Микроскоп. Виды микроскопов

На сегодняшний день насчитывается несколько разновидностей микроскопов. Стоит заметить, что выбор нужного типа очень непростой, так как для этого необходимо четко учитывать для каких именно наблюдений будет использоваться данное устройство.

Первая разновидность — составной микроскоп, представляющий собой оптический прибор, который позволяет увеличивать изображение рассматриваемого объекта. Устройство состоит из нескольких комбинации линз или объективов, которые проецируют изображение в окуляры. Данный тип микроскопа распространен наиболее широко. Следующий на очереди — оптический микроскоп. Существует его второе название — «световой», являющийся одной из вариаций составного типа. В нем применяется обычная пара линз, позволяющая увеличивать объекты небольшого размера. Освещение обеспечивается за счет небольшого подвижного зеркала, закрепленного под предметной подставкой.

Если вдаваться в историю, то именно оптический микроскоп является наиболее простым старым, как в производстве, так и эксплуатации. Данный тип прибора различается в зависимости от того, каким способом производится наблюдение: монокулярный и на бинокулярный микроскоп.

Следующий вид – цифровой микроскоп. Данный прибор оборудован электронной камерой, имеющей в основе сенсор. Камера подключается к персональному компьютеру или отдельному жидкокристаллическому дисплею. Решение купить микроскоп данного типа не лишено логики, так как это устройство позволяет полностью исключить процесс непосредственного наблюдения взглядом.

Следующий тип, заслуживающий особого внимания, — это эпифлуориесцентный микроскоп — разновидность светового оптического прибора, где в препарате применяется эффект фосфоресценции.

Один из наиболее сложных и важных видов подобного оптического оборудования, применяемого сегодня, – это электронный вариант, который позволяет давать наиболее высокую точность передачи приближенного изображения. В этом устройстве электроны применяются с целью изображения мельчайших деталей рассматриваемого объекта. Основное преимущество электронных приборов над оптическими – их более высокая мощность. Данное качество определяет их сферу применения.

Еще один тип устройств – это стереомикроскоп, который также называется препаровальным. Он оснащается двумя окулярами, а также двумя объективами, что позволяет наблюдателю рассматривать необходимый объект в трехмерном пространстве.

Промежуточное звено между приборами начального уровня и профессиональным оборудованием. В них визуальная насадка может быть представлена как монокуляром, так и бинокуляром, а некоторые изделия дополнительно комплектуются средствами для визуализации, что значительно расширяет их возможности. Подсоединив к окуляру цифровую камеру можно фотографировать и снимать на видео исследования, а также наблюдать объекты на экране компьютера.

Револьверная головка рассчитана на три объектива: 4Х, 10Х и 40Х, что в совокупности с увеличением окуляров в 10Х или 20Х, дает от 40 до 800 крат общего увеличения. Изредка учебные микроскопы комплектуются одним иммерсионным 100-кратным объективом. Иммерсионные объективы отличается от обычных тем, что между его передней линзой и исследуемым предметом находится жидкость, например, кедровое масло. Благодаря этому увеличивается предел разрешения микроскопа, улучшается контраст и яркость изображения.

В школьных микроскопах присутствует как минимум один вид настройки резкости изображения - грубая фокусировка, иногда она дополняется микровинтом точной фокусировки.

Обычно учебные микроскопы оснащаются нижним светом, но существуют модели и с двумя видами подсветки - нижней и верхней. При нижнем свете проводятся исследования в проходящем свете, которые позволяют изучать пленочные препараты в виде мазков и срезов тканей. Верхняя подсветка предназначена для работы с непрозрачными образцами, например, кусочками ткани и бумаги, монетками. Большинство учебных микроскопов подключаются в сети 220 В, но есть и автономные модели с питанием от батареек.

Биологические микроскопы

Сфера применения биологических микроскопов - лабораторные исследования в рамках медицинских учреждений или научно-исследовательских институтов.

Биологические микроскопы могут быть монокулярными, бинокулярными и даже тринокулярными. Монокулярные устройства не предназначены для продолжительных работ и применяются при выполнении рутинных лабораторных исследований или для обучения на медицинских и фармацевтических факультетах. Для длительных наблюдений используют бинокулярную насадку. Тринокуляр - это бинокулярная насадка, имеющая дополнительный оптический порт для фото- и видеоаппаратуры.

Как и положено микроскопам исследовательского уровня, биологические устройства оснащаются широкоугольными окулярами с большим полем зрения. Так, если на корпусе написано WF10X/18, это значит, что данный окуляр увеличивает в 10 раз, а видимая область препарата ограничена 18 мм. Микроскоп можно доукомплектовать другими широкоугольными окулярами, например, WF15X/13, WF15X/15, WF20X/11. Маркировка, содержащая букву «К», говорит о том, что это компенсационный окуляр, используемый для проведения микросъемки цифровыми аппаратами. Существуют также микрометрические окуляры с измерительной шкалой для определения длины и площади изучаемого объекта.

Биологические микроскопы чаще всего комплектуются объективами с кратностью 4Х, 10Х, 40Х, 60Х, 100Х. Для работы с мощными объективами (выше 40 крат) требуется применение масляной, водной или глицериновой иммерсии.

Инструментальные микроскопы

Инструментальные микроскопы - это стереоскопические устройства, которые дают прямое и объемное изображение и характеризуются увеличенным рабочим расстоянием (зазором между фронтальной частью объектива и предметным столиком), малой общей кратностью, высокой глубиной резкости, четкостью изображения и большим полем зрения. Такой микроскоп удобен для работы с непрозрачными объектами: монетами, ювелирными изделиями, древесиной, минералами, электронными платами.

В базовую комплектацию инструментального стереомикроскопа входят окуляры с 10-кратным увеличением, но их можно заменить другими, например, на 5Х, 15Х, 20Х. Увеличение дискретного микроскопа (с фиксированным фокусным расстоянием) редко превышает 100Х, а панкратического (с зумом) - колеблется в диапазоне от 3,75Х до 200 – 250Х.

В стереоскопических микроскопах, помимо нижнего и верхнего света, используется боковой, для чего прибор комплектуется дополнительными светодиодными источниками света.

Справочная статья, основанная на экспертном мнении автора.

Классификация микроскопов может производиться на основании различных параметров, например: назначение, способ освещения, строение оптическое системы и так далее. В данной статье будет рассматриваться самая общая классификация в зависимости от величины разрешения микрочастиц , которые можно рассмотреть в данный конкретный микроскоп.

Итак, все микроскопы мира можно разделить на оптические (световые), электронные, рентгеновские и сканирующие зондовые микроскопы. Наиболее популярными являются оптические микроскопы, которые широко представлены в магазинах оптики. Данные микроскопы позволяют решать основные исследовательские задачи. Другие виды микроскопов относятся уже к специализированным, и используются в основном в лабораториях.

Рентгеновские микроскопы . Действие таких микроскопов основано на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нм, что позволяет исследовать с их помощью очень малые объекты. Исходя из разрешающей способности рентгеновские микроскопы по их мощности можно позиционировать как нечто среднее межу оптическими и электронными микроскопами (разрешающая способность около 2-20 нм).

Сканирующие зондовые микроскопы . Такой микроскоп Вы вряд ли приобретете для домашнего использования. Это уже специализированный класс микроскопов, в котором для построения изображения используется специальный зонд для сканирования поверхности. Благодаря такому микроскопу получают трехмерное изображение с очень высоким разрешением (вплоть до атомарного). Благодаря рекордному разрешению (менее 0,1 нм) такие микроскопы позволяют видеть молекулы и атомы, а также воздействовать на них (при этом объекты могут изучаться не только в вакууме, но и в газах и жидкостях).

МЕТОДИЧЕСКАЯ РАЗРАБОТКА № 1

ТЕМА : Организация, режим работы микробиологической лаборатории. Методы микробиологического исследования. Микроскопический метод диагностики. Микроскопы, их назначение, работа с иммерсией. Морфология бактерий

МОТИВАЦИОННАЯ ХАРАКТЕРИСТИКА: выпускники любого факультета медицинского вуза в ряде случаев (возникновение эпидемий в отдалённых районах при отсутствии профильных лабораторий, необходимости срочной предварительной диагностики особо опасных инфекций, которая позволяет своевременно ввести карантин и требовать развёртывания специальной лаборатории и т.д.) должны:

Уметь организовать рабочее место микробиолога;

Выбрать наиболее целесообразное направление исследований для обнаружения идентификации возбудителей инфекционных заболеваний;

Иметь навыки безошибочного выполнения ряда микробиологических и противоэпидемических мероприятий;

Представлять взаимосвязь производимых микробиологических манипуляций с прочими методами обследования больного, отчётливо понимать, что, без прямого обнаружения возбудителя или без выявления ряда доказательных косвенных признаков пребывания последнего в организме, нельзя поставить диагноз инфекционного заболевания, нельзя отличить его от неспецифических (безмикробных) патологических процессов.

Вот почему умение и навыки, приобретённые уже на первом занятии, необходимы для дальнейшего усвоения курса микробиологии, для выполнения в будущем профессиональной работы врача-эпидемиолога, инфекциониста, участкового терапевта и других. Более того, они - основа общей профессиональной грамотности врача любого профиля.

УЧЕБНАЯ ЦЕЛЬ:

Общая: дать представление

О структуре микробиологических лабораторий общего и специального профиля;

Об основных объектах, направлениях и методах исследования, которые можно осуществлять в любой лаборатории и тех особенностях, которые крайне важны для лаборатории специального назначения;

Об оборудовании, необходимом для реализации исследований;

О реактивном и диагностическом обеспечении общего и специального профиля;

О режиме работы в лаборатории.

Конкретная:

Обучить приготовлению и микроскопическому анализу микропрепарата с помощью иммерсионного объектива и светового микроскопа;

Систематизировать знания обо всех видах микроскопов и их диагностических возможностях;

Освоить технику микроскопического метода.

ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ ПОДГОТОВКИ И ВВОДНОГО

КОНТРОЛЯ ЗНАНИЙ:

1. Микробиологическая лаборатория общего и специального назначения:

Специализация лаборатории;

Цели, задачи лабораторий;

Оснащение лаборатории и рабочего места;

Режим работы в лаборатории;

Методы микробиологического лабораторного исследования.

2. Микроскопический метод исследования:

Цели, задачи, диагностические возможности;

Виды микроскопов, их назначение, разрешающая способность;

Ход лучей в световом и тёмнопольном микроскопах с иммерсионной системой и без неё;

Микрометрические приспособления и их назначение.

3. Морфология микроорганизмов:

Понятие, основные морфологические группы бактерий;

Методы изучения морфологии микроорганизмов.

4. Микроскопический анализ препаратов:

Способы подготовительной обработки предметных стёкол;

Приготовление мазков из агаровых и бульонных культур микроорганизмов, жидкого

(кровь) и вязкого (мокрота) материала;

Фиксация (назначение, методы);

Простая окраска;

Определение размеров бактерий.

5. Люминесцентный метод исследования:

Цели, задачи, возможности;

Оснащение метода.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКОЙ РАБОТЫ С ПОЛНЫМ РЕГЛАМЕНТОМ ПРОТОКОЛА ЗАНЯТИЯ И ЕГО ОФОРМЛЕНИЕМ

Наименование учебного элемента

(задания)

Методическое

Регламент протокола

Организация и режим работы бактериологической лаборатории

Приложение 1

Записать в протокол,

зарисовать схему

Микроскопы: виды, устройство, принцип работы, возможности.

Дополнительные устройства к световому микроскопу

Приложение 2, 3

Зарисовать таблицу при самоподготовке

Морфология микроорганизмов.

Размеры микроорганизмов, способы их измерения

Атлас по медицинской микробиологии, вирусологии и иммунологии. Под ред. Воробьева А.А., Быкова А.С.- М., 2003. С.23-26

Зарисовать основные группы бактерий

Микроскопический метод.

Подготовка обезжиренных стёкол для приготовления препарата из материала исследования.

Фиксация препарата.

Окраска его простым способом

Приложение 4-7

Записать этапы исследования. На занятии приготовить микропрепараты, их микроскопировать, зарисовать, изучить демонстрационные препараты

Микроскопия препарата с иммерсией

Приложение 8

Записать при самоподготовке

Правила работы с иммерсионным объективом. Ход лучей в иммерсионном объективе

Приложение 8. Табличный фонд учебной комнаты

Зарисовать на практическом занятии.

Приложение 1

РЕЖИМ РАБОТЫ В БАКТЕРИОЛОГИЧЕСКОЙ ЛАБОРАТОРИИ

/Извлечение из санитарных правил СП 1.2.731-99 «Безопасность работы с микроорганизмами 111-IУ групп патогенности и гельминтами» Минздрав России. М., 1999/

Работники бактериологической лаборатории должны постоянно помнить при работе с заразным материалом о возможности заразиться и перенести инфект за пределы лаборатории. Поэтому они должны быть особенно внимательны, опрятны и педантичны в работе.

В бактериологических лабораториях нужно соблюдать следующие правила и режим работы:

1. Находиться в помещении бактериологической лаборатории, а тем более работать обязательно в халате, шапочке (косынке), в отдельных случаях в маске и резиновых перчатках.

2. Без надобности переходить из одного помещения лаборатории в другое нельзя. При выходе из лаборатории халат и другую спецодежду следует снимать. Руки обязательно вымыть с мылом.

3. Особо опасные работы проводить в специальных боксах, облучаемых после их проведения бактерицидными лампами.

4. Для работы пользоваться только отведённым местом и оборудованием. Перекладывать заразный материал или предметы, соприкасающиеся с ним, на другое рабочее место (стул, подоконник и т.д.) запрещается.

5. Все лишние предметы не следует держать на рабочем месте. Сумки, тетради, книги должны быть спрятаны в стол или целлофановые мешки.

7. После завершения работы в лаборатории рабочее место и руки дезинфицируются и моются с мылом.

МЕРОПРИЯТИЯ В СЛУЧАЕ АВАРИИ:

При аварии во время работы с инфекционным материалом (бой посуды, разбрызгивание из пипетки и т.д.) необходимо тщательно обеззараживать оборудование и инфицированные предметы. Для этого осуществляются следующие мероприятия:

а) применяют З - 5 % раствор хлорамина или фенола, который заливают в те места, куда попадает заражённый материал, а боковые поверхности мебели инвентаря, приборов, аппаратов и стены обмывают тампоном, смоченным тем же дез. раствором. Обработанные объекты оставляют на 30-40 минут, после чего производят обычную влажную уборку;

б) заразную одежду снимать и замачивать в 1 % растворе хлорамина; обувь обмывать тампоном, обильно пропитанным дез. раствором;

в) открытые участки кожи лица, рук и др. обрабатывать дез. раствором и 70 % этиловым спиртом. При загрязнении слизистых оболочек: рот полоскать либо 3 % раствором соды, либо 0,5 % раствором соляной кислоты или раствором марганцево-кислого калия 1:10000. Глаза промывают раствором борной кислоты и струёй воды, рот прополаскивают 0,05 % раствором марганцево-кислого калия или 0,1 % раствором борной кислоты.

Приложение 2

Основные виды микроскопов

Микроскопили

оптическое

устройство

Особенность и сущность

Разрешающая

способность

Назначение

Световой микроскоп (МБИ - 1,2,3,6,11)

Все объекты рассматриваются в проходящем свете сухим и иммерсионным объективом

Разрешающая способность - 0,4-0,2 мкм. Увеличение при данной длине тубуса равно произведению увеличений объектива и окуляра. Минимальное - 6ЗО (для иммерсионного объектива) и максимальное -1350

Используется для изучения морфологии, структуры, подвижности и тинкториальных свойств микроорганизмов

Люминесцентный микроскоп

Использование ультрафиолетовых лучей и люминесцирующих красителей, способных светиться(флюоресцировать) под УФ - лучами. Позволяет наблюдать микроорганизмы в излучаемом ими свете и цвете

Разрешающая способность - 0.1 мкм. Повышение её связано с использованием коротковолновых ультрафиолетовых лучей. Максимальное увеличение - в 3000 раз. Преимущество- цветное изображение, высокая контрастность, возможность исследовать живые объекты.

Используется не только для изучения морфологии, и тинкториальных свойств, но и для исследования процессов жизнедеятельности микробной клетки.

Электронный микроскоп

Принципдействия и устройства подобен таковым у обычного светового микроскопа. Различия - вместо источника света – источник электроволн(вольфрамоваяпроволока,нагреваемая

электротоком,

вместооптических линз-электромагнитные).

Разрешающая - способность 0.001 мкм. Первое промежуточное увеличение в 130 раз, от проекционной линзы - в 20 - 200 раз, в целом - 2500-25 000, максимум –

в 100 000 раз.

Широко используется для изучения вирусов, мельчайших микроорганизмов. В бактериологии используется для изучения деталей тонкого строения.

Инвертированные

микроскопы (тёмнопольный, фазово-контрастный)

Исследования проводят в проходящем свете в светлом или тёмном поле с применением метода фазового контраста. МБИ - 12,13 снабжены собственными столиками-термостатами, кинокамерами. Линзы окуляра и

Объектива дают обратное увеличенное изображение.

Позволяет проводить широкий круг микроскопических исследований, визуальное наблюдение, фотографирование, применение светлого и тёмного полей в прямом и отражённом свете, прямое и косое освещение, микроскопирование в поляризованном свете, методом фазовых контрастов, в свете люминесценции.

Стереомикроскоп

Даёт подсвет в прямом и косопроходящем свете

Наиболее пригоден для крупных объектов (грибов)

Изучение колоний, микологических культур.

Приложение 3