно выяснить вопрос гарантийных обязательств. А вот маломощные 5−10 мВт зеленые указки можно покупать относительно спокойно. Ну а лучше всего не гнаться за дешевизной и взять лазер от известного производителя, дорожащего своей репутацией.

Наконец, даже несмотря на то что классические красные указки мощнее 200 мВт нам найти в продаже не удалось, их не стоит сбрасывать со счетов. У этих лазеров очень высокий КПД, поэтому они очень экономичны, упакованы в компактный корпус и значительно менее склонны к перегреву. Несмотря на большой диаметр луча на выходе, мощности в 200 мВт хватает, чтобы разрезать, скажем, черный полиэтиленовый пакет. К тому же красный — самый «классический» лазерный цвет и при этом самый дешевый вариант.

А вот настоящие синие (473 нм) и желтые (593 нм) указки — эксклюзивный продукт, редкий и дорогой. И если у вас хватит денег на их приобретение, можете быть уверены, что на любой конференции все обратят внимание на луч именно вашей указки. Синие к тому же светят не непрерывно, а импульсами с высокой частотой (порядка 1 кГц), поэтому луч рисует на стене не сплошную, а штриховую линию. По яркости синие указки примерно эквивалентны красным 650-нм, а желтые аналогичны зеленым. Но и цена желтых указок в два с лишним раза выше, чем синих.


Проверяем на себе

Итак, собрав в охапку весь ассортимент указок, редакция отправилась на «полигон». На расстоянии 680 м «стрелок» должен был осветить мишень, «ослепив» изображенного на ней пилота. И вот яркий зеленый луч 300-мВт лазера тянется к мишени, оставляя на ней тусклое пятно диаметром около полуметра. Но удержать пятно на мишени удается лишь на доли секунды — на таком расстоянии даже мельчайшее дрожание рук приводит к уводу луча в сторону. Длительно (больше долей секунды) удерживать луч на одном месте практически нереально, а за это время ослепить пилота невозможно. А ведь самолет движется, и с немалой скоростью, исчисляемой сотнями метров в секунду! Конечно, можно создать систему автоматического отслеживания положения самолета и корректировки направления луча, но при таком размахе уже можно не мелочиться с указками, а использовать гораздо более мощный лазер — но это уже не указка, а настоящее боевое оружие.


Нашлись в редакции и добровольцы, рискнувшие подставить глаза под полуметровое зеленое пятно. (Это относительно безопасно, но повторять наш эксперимент мы ни в коем случае не рекомендуем.) По их словам, с такого расстояния зеленый луч в вечерней темноте казался весьма ярким, но как только он переставал бить прямо в глаза, зрение полностью восстанавливалось без каких-либо остаточных явлений типа плавающих ярких пятен. Опрошенные нами летчики тоже оказались скептиками, объяснив, что ослепить пилота авиалайнера лазерной указкой малореально — попасть в высокорасположенную кабину снизу довольно затруднительно. Тем не менее при удачном попадании (не ослеп­лении!) на стекло кабины отвлечь пилотов яркий свет вполне способен, а потеря внимания при посадке даже на доли секунды может быть опасной. Особенно для пилотов вертолетов — у них и скорость меньше, и расстояние, с которого производится воздействие, существенно ближе — не сотни метров, а десятки (собственно, среди реально пострадавших от ослепления пока и числятся только пилоты вертолетов).

Вывод таков: лазерная указка, даже достаточно мощная (300 мВт), неспособна с расстояния в несколько сотен метров не то что «прожечь» корпус летательного аппарата (как писали СМИ, падкие на сенсации), но даже и сколько-нибудь серьезно ослепить пилотов. А вот отвлечь внимание засветка от указки вполне может, поэтому в авиации, где даже к потенциальным опасностям относятся крайне внимательно, эту угрозу принимают всерьез.

Редакция благодарит компании «Артледс» (www.artleds.ru) и «Микрохоло» (www.cnilaser.ru) за предоставление указок для тестирования