Фоторецепторы глаза строение и функции. Особенности и функции зрительного анализатора

Прошло немало лет, прежде чем был достигнут существенный прогресс в физиологии рецепторов, биполяров, горизонтальных и амакриновых клеток. Тому было множество причин: пульсация сосудов постоянно мешала попыткам удерживать микроэлектрод в одиночной клетке или рядом с ней; рецепторы, биполяры и горизонтальные клетки не генерируют импульсов, поэтому регистрация намного меньших градуальных потенциалов требует применения внутриклеточных методик; трудно с уверенностью сказать, в клетке какого типа (или рядом с какой клеткой) находится электрод. Некоторые из этих затруднений можно преодолеть надлежащим выбором животного; например, сетчатки холоднокровных позвоночных способны выживать, будучи извлечены из глаза и погружены в солевой раствор, насыщенный кислородом, и при этом отсутствие кровообращения исключает пульсацию артерий; у протея (род крупных саламандр) очень большие клетки, их активность легко регистрировать; рыбы, лягушки, черепахи, кролики и кошки - все эти животные имеют свои преимущества при исследованиях того или иного типа, поэтому при изучении физиологии сетчатки использовались разные виды. Трудность при работе с таким большим числом видов состоит в том, что детали организации сетчатки могут заметно различаться у разных животных. Кроме того, наши представления о сетчатке приматов, реакции которой трудно регистрировать, до недавнего времени в значительной мере основывались на результатах, полученных на других видах. Однако по мере преодоления технических трудностей ускоряется и прогресс исследований на приматах.

В последние годы изучение реакции палочек и колбочек на свет очень сильно продвинулось вперед, и появилось ощущение, что мы начинаем понимать, как они работают.

Палочки и колбочки различаются во многих отношениях. Наиболее важно различие в их относительной чувствительности: палочки чувствительны к очень слабому свету, колбочки требуют намного более яркого освещения. Я уже описывал различия в их распределении по сетчатке, наиболее заметное из них - отсутствие палочек в центральной ямке. Они различны и по форме: палочки длинные и тонкие, а колбочки короткие и конусообразные. Как палочки, так и колбочки содержат светочувствительные пигменты. Во всех палочках пигмент один и тот же; колбочки делятся на три типа, каждый из них со своим особым зрительным пигментом. Эти четыре пигмента чувствительны к различным длинам световых волн, и в случае колбочек эти различия составляют основу цветового зрения.

Под воздействием света в рецепторах происходит процесс, называемый выцветанием. В этом процессе молекула зрительного пигмента поглощает фотон - единичный квант видимого света - и при этом химически превращается в другое соединение, хуже поглощающее свет или, быть может, чувствительное к другим длинам волн. Практически у всех животных, от насекомых до человека, и даже у некоторых бактерий этот рецепторный пигмент состоит из белка, к которому присоединена небольшая молекула, близкая к витамину A; она и представляет собой химически трансформируемую светом часть. Благодаря главным образом работам Джорджа Уолда из Гарварда, проведенным в 50-х годах, нам теперь многое известно о химии выцветания и последующего восстановления зрительных пигментов.


Рис. 30. Этот срез периферической части сетчатки обезьяны проходит через слой палочек и колбочек. Маленькие белые пятнышки - палочки; более крупные черные участки с белыми точками в центре - колбочки.

Большинство обычных сенсорных рецепторов - химических, температурных или механических - деполяризуется в ответ на соответствующий стимул, т.е. они реагируют на возбуждающий стимул так же, как обычные нейроны ; деполяризация ведет к высвобождению медиатора из аксонных окончаний (часто, как и в случае зрительных рецепторов, это не приводит к возникновению импульсов, вероятно из-за очень малой длины аксона). У беспозвоночных, от усоногих раков до насекомых, световые рецепторы ведут себя таким же образом, и до 1964 года предполагалось, что аналогичный механизм - деполяризация под влиянием света - действует также в палочках и колбочках позвоночных.

В 1964 году японскому нейрофизиологу Цунео Томита, работавшему в университете Кейо в Токио, впервые удалось ввести микроэлектрод в колбочки сетчатки рыбы и получить столь неожиданный результат, что у многих современников он вызывал вначале серьезные сомнения. В темноте потенциал на мембране колбочки оказался необычайно низким для нервной клетки: приблизительно 50 милливольт вместо обычных 70. При освещении колбочки этот потенциал возрастал - мембрана гиперполяризовалась - в противоположность тому, чего следовало бы ожидать. В темноте фоторецепторы позвоночных явно больше деполяризованы (имеют более низкий мембранный потенциал), чем обычные нервные клетки в состоянии покоя, и деполяризация вызывает непрерывное высвобождение медиатора из окончаний их аксонов - в точности так, как это происходит в обычных рецепторах при стимуляции. Свет, повышая потенциал на мембране рецепторной клетки (т.е. гиперполяризуя ее), уменьшает выделение медиатора. Таким образом, стимуляция, как это ни странно на первый взгляд, выключает рецепторы. Открытие Томита помогает нам объяснить, почему волокна зрительного нерва у позвоночных столь активны в темноте: спонтанную активность проявляют именно рецепторы; многие биполярные и ганглиозные клетки, вероятно, делают попросту то, что им диктуют рецепторные клетки.

В последующие десятилетия главные задачи состояли в том, чтобы выяснить, как свет вызывает гиперполяризацию рецептора и в особенности каким образом выцветание всего одной молекулы зрительного пигмента под действием одного фотона может привести в палочке к измеримому изменению мембранного потенциала. В настоящее время оба процесса достаточно хорошо поняты. Гиперполяризация на свету вызывается перекрытием потока ионов. В темноте часть рецепторной мембраны более проницаема для ионов натрия, чем остальная мембрана. Поэтому ионы натрия непрерывно входят здесь в клетку, а где-то в другом месте ионы калия выходят наружу. Поток ионов в темноте, или темновой ток, открыли в 1970 году Уильям Хейгинс, Ричард Пенн и Шуко Йосиками в Национальном институте артрита и нарушений метаболизма в Бетезде. Он вызывает деполяризацию покоящегося рецептора и тем самым - его постоянную активность. В результате выцветания зрительного пигмента на свету поры для натрия закрываются, темновой ток уменьшается и степень деполяризации мембраны становится меньше, т.е. клетка гиперполяризуется. Ее активность (высвобождение ею медиатора) ослабевает.


Рис. 31. Одиночная колбочка (слева) и две палочки с колбочкой (справа) были отпрепарированы и окрашены осмиевой кислотой. Тонкий отросток наверху каждой клетки - наружный сегмент, содержащий зрительный пигмент. Волокна внизу идут к не показанным здесь синаптическим областям.

В настоящее время в результате работ Евгения Фесенко с сотрудниками в Академии наук в Москве, Дениса Бейлора в Стэнфордском университете, Кин-Вай Яу в Техасском университете и других мы намного ближе подошли к пониманию связи между выцветанием пигмента и закрытием натриевых пор. Например, очень трудно было представить себе, как выцветание единственной молекулы могло бы привести к закрытию миллионов пор, необходимому для наблюдаемых изменений потенциала. В настоящее время выяснилось, что поры в рецепторе открываются с помощью молекул вещества, называемого циклическим гуанозинмонофосфатом (цГМФ). Выцветание молекулы зрительного пигмента приводит к целому каскаду событий. Белковая часть обесцвеченной молекулы пигмента активирует большое число молекул фермента трансдуцина, а каждая из них в свою очередь инактивирует сотни молекул цГМФ, обычно участвующих в открытии пор. Так в результате выцветания одной молекулы пигмента закрываются миллионы пор.

Все это позволяет объяснить ряд явлений, бывших ранее загадочными. Во-первых, давно известно, что человек, адаптировавшийся к полной темноте, способен увидеть такую слабую вспышку света, при которой ни один рецептор не может получить более одного фотона. Как показывают расчеты, для ощущения вспышки нужно, чтобы в короткий промежуток времени около шести близко расположенных палочек были стимулированы фотонами. Теперь становится понятно, как одиночный фотон может возбудить палочку и заставить ее генерировать сигнал достаточной силы.

Во-вторых, мы теперь можем объяснить неспособность палочек реагировать на изменения освещенности, если свет уже достаточно ярок. По-видимому, чувствительность палочек столь высока, что при сильной освещенности, например при солнечном свете, все натриевые поры закрыты, и дальнейшее усиление света может не давать никакого дополнительного эффекта. Тогда мы говорим, что палочки насыщены.

Быть может, спустя несколько лет студенты-биологи будут видеть во всей этой повести о рецепторах просто еще одну вещь, которую нужно выучить. Надеюсь, однако, что этого не произойдет. Чтобы полностью оценить ее значение, надо было потратить многие годы, гадая о том, каким образом могут работать рецепторы, а затем внезапно - меньше чем за десяток лет - в результате эффектных исследований решить эту проблему. Волнение по этому поводу еще не стихло.

<<< Назад
Вперед >>>

Значение слова ФОТОРЕЦЕПТОРЫ в Большом российском энциклопедическом словаре

ФОТОРЕЦЕПТОРЫ

ФОТОРЕЦ́ЕПТОРЫ (от фото... и рецепторы), светочувствит. образования (молекулы пигментов, спец. клетки, органы), способные поглощать свет и индуцировать фотобиол. процессы в организме.

Большой российский энциклопедический словарь. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ФОТОРЕЦЕПТОРЫ в русском языке в словарях, энциклопедиях и справочниках:

  • ФОТОРЕЦЕПТОРЫ
    (от фото... и рецепторы) светочувствительные образования (молекулы пигментов, специальные клетки, органы), способные поглощать свет и индуцировать фотобиологические процессы в …
  • ФОТОРЕЦЕПТОРЫ
    (от фото... и рецепторы) , световоспринимающие. светочувствительные образования, способные в ответ на поглощение квантов света молекулами содержащихся в них …
  • ФОТОРЕЦЕПТОРЫ в Современном толковом словаре, БСЭ:
    (от фото … и рецепторы), светочувствительные образования (молекулы пигментов, специальные клетки, органы), способные поглощать свет и индуцировать фотобиологические процессы в …
  • ФОТОРЕЦЕПТОРЫ В ФИЗИОЛОГИИ ЧЕЛОВЕКА в Медицинских терминах:
    (фото- + рецепторы) см. Рецепторы зрительные …
  • РЕЦЕПТОРЫ в Энциклопедии Биология:
    , окончания чувствительных нервных волокон или специализированные клетки, преобразующие раздражения, воспринимаемые извне или из внутренней среды организма, в нервное возбуждение, …
  • ЗРЕНИЕ в Энциклопедии Биология:
    , способность организма воспринимать электромагнитное излучение из окружающей среды в т. н. видимом световом диапазоне от 300 до 800 нм. …
  • РЕЦЕПТОРЫ ЗРИТЕЛЬНЫЕ в Медицинских терминах:
    (син. фоторецепторы) Р. сетчатки, раздражение которых вызывает зрительное …
  • РЕЦЕПТИВНОЕ ПОЛЕ в Медицинских терминах:
    (франц. receptif воспринимающий, рецептивный; от лат. recipio, receptum брать, принимать) 1) зрительно-ганглиозного нейрона - участок сетчатки, в котором расположены фоторецепторы, …
  • ПАЛОЧКОВЫЕ КЛЕТКИ в Большом энциклопедическом словаре:
    (палочки) светочувствительные клетки (фоторецепторы) в сетчатке глаза человека и позвоночных животных, обеспечивающие сумеречное зрение; в отличие от колбочковых клеток обладают …
  • КОЛБОЧКОВЫЕ КЛЕТКИ в Большом энциклопедическом словаре:
    (колбочки) светочувствительные колбообразные клетки (фоторецепторы) в сетчатке глаза человека и позвоночных животных; воспринимают дневной свет и обеспечивают цветовое …
  • ЭКСТЕРОЦЕПТОРЫ в Большой советской энциклопедии, БСЭ:
    экстерорецепторы, обширная группа специализированных чувствительных образований, воспринимающих раздражения, действующие на организм из окружающей его внешней среды. Э. расположены на поверхности …
  • ЦВЕТОВОЙ КОНТРАСТ в Большой советской энциклопедии, БСЭ:
    контраст, 1) в цветовых измерениях (колориметрии) характеристика разницы между двумя цветностями х, у и х +D х, y + D …
  • ЦВЕТОВОЕ ЗРЕНИЕ в Большой советской энциклопедии, БСЭ:
    зрение, цветное зрение, цветовосприятие, способность глаза человека и многих видов животных с дневной активностью различать цвета, т. е. ощущать отличия …
  • ФОТОРЕЦЕПЦИЯ в Большой советской энциклопедии, БСЭ:
    (от фото... и рецепция) , восприятие света одноклеточными организмами или специализированными образованиями (фоторецепторами), содержащими светочувствительные пигменты. Ф. v одно …
  • СОСУДИСТАЯ ОБОЛОЧКА в Большой советской энциклопедии, БСЭ:
    оболочка, хориоидея, соединительнотканная оболочка глаза, расположенная между сетчаткой и склерой; через неё метаболиты и кислород поступают из крови …
  • СЕТЧАТКА в Большой советской энциклопедии, БСЭ:
    сетчатая оболочка, ретина, внутренняя оболочка глаза, преобразующая световое раздражение в нервное возбуждение и осуществляющая первичную обработку зрительного сигнала. Выстилает …
  • РОДОПСИН в Большой советской энциклопедии, БСЭ:
    (от греч. rhodon - роза и opsis - зрение), зрительный пурпур, основной зрительный пигмент палочек сетчатки позвоночных (кроме некоторых рыб …
  • РЕЦЕПТОРЫ в Большой советской энциклопедии, БСЭ:
    (лат. receptor - принимающий, от recipio - принимаю, получаю), специальные чувствительные образования, воспринимающие и преобразующие раздражения из внешней или внутренней …
  • ПАЛОЧКОВЫЕ КЛЕТКИ в Большой советской энциклопедии, БСЭ:
    клетки, фоторецепторы глаза человека и позвоночных животных, функционирующие как элементы сумеречного зрения. Расположены вместе с колбочковыми клетками в наружном слое …
  • НЕМАТОДЫ в Большой советской энциклопедии, БСЭ.
  • КОЛБОЧКОВЫЕ КЛЕТКИ в Большой советской энциклопедии, БСЭ:
    клетки, фоторецепторы глаза человека и позвоночных животных, функционирующие как элементы дневного светоощущения и обеспечивающие цветовое зрение; имеют колбообразную форму …
  • ЗРЕНИЕ в Большой советской энциклопедии, БСЭ:
    восприятие организмом внешнего мира, т. е. получение информации о нём, посредством улавливания специальными зрения органами отражаемого или излучаемого объектами света. …
  • ЖЁЛТОЕ ПЯТНО в Большой советской энциклопедии, БСЭ:
    пятно (macula lutea), место наибольшей остроты зрения в сетчатке глаза позвоночных животных и человека; имеет овальную форму, расположено против зрачка, …
  • ПАЛОЧКОВЫЕ
    П́АЛОЧКОВЫЕ КЛЕТКИ (палочки), светочувствит. клетки (фоторецепторы) в сетчатке глаза человека и позвоночных животных, обеспечивающие сумеречное зрение; в отличие от колбочковых …
  • КОЛБОЧКОВЫЕ в Большом российском энциклопедическом словаре:
    ЌОЛБОЧКОВЫЕ КЛЕТКИ (колбочки), светочувствит. колбообразные клетки (фоторецепторы) в сетчатке глаза человека и позвоночных животных; воспринимают дневной свет и обеспечивают цветовое …
  • РЕЦЕПТОРЫ в Новом словаре иностранных слов:
    (лат. recipere получать) концевые образования афферентных нервных волокон, воспринимающие раздражения из внешней (зкстероцепторы) или из внутренней (инте-роцепторы) среды организма …

Зрение - это один из способов познавать окружающий мир и ориентироваться в пространстве. Несмотря на то что другие органы чувств тоже очень важны, с помощью глаз человек воспринимает около 90% всей информации, поступающей из окружающей среды. Благодаря способности видеть то, что находится вокруг нас, мы можем судить о происходящих событиях, отличать предметы друг от друга, а также заметить угрожающие факторы. Глаза человека устроены так, что помимо самих объектов, они различают ещё и цвета, в которые окрашен наш мир. За это отвечают специальные микроскопические клетки - палочки и колбочки, которые присутствуют в сетчатке каждого из нас. Благодаря им воспринятая нами информация о виде окружающего передаётся в головной мозг.

Строение глаза: схема

Несмотря на то что глаз занимает так мало места, он содержит множество анатомических структур, благодаря которым мы имеем способность видеть. Орган зрения практически напрямую связан с головным мозгом, и с помощью специального исследования офтальмологи видят пересечение зрительного нерва. имеет форму шара и располагается в специальной выемке - орбите, которую образуют кости черепа. Чтобы понять, для чего нужны многочисленные структуры органа зрения, необходимо знать строение глаза. Схема показывает, что глаз состоит таких образований, как хрусталик, передняя и задняя камеры, зрительный нерв и оболочки. Снаружи орган зрения покрывает склера - защитный каркас глаза.

Оболочки глаза

Склера выполняет функцию защиты глазного яблока от повреждений. Она является наружной оболочкой и занимает около 5/6 поверхности органа зрения. Часть склеры, которая находится снаружи и выходит непосредственно к окружающей среде, называется роговицей. Ей присущи свойства, благодаря которым мы имеем способность чётко видеть окружающий мир. Основные из них - это прозрачность, зеркальность, влажность, гладкость и способность пропускать и преломлять лучи. Остальная часть наружной оболочки глаза - склера - состоит из плотной соединительнотканной основы. Под ней находится следующий слой - сосудистый. Средняя оболочка представлена тремя образованиями, расположенными последовательно: радужка, и хореоидея. Помимо этого, сосудистый слой включает зрачок. Он представляет собой небольшое отверстие, не покрытое радужной оболочкой. Каждое из этих образований имеет собственную функцию, которая необходима для обеспечения зрения. Последний слой - это сетчатая оболочка глаза. Она контактирует непосредственно с головным мозгом. Строение сетчатки глаза очень сложно. Это связано с тем, что она считается самой важной оболочкой органа зрения.

Строение сетчатки глаза

Внутренняя оболочка органа зрения является составляющей частью мозгового вещества. Она представлена слоями нейронов, которые устилают глаз изнутри. Благодаря сетчатой оболочке мы получаем изображение всего, что находится вокруг нас. На ней фокусируются все преломлённые лучи и составляются в чёткий предмет. сетчатки переходят в зрительный нерв, по волокнам которого информация достигает головного мозга. На внутренней оболочке глаза имеется небольшое пятно, которое находится в центре и обладает наибольшей способностью к видению. Эта часть называется макулой. В этом месте располагаются зрительные клетки - палочки и колбочки глаза. Они обеспечивают нам как дневное, так и ночное видение окружающего мира.

Функции палочек и колбочек

Эти клетки расположены на глаза и необходимы для того, чтобы видеть. Палочки и колбочки являются преобразователями чёрно-белого и цветного зрения. Оба вида клеток выступают в качестве светочувствительных рецепторов глаза. Колбочки названы так из-за своей конической формы, они являются связующим звеном между сетчатой оболочкой и центральной нервной системой. Основная их функция - это преобразование световых ощущений, получаемых из внешней среды, в электрические сигналы (импульсы), обрабатываемые головным мозгом. Специфичность к распознаванию дневного света принадлежит колбочкам благодаря содержащемуся в них пигменту - йодопсину. Это вещество имеет несколько видов клеток, которые воспринимают различные части спектра. Палочки являются более чувствительными к свету, поэтому их основная функция сложнее - обеспечение видимости в сумерках. Они тоже содержат пигментную основу - вещество родопсин, которое обесцвечивается при попадании солнечных лучей.

Строение палочек и колбочек

Своё название эти клетки получили благодаря своей форме - цилиндрической и конической. Палочки, в отличие от колбочек, располагаются больше по периферии сетчатки и практически отсутствуют в макуле. Это связано с их функцией - обеспечением ночного видения, а также периферических полей зрения. Оба типа клеток имеют схожее строение и состоят из 4 частей:


Количество светочувствительных рецепторов на сетчатке сильно различается. Палочковые клетки составляют около 130 миллионов. Колбочки сетчатки значительно уступают им в количестве, в среднем их насчитывается примерно 7 млн.

Особенности передачи световых импульсов

Палочки и колбочки способны воспринимать световой поток и передавать его в ЦНС. Оба типа клеток способны работать в дневное время. Отличием является то, что светочувствительность колбочек гораздо выше, чем палочек. Передача полученных сигналов осуществляется благодаря интернейронам, к каждому из которых присоединяется несколько рецепторов. Объединения сразу нескольких палочковых клеток делают чувствительность органа зрения значительно большей. Такое явление получило название «конвергенция». Она обеспечивает нам обзор сразу нескольких а также способность улавливать различные движения, происходящие вокруг нас.

Способность к восприятию цветов

Оба вида рецепторов сетчатки необходимы не только, чтобы различать дневное и сумеречное зрение, но и определять цветные картинки. Строение глаза человека позволяет многое: воспринимать большую площадь окружающей среды, видеть в любое время суток. Кроме того, мы имеем одну из интересных способностей - бинокулярное зрение, позволяющее значительно расширить обзор. Палочки и колбочки участвуют в восприятии практически всего цветового спектра, благодаря чему люди, в отличие от животных, различают все краски этого мира. Цветное зрение в большей степени обеспечивают колбочки, которые бывают 3-х видов (коротко-, средне и длинноволновые). Тем не менее палочки тоже имеют способность к восприятию небольшой части спектра.

Оптическая система глаза. Аномалии рефракции

Оптический аппарат глаза состоит из прозрачной роговицы, передней и задней камер, заполненных водянистой влагой, радужной оболочки, окружающей зрачок, хрусталика с прозрачной сумкой и стекловидного тела. В целом - это система линз, формирующая на сетчатке перевернутое и уменьшенное изображение рассматриваемых предметов. Внутренняя оболочка глазного яблока - сетчатка (retina)состоит из двух листков - внутреннего светочувствительного (нервная часть) и наружного пигментного. Пигментный слой поглощает световые лучи, предотвращая их отражение. К пигментному эпителию прилежит слой палочек и колбочек, которые представляют собой периферические отростки фоторецепторов. Рефракция или преломление (от латинского - refractio - преломление) глаза - преломляющая сила оптической системы глаза при покое аккомодации.У каждой линзы существует фокусное расстояние, т.е. расстояние, на котором формируется четкое изображение, при преломление в ней световых лучей от бесконечно удаленных предметов. Это постоянная величина, зависимая от радиуса кривизны данной линзы В обычном глазу фокусное расстояние роговицы равно примерно 23,5 мм - на этом расстоянии от неё располагается сетчатка. Такой глаз видит чёткое изображение предмета. Рефракция зависит от двух факторов: силы оптической системы глаза и размеров (длины) глазного яблока. Близорукость – это патология зрения, при которой проецируемое изображение попадает не на сетчатку, а перед ней (слишком короткое фокусное расстояние). Это связано с дефектом оптической системы глаза – её сила слишком велика. При близорукости человек плохо видит вдали и хорошо вблизи Дальнозоркость – это патология зрения, при которой проецируемое изображение попадает не на сетчатку, а дальше неё (слишком большое фокусное расстояние). Это связано с дефектом оптической системы глаза – её сила слишком мала. При дальнозоркости человек плохо видит вблизи. При близорукости и дальнозоркости изображение точки на сетчатке будет выглядеть как расплывчатый круг. Кроме этого, встречается вид рефракции, при котором точечный объект проектируется на сетчатку в виде полоски или эллипса. Это обусловлено тем, что разные участки роговицы или хрусталика имеют разную преломляющую способность, иногда даже на протяжении одного меридиана. Такая патология называется астигматизмом.

Сетчатка (лат. retína ) - внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку. Фоторецепторы: палочки и колбочки
Палочки являются рецепторами, воспринимающими световые лучи в условиях слабой освещенности. Они возбуждаются при действии на них 1 кванта света. Размеры палочек: длина - 0,06 мм, диаметр 0,002 мм.
В строении палочки различают:
наружный сегмент (содержит мембранные диски с родопсином), связующий отдел (ресничка), внутренний сегмент (содержит митохондрии), область с нервными окончаниями. Наружный сегмент: состоит из стопки уплощенных мембранных пузырьков, на мембранах которых находится пигмент родопсина (зрительный пурпур). В строении колбочки принято различать:
наружный сегмент (содержит мембранные полудиски), связующий отдел (перетяжка),
внутренний сегмент (содержит митохондрии), синаптическую область.
Наружный сегмент заполнен мембранными полудисками, образованными плазматической мембраной и отделившимися от нее. В районе связующего отдела (перетяжки) наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой.