«Как работает мозг». Глава из книги

Беспомощность новорожденных означала, что их матери сильнее зависели от поддержки других членов группы. В результате эволюционное преимущество получали те, чей мозг лучше всего выполнял социальные функции. Кроме того, продленное детство означало, что у детей стало больше времени на освоение и отработку взрослых форм поведения. Теперь мозг мог дольше оставаться пластичным, а значит открытым для развития.

Полагают, что именно язык стал тем ключевым фактором, благодаря которому около 8о тысяч лет назад довольно неожиданно у нас появилась культура. Язык послужил основой для абстрактного мышления, которое, в свою очередь, способствовало рефлексии и умению представлять себе будущее и далекие миры, а значит и умению планировать и изобретать.

Люди жили довольно большими группами, и связанная с этим потребность понимать друг друга, общаться и манипулировать друг другом создавала давление отбора, которое поощряло развитие у человека навыков общения, языка и абстрактного мышления.

Головной мозг — это союз двух больших полушарий. Они похожи друг на друга как зеркальные отражения, и если человек на раннем этапе своего развития лишится одного из полушарий мозга, второе мажет успешно взять на себя функции обоих. Однако в норме полушария соединены тяжом из волокон, через который они непрерывно ведут друг с другом задушевную беседу. Информация, поступающая в одно полушарие, почти сразу становится доступна и второму, и реагируют полушария настолько слаженно, что складывается впечатление единства восприятия и единого потока сознания. Но стоит отделить полушария друг от друга, и разница между ними становится очевидной. У каждого полушария зрелого мозга свои сильные и слабые стороны, собственные методы обработки информации и особенные способности. Им соответствуют две разные области нашего сознания — по сути, чуть ли не две личности, заключенные в одной черепной коробке.

Благодаря левому полушарию головного мозга человек достиг поразительных успехов. Наше левое полушарие расчетливо, общительно и способно изобретать и осуществлять сложные планы. Однако оно почему-то давно приобрело дурную славу. Его часто считают воплощением главных западных “пороков”: меркантильности, властолюбия и бесчувственности, в то время как правое полушарие рисуют сдержанным, эмоциональным и близким к природе, то есть обладающим качествами, обычно ассоциирующимися с Востоком.

Эти представления породили целую отрасль популярных пособий и курсов обучения, пропагандирующих методы развития правополушарного сознания. Существуют пособия по совершенствованию навыков правополушарного рисования, правополушарной верховой езды, даже правополушарного секса. Предлагается множество всевозможных курсов, призванных помочь обучающимся “восстановить связь” со своим правым полушарием, а руководители больших корпораций нанимают консультантов для тестирования сотрудников на лево- или правополушарность, чтобы распределить между ними должности.

Есть ли во всем этом хоть какой-нибудь смысл? Специалисты по головному мозгу убеждены, что идея жесткого разделения функций между полушариями — не более чем миф. Они даже придумали специальный термин для массового увлечения этим предметом — “дихотомания”. Это слово, как и выражение “новая френология”, используют иронически, предполагая, что реальное положение дел слишком сложно, чтобы можно было делать настолько простые выводы.

Наш головной мозг и в самом деле изумительно сложен, и в связи с постоянным взаимодействием его полушарий крайне трудно разбираться в том, что и где в нем происходит. Даже те наши способности, которые наиболее явно сосредоточены в одной половине мозга, а именно речевые, локализованы нетипично примерно у 5 % людей и в течение жизни нередко “сдвигаются вправо”1. Кроме того, мозг весьма пластичен, и на характер связей в нем может влиять множество факторов среды. Под действием исключительных обстоятельств даже устройство вполне нормального генетически мозга может сделаться на удивление странным. Тем не менее работы по нейровизуализации подтверждают, что два полушария нашего мозга действительно функционируют по-разному, и характер различий между ними столь жестко “запрограммирован”, что в обычных условиях структуры, отвечающие за определенные навыки, всегда развиваются в одной и той же половине мозга.

Более того, общая схема работы мозга более или менее соответствует распространенным представлениям. Левое полушарие занимается анализом и логикой, отличается точностью и следит за временем. Правое характеризуется мечтательностью, оно обрабатывает информацию обобщенно, не разбивая на составляющие, и больше задейство-

Головной мозг человека состоит из многих частей, и у каждой свои функции: превращение звуков в речь, обработка информации о цвете, формирование страха, распознавание лиц или различение рыбы и фруктов. Но это не застывший набор компонентов: мозг каждого из нас уникален, он постоянно изменяется и тонко чувствует окружающую среду. Входящим в его состав модулям свойственны как независимость, так и постоянное взаимодействие друг с другом. Их функции не закреплены за ними жестко, и порой один участок может взять на себя работу другого, либо, в результате сбоя генетической программы или изменения окружающей среды, может вообще не сработать. Активностью мозга управляют токи, химические вещества и загадочные колебания. Не исключено даже, что на нее влияют квантовые эффекты, искажающие ход времени. Все системы мозга связаны в единую динамичную надсистему, параллельно делающую миллионы разных дел. Может быть, она настолько сложна, что никогда не сумеет полностью постичь саму себя. Но она продолжает пытаться.

Пожалуйста, притроньтесь пальцем к загривку. Двигайте палец вверх и вбок, и вы дойдете до шишки, образуемой основанием черепа. Пощупайте ее. Франц Галль, основоположник френологии, утверждал, что под этой выпуклостью располагается «орган эротизма» (свойства, лежащего в основе сексуальных ощущений). Теперь передвиньте палец на два-три сантиметра вверх, в сторону темени. Здесь, по Галлю, находится «орган агрессивности». По убеждению Галля, у людей добродушных и миролюбивых этот второй участок должен быть не таким выпуклым, как первый. Но не стоит беспокоиться, если шишки не соответствуют вашему самовосприятию. Галль выделил свой «орган эротизма», отыскав самый теплый участок головы у двух недавно овдовевших и «эмоциональных» молодых женщин, а «орган агрессивности» - отметив малые размеры соответствующего участка у «большинства индусов и цейлонцев». Его методы были сомнительными даже по меркам начала XIX века.

Попытки определять свойства характера по шишкам на голове в любом случае были бессмысленны, потому что мягкие ткани мозга человека обычно не влияют на форму его черепа. Но Галль ошибался не во всем. Пощупайте еще раз собственный череп, на этот раз чуть впереди и слева от темени. Здесь, по Галлю, располагается «орган веселости». Несколько лет назад хирурги с медицинского факультета Калифорнийского университета изучили воздействие слабого электрического тока на участок левого полушария мозга 16-летней девушки, расположенный в этой области черепа.

Пациентка страдала тяжелой формой эпилепсии, и описанная стимуляция проводилась в ходе стандартной процедуры, позволяющей определять местоположение очагов распространения эпилептического припадка для их последующего удаления. Девушка пребывала в сознании, и когда ей начали стимулировать указанный участок коры головного мозга, она стала смеяться. Это была не какая-нибудь бессмысленная гримаса, а настоящее радостное хихиканье, и когда хирурги спросили, что ее развеселило, она ответила: «Вы такие смешные - стоите тут вокруг меня!» Врачи повторили воздействие, и на этот раз девушка нашла что-то смешное в картинке, на которую упал ее взгляд (там была изображена обыкновенная лошадь). В третий раз ей показалось смешным что-то еще. Судя по всему, хирурги нашли участок мозга, способный вызывать веселье в любых, даже самых неподходящих обстоятельствах. Галль почти двумя столетиями раньше отметил тот же участок как «орган веселости» по чистой случайности. Но идея, положенная им в основу своей теории, - что головной мозг состоит из модулей, выполняющих разные функции, - давно подтверждена наукой.

По иронии, развенчание френологии было связано как раз с открытием настоящих модулей головного мозга. К концу XIX века европейские университеты охватило повальное увлечение биологической психиатрией, и неврологи начали заниматься локальной электрической стимуляцией и экспериментами по удалению участков мозга у животных, выясняя, какие области мозга за что отвечают. Многие из важнейших ориентиров были намечены уже в эту начальную эпоху картирования работы мозга, в частности, неврологи Поль Брока и Карл Вернике открыли речевые зоны. К сожалению френологов, эти зоны были обнаружены сбоку, над ухом и возле него, в то время как по Галлю «орган речи» должен был располагаться строго в районе глаз.

Речевые зоны, выявленные Брока и Вернике, по сей день носят их имена. Если бы ученые начала XIX века продолжили поиски функциональных участков мозга, сегодняшние схемы его строения пестрели бы именами других давно покойных людей, а не скучными ярлыками (такими как «первичная слуховая кора», «ДМО» или «зона V 1 »), которыми теперь принято обозначать выявляемые в мозге области. Но научное картирование мозга вышло из моды вместе с френологией, и модульная теория его строения была во многом отвергнута учеными в пользу теории «массового действия», согласно которой сложные формы поведения порождаются совместной работой всех клеток мозга.

На первый взгляд, середина XX века была неподходящим временем для тех, кто стремился использовать физические методы для лечения психических заболеваний или влияния на поведение. И все же психохирургия в то время процветала. В 1935 году лиссабонский невролог Антониу Эгаш Мониш узнал об экспериментах, в ходе которых агрессивным, беспокойным шимпанзе перерезали определенные волокна в лобных долях мозга. После этой операции, которую назвали лейкотомией, животные становились спокойными и дружелюбными. Эгаш Мониш поспешил провести эту операцию людям, страдающим похожими нарушениями, и добился тех же результатов. Фронтальная лейкотомия (на основе которой впоследствии была разработана более радикальная фронтальная лоботомия) быстро сделалась одной из стандартных методик, применяемых в психиатрических больницах, и в 40-х годах только в Америке было проведено не менее 20 тысяч подобных операций.

Применявшийся в то время в нейрохирургии подход с современных позиций кажется на редкость безрассудным. Его использовали для лечения чуть ли не любых психических расстройств, таких как депрессия, шизофрения или маниакальный синдром, хотя никто еще понятия не имел, что именно вызывает симптомы этих недугов и почему перерезание волокон в мозге должно помогать больным. Разъездные хирурги курсировали от больницы к больнице, возя с собой в машине свои инструменты, и за утро делали аж по дюжине таких операций. Один из них описывал свою методику так: «Проще простого. Беру инструмент вроде ножа для колки льда... пробиваю кость над самым глазным яблоком, ввожу инструмент в мозг, верчу, разрезая нервные волокна, и дело с концом. Пациент при этом не чувствует ровным счетом ничего».

К сожалению, некоторые пациенты не просто ничего не чувствовали во время операции, но и на всю оставшуюся жизнь сохраняли притупленность чувств и странную невосприимчивость к окружающему, из-за которой производили впечатление полуживых. Более того, эта операция не всегда позволяла избавить больного от агрессивности: сам Эгаш Мониш погиб от пули одного из своих пациентов, которому он сделал лоботомию.

Может быть, распространенное в середине XX века увлечение перерезанием волокон в мозге скорее облегчало страдания, чем причиняло их, но у врачей оно породило чувство крайней обеспокоенности, а у людей, далеких от медицины, - сохраняющееся и по сей день подозрительное отношение к психохирургии. В 60-х годах, когда были разработаны эффективные психотропные препараты, от применения хирургических методов лечения психических заболеваний почти полностью отказались.

В наши дни идея менять поведение людей и лечить психические расстройства путем непосредственных манипуляций с мозгом вновь становится востребованной. Однако на сей раз в основу подобных вмешательств в работу головного мозга положены гораздо более глубокие представления о том, как функционирует этот орган. Современные технологии нейровизуализации, такие как функциональная магнитно-резонансная томография, позволяют исследователям изучать живой, работающий мозг. Сведения, которые им удалось получить, пролили свет как на психические заболевания, так и на природу наших повседневных ощущений.

Возьмем, например, боль. Исходя из общих соображений, можно предположить, что в мозге есть особый болевой центр, связанный, возможно, еще с одним участком мозга, отслеживающим ощущения, возникающие в пораженной части тела. На самом деле, как показывают данные томографических исследований мозга, болевого центра в мозге нет. Боль возникает в результате активации как участков мозга, связанных с вниманием и эмоциями, так и участков мозга, непосредственно задействованных в чувствительности. Если разобраться, что представляет собой боль в плане активности мозга, станет ясно, почему нам бывает гораздо больнее, когда мы пребываем в состоянии эмоционального напряжения, и почему мы нередко не замечаем боли (даже если организм весьма серьезно поврежден), когда наше внимание поглощено чем-то более важным.

Некоторые психические функции, представляющиеся нам простыми (например, боль), оказываются сложнее, чем можно было ожидать, а другие, производящие впечатление недоступных для понимания, на самом деле выглядят на удивление механистическими. Нравственные принципы, альтруизм, «духовный» и религиозный опыт, эстетическое чувство, даже любовь - все это считалось недоступным для научного изучения. Но теперь понемногу обнажаются физиологические корни этих таинственных явлений, и в некоторых случаях выясняется, что ими можно манипулировать путем простого прикосновения электрода к некоему участку мозга. Так, вживленные в мозг электростимуляторы могут избавить человека от ощущения мрачной безысходности, связанного с депрессией, прежде считавшейся чисто душевным недугом6 , а также от навязчивых состояний, причем и в случаях, когда все традиционные средства оказываются бессильны7 . Чувства освобождения от телесной оболочки, пребывания вне времени и даже трансцендентального опыта - все это можно вызывать искусственно, возбуждая определенным образом соответствующие участки мозга. Можно даже купить себе шлем, посылающий сквозь череп электронные волны, включающие и выключающие соответствующие нервные клетки, и позволяющий по желанию получать «интенсивный духовный опыт». Какими бы сомнительными ни казались рекламируемые таким образом свойства шлема, они основаны на данных серьезных научных работ. Результаты ряда новаторских исследований, которые с 80-х годов ведет канадский нейробиолог Майкл Персингер, показали, что нарушение электрической активности в мозге (особенно в районе височных долей) вызывает у большинства людей необычные субъективные состояния, в том числе ощущение отделения от тела и присутствия невидимого разумного существа. Все это свидетельствует, что такие чувства, как веселость, благоговение, любовь или ужас можно пережить независимо от внешних обстоятельств, с которыми их обычно связывают. Чтобы испытать влечение, не требуется предмета обожания, чтобы почувствовать страх, не требуется угроза, а чтобы ощущать духовное общение, не требуется присутствие сверхъестественных существ. Если подстегнуть мозг, он способен самостоятельно порождать любые, по сути, ощущения.

Как он это делает? Каким образом это объединение скоплений клеток и переплетений отростков, связывающих клетки, порождает ощущения, управляет всем нашим телом? Ощущения возникают из электрических разрядов, происходящих в клетках мозга - нейронах. Но разрядов в одном-единственном нейроне недостаточно даже для того, чтобы заставить веко дергаться во сне, не говоря уже об осознанном восприятии. Паттерны активности мозга, достаточно сложные, чтобы порождать мысли, чувства и восприятие, возникают лишь тогда, когда один нейрон возбуждает соседние, которые, в свою очередь, возбуждают следующие, и так далее.

Для возникновения даже ничтожнейшей из мыслей миллионы нейронов возбуждаются в унисон. Даже в состоянии покоя томограф демонстрирует сложнейший калейдоскоп наблюдаемой в мозге активности, характер которой постоянно меняется. Эта форма работы мозга «по умолчанию» связана с мечтами, самоанализом и раздумьями. При этом время от времени, если человек пытается решить в уме сложную задачу или испытывает сильные эмоции, у него «зажигается» весь мозг.

Любые входящие ощущения вызывают новые формы нейронной активности, иные из которых приводят к физическим изменениям, позволяющим воспроизводить эти формы активности в виде воспоминаний. Однако большинство образуемых такой активностью конфигураций существует лишь доли секунды, обрекая на забвение мимолетно воплотившиеся в них ощущения.

Сохраняющиеся конфигурации могут, в свою очередь, связываться с активностью других групп нейронов и запускать ее, формируя ассоциации (усвоенные знания) или совместно создавая новые понятия. Теоретически всякий раз, когда возбуждается определенная группа взаимосвязанных нейронов, это должно порождать один и тот же фрагмент мысли, чувства или неосознаваемой работы мозга, но на практике работа нашего мозга слишком непостоянна, чтобы та или иная форма его активности повторялась в неизменном виде. На самом деле в нем возникают похожие, но слегка видоизмененные конфигурации возбуждения. Наши ощущения никогда в точности не повторяются.

Обзорная экскурсия

Головной мозг человека сопоставим по размеру с кокосовым орехом и напоминает по форме грецкий орех, по цвету - сырую печенку, а по консистенции - замороженное сливочное масло. В его состав входят два больших полушария, покрытые тонкой оболочкой из морщинистой серой ткани. Эту оболочку называют корой больших полушарий. Углубления на ее поверхности называют бороздами, выпуклости - извилинами. Ландшафт, образуемый бороздами и извилинами, у разных людей слегка различается, но главные складки коры, подобно вертикальному углублению под носом на верхней губе или морщинкам, образующимся к старости у уголков глаз, свойственны всем нам и используются в качестве ориентиров на этой «местности». Под задней частью основной массы мозга располагается мозжечок, «маленький мозг», частично прикрытый большими полушариями. У живших в незапамятные времена предков млекопитающих мозжечок был основным отделом мозга, но теперь главную роль взял на себя разросшийся конечный мозг, образующий большие полушария.

Каждое из полушарий разделено на четыре доли, границы между которыми отмечены складками.

В самой задней части каждого полушария располагается затылочная доля, внизу сбоку, в районе уха - височная, вверху - теменная, а спереди - лобная. Каждая из четырех долей обрабатывает свою информацию. Затылочная доля состоит почти исключительно из отделов, обрабатывающих зрительную информацию. Теменная занимается в основном функциями, связанными с движением, ориентацией, расчетами и определенными формами узнавания. Височная занимается звуком, восприятием речи (обычно только в левом полушарии) и некоторыми аспектами памяти. Лобная доля ведает самыми сложными из функций мозга: мышлением, формированием понятий и планированием. Кроме того, лобные доли играют важную роль в сознательном переживании эмоций.

Если разрезать мозг на половинки по средней линии, отделив полушария друг от друга, мы увидим, что под корой располагается сложное скопление модулей: вздутий, трубок и камер. Некоторые из них можно уподобить по размеру и форме орешкам, виноградинам или насекомым, но многие не похожи ни на какие привычные вещи. Каждый из модулей выполняет свою функцию или функции, и все модули связаны перекрещивающимися проводами аксонов. Большинство модулей окрашены в сероватый цвет, придаваемый им плотно упакованными телами нейронов. Однако связывающие их тяжи светлее, потому что покрыты оболочкой из белого вещества миелина, играющего роль изолятора, помогающего электрическим импульсам быстро распространяться по аксонам.


За исключением единственной структуры - эпифиза в глубине мозга, - каждый модуль мозга имеется у нас в двух экземплярах - по одному на полушарие. В этой книге о модулях всегда говорится в единственном числе, но на самом деле они всегда парные. В тех случаях, когда необходимо указать на различия между двумя модулями одной пары, отмечается, какой из них имеется в виду.


Самая заметная структура на внутренней поверхности каждой половинки разрезанного мозга - это изогнутая полоска белой ткани, образующей объемистую границу между складчатой корой и расположенной под ней системой модулей. Это мозолистое тело, соединяющее полушария друг с другом и играющее роль моста, по которому в обе стороны постоянно передается информация, так что обычно полушария работают как единое целое. Совокупность модулей, расположенных под мозолистым телом, называют лимбической системой. Эта система в эволюционном плане древнее коры, и ее иногда называют также «мозгом млекопитающих», исходя из представлений о том, что она впервые возникла у древнейших млекопитающих. Работа этой части мозга, как и еще более древних его частей, расположенных под ней, совершается бессознательно, но оказывает сильнейшее воздействие на наши ощущения: лимбическая система тесно связана с расположенной над ней осознающей корой и постоянно посылает туда информацию.

В лимбической системе рождаются эмоции, а также большинство из многочисленных потребностей и побуждений, которые заставляют нас вести себя тем или иным образом, помогая нам, по крайней мере обычно, увеличивать свои шансы на выживание. Но у модулей лимбической системы есть немало других функций. Например, таламус представляет собой нечто вроде ретрансляционной станции, распределяющей поступающую в нее информацию по соответствующим частям мозга для дальнейшей обработки. Под ним располагается гипоталамус, который вместе с гипофизом постоянно поправляет настройки нашего организма, поддерживая его в состоянии наилучшей приспособленности к окружающей среде. Гиппокамп - «морской конек» (сходство с которым можно заметить, только если посмотреть на этот орган в разрезе и напрячь воображение) - необходим для формирования долговременной памяти. В расположенной перед ним миндалине возникает и поддерживается чувство страха.


Еще ниже располагается ствол головного мозга. Это самая древняя часть мозга, возникшая более полумиллиарда лет назад и довольно похожая на весь головной мозг современных рептилий. В связи с этим ее часто называют «рептильным мозгом». Ствол образован нервами, идущими от тела через позвоночник и передающими информацию о разных частях организма в головной мозг. Скопления клеток в стволе определяют общий уровень настороженности организма и регулируют вегетативные процессы: дыхание, сердцебиение, давление крови и так далее.

Если посмотреть на любой участок мозга при большом увеличении, можно увидеть плотную сеть клеток. Большинство из них - глиальные клетки, сравнительно просто выглядящие структуры, основная функция которых состоит в склеивании всей конструкции и поддержании ее физической целостности. Глиальные клетки также играют определенную роль в усилении или синхронизации электрической активности в мозге: например, они могут усиливать боль, как при воспалении седалищного нерва, возбуждая нейроны, передающие болевые сигналы.

Клетки, непосредственно создающие активность мозга, - это нейроны (примерно десятая часть от общего числа клеток головного мозга), приспособленные для передачи друг другу электрических сигналов. Среди нейронов есть длинные и тонкие, посылающие единственный нитевидный отросток в дальние уголки организма, есть звездчатые, тянущиеся во все стороны, а есть несущие густо ветвящиеся венцы, напоминающие нелепо разросшиеся оленьи рога. Каждый нейрон связан с множеством - до десяти тысяч - других нейронов. Эта связь осуществляется через отростки двух типов: аксоны, по которым сигналы поступают от тела клетки, и дендриты, по которым клетка получает входящую информацию.

При еще большем увеличении можно увидеть крошечную щель, отделяющую каждый дендрит от соприкасающегося с ним аксона. Участки таких соприкосновений называют синапсами. Чтобы через синапс прошел электрический сигнал, аксон, по которому поступает этот сигнал, выделяет в синаптическую щель особые вещества - нейромедиаторы. Среди нейромедиаторов есть и делающие клетку, на которую они передают сигнал, менее активной, но есть и вызывающие ее возбуждение, так что возникающие в результате работы множества возбуждающих синапсов цепные реакции обеспечивают одновременную активацию миллионов связанных друг с другом клеток мозга.

Процессы, происходящие в мозге с клетками и молекулами, лежат в основе нашей психической жизни, и именно за счет манипуляций с такими процессами работают самые впечатляющие физические методы психотерапии. Так, антидепрессанты воздействуют на нейромедиаторы, обычно усиливая действие тех, которые относятся к группе аминов: серотонина, дофамина и норадреналина. Идущие сейчас исследования микроскопических реакций в мозге помогают разрабатывать препараты для борьбы с приобретенным слабоумием, болезнью Паркинсона и последствиями инсульта. Некоторые ученые полагают, что ключ к тайнам сознания кроется именно в таких реакциях или что его нужно искать на еще более глубоком уровне - в квантовых процессах, происходящих где-то в недрах крошечных клеток нашего мозга.

Каждое мгновение мозг реагирует на внешние стимулы небольшими вспышками новой активности, каждая из которых отличается характерной конфигурацией. Эта активность, в свою очередь, создает постоянно меняющуюся внутреннюю среду, на которую мозг также реагирует по-своему. В результате получается система с обратной связью, в которой происходят постоянные изменения.

Внутренняя среда мозга отчасти занята тем, что побуждает нас без конца искать новые стимулы и собирать информацию, особенно о событиях будущего. Сбор информации служит нам не только полезным руководством к действию, но и наградой: он вызывает в нейронах реакции, создающие у нас приятное чувство предвкушения9 . Эта жажда информации составляет одно из фундаментальных свойств мозга и проявляется в наших самых базовых реакциях. Даже у людей с полностью разрушенными участками мозга, ответственными за поддержание сознания, взгляд может скользить по окружающему помещению, задерживаясь на движущихся объектах и отслеживая их перемещения. Движения глаз запускаются стволом головного мозга и свидетельствуют о работе сознания не больше, чем движения цветка, поворачивающегося к солнцу. Но, даже зная об этом, трудно избавиться от тяжелого ощущения, когда за тобой следит человек, который, в сущности, уже мертв.

Обратные связи между мозгом и окружающей средой дают нам отличнейший механизм самозагрузки. Компьютерные модели нейронных сетей показывают, что даже простейшая из них может за непродолжительное время достигать поразительных уровней сложности, если запрограммировать ее на воспроизведение выгодных для выживания конфигураций и избавление от невыгодных. Сходным образом развивается активность мозга каждого индивида.

Этот процесс, иногда называемый нейродарвинизмом, гарантирует закрепление конфигураций активности мозга, вызывающих мысли (а через них и формы поведения), полезные для успешного существования нашего организма, и угасание тех, что ему не полезны. Данная система работает не жестко (подавляющее большинство возникающих у нас в мозге форм активности не имеет никакого отношения к выживанию), но в целом, судя по всему, именно так мозг обзаводится способностью осуществлять свои ключевые реакции.

Некоторые из необходимых для этого инструментов заложены на генетическом уровне. Отдельные паттерны активности мозга (даже довольно сложные, вроде механизмов использования языка) наследуются в такой высокой степени, что лишь исключительные аномалии среды могут приводить к нарушениям их развития. Формы активации мозга, сопровождающие, скажем, припоминание того или иного слова, обычно оказываются настолько сходными, например, у десятка испытуемых, что при наложении результатов сканирования работы их мозга можно по-прежнему отчетливо наблюдать общую конфигурацию активности. Именно поэтому исследователи, занимающиеся картированием мозга, могут уверенно говорить о карте работы человеческого мозга в целом, а не только об индивидуальных картах.

Это не значит, что мы мыслим одинаково. Благодаря бесконечно сложным взаимодействиям наследственности и среды на свете нет двух людей с совершенно одинаковым мозгом. Даже генетически идентичные однояйцевые близнецы (клоны одного организма) появляются на свет с разным мозгом, потому что малейших расхождений в среде развития между зародышами оказывается достаточно для возникновения различий в устройстве мозга. В результате кора больших полушарий у близнецов заметно отличается уже в момент рождения, и ее структурная изменчивость неизбежно приводит к различиям в работе мозга. Более того, в момент рождения однояйцевые близнецы отличаются строением мозга даже сильнее, чем впоследствии, что заставляет предположить более сильное влияние генов на поздних этапах развития по сравнению с ранними. В итоге поведение близнецов по мере взросления может становиться не менее, а даже более похожим.

В ходе эмбрионального развития головной мозг возникает из расширения на переднем конце нервной трубки, из которой образуется спинной мозг. Основные отделы головного мозга, в том числе кора больших полушарий, становятся видны не позднее семи недель после зачатия, а к моменту рождения головной мозг младенца содержит уже примерно столько же нейронов (около ста миллиардов), сколько их у взрослого человека.

Однако нейроны в мозге младенца незрелы. Многие аксоны еще не покрыты миелином - своеобразной изоляцией, помогающей передавать по ним сигналы, а связи между нейронами пока немногочисленны. Поэтому обширные области мозга новорожденного, особенно в коре больших полушарий, еще не функционируют. Томографические исследования головного мозга младенцев показывают, что самые активные его области связаны с рефлексами (ствол мозга), чувствительностью (таламус) и движениями (ядра мозжечка).

Среда материнской утробы оказывает существенное влияние на формирование связей в мозге младенца. Дети наркоманок нередко появляются на свет зависимыми от наркотиков, а дети, рождающиеся у матерей, во время беременности потреблявших много чеснока или карри, охотнее других увлекаются острой пищей. Судя по всему, их вкусы формируются под влиянием остаточных компонентов пищи, попадающих в материнскую кровь.

Жизнь в утробе матери дает наглядные примеры неразрывной взаимосвязи генов и среды. Например, у зародыша мужского пола имеются гены, на определенных этапах его развития вызывающие в материнском организме выработку целого каскада гормонов, в том числе тестостерона. Увеличение содержания этих гормонов влияет на мозг зародыша, задерживая развитие одних его частей и ускоряя развитие других. Результатом этих изменений становится мужской путь развития мозга, обеспечивающий формирование мужского полового поведения. Этот путь также приводит ко многим характерным различиям между полами, таким как превосходство девочек в изучении языка и мальчиков в решении пространственных задач. Если мужской зародыш не подвергнется еще в утробе соответствующему воздействию гормонов, мозг с высокой вероятностью разовьется по женской модели, а если воздействию мужской последовательности гормонов подвергнется зародыш женского пола - то по мужской.

Нейроны развивающегося мозга, будто играя в некую подвижную игру, соревнуются друг с другом в поисках команды других связанных друг с другом нейронов, стремясь к ней присоединиться. Каждая клетка должна найти свое место в общей схеме, а если это у нее не получается, она подвергается безжалостному удалению (прунингу), умирая в результате апоптоза (программируемой клеточной смерти). Апоптоз обеспечивает усиление и упорядочивание связей между сохраняющимися нейронами незрелого мозга и не дает ему в буквальном смысле переполниться собственными клетками. За этот процесс «отсечения всего лишнего», при всей его принципиальной важности, порой приходится платить. В числе связей, утрачиваемых в результате его работы, могут быть и такие, которые дают нам те или иные интуитивные навыки, называемые дарованиями. Например, эйдетизм (фотографическая память) вполне обычен среди маленьких детей, однако он обычно исчезает за годы прунинга нейронов. Возможно, неполным апоптозом объясняется и синестезия - «перекрестные» связи, соединяющие ощущения одного типа (например, восприятие голубого цвета) с ощущениями другого (например, восприятие звука определенной высоты), в результате чего одно ощущение автоматически вызывает другое. Апоптоз, который, напротив, выходит из-под контроля и разрушает слишком много связей, считают одной из причин умственной неполноценности, сопровождающей синдром Даунаи аутизм. Возможно, именно поэтому у людей с синдромом Дауна повышена вероятность развития болезни Альцгеймера.

Путь к сознанию

Головной мозг младенца содержит кое-что, чего нет в мозге взрослого человека. Например, в нем имеются связи между слуховой и зрительной зонами коры, а также между сетчаткой и той частью таламуса, в которую поступает информация о звуках. Эти связи, вероятно, и позволяют младенцам «видеть» звуки и «слышать» цвета. Иногда такие способности сохраняются у взрослых (синестезия). Младенцам свойственны бурные проявления эмоций, но те участки мозга, которые связаны у взрослых с сознательным переживанием эмоций, у новорожденных младенцев неактивны. Поэтому проявляемые ими эмоции могут быть бессознательными.

Выражение «бессознательные эмоции» может показаться парадоксальным: что такое эмоции, если не осознанные чувства? Но на самом деле сознательное переживание эмоций чем дальше, тем больше представляется лишь одним небольшим и иногда несущественным элементом системы механизмов выживания, работающих (даже у взрослых) преимущественно на бессознательном уровне.

Отсюда не следует, что травмы, полученные в раннем возрасте, вообще не имеют значения. Даже если бессознательные эмоции не вызывают осознанных ощущений, они вполне могут запечатлеваться в мозге не хуже, чем сознательные. Мы не помним ничего, что происходило с нами примерно до трех лет, потому что до этого времени гиппокамп (область мозга, связанная с формированием долговременной памяти) остается незрелым. Однако эмоциональные воспоминания могут храниться в миндалине - крошечной структуре в глубине мозга, по-видимому функционирующей уже у новорожденных21 . От того, как с ребенком обращаются в первые годы жизни с характерной для них потерей памяти, может зависеть даже то, как будут функционировать его гены. Гены крысят, которых хорошо кормят, работают иначе, чем гены их однояйцевых близнецов, о которых заботятся хуже, так что в мозге благополучных крысят происходят изменения, ведущие к уменьшению тревожности. Результаты исследования клеток мозга взрослых самоубийц, в детстве ставших жертвами жестокого обращения, заставляют предположить, что подобные явления свойственны и людям.

По мере взросления продолжается миелинизация аксонов в мозге младенца, и все больше участков мозга оказываются «в сети». Теменные доли коры начинают работать довольно рано, обеспечивая ребенка интуитивным осознанием фундаментальных пространственных свойств окружающего мира. Игра, в которой взрослый закрывает и открывает лицо, увлекает младенцев, чья теменная зона уже работает, потому что, как им известно, закрытое руками лицо не может исчезнуть, но те модули мозга, что однажды позволят им понять, почему, еще незрелы.

Лобные доли по-настоящему «запускаются» примерно в шестимесячном возрасте, благодаря чему у младенцев наблюдаются первые проблески когнитивных способностей. К году лобные доли получают управление над устремлениями лимбической системы. Если предложить годовалому ребенку две игрушки, он выберет одну из них, а не будет пытаться схватить обе. Примерно до года младенцы представляют собой, по выражению одного специалиста по возрастной психологии, «устройства, подобные роботам»: их внимание можно привлечь едва ли не любым зрительным стимулом. После этого возраста у них формируются собственные жизненные планы (отнюдь не всегда согласующиеся с планами окружающих).

Речевые зоны становятся активными на втором году жизни. Зона, ответственная за восприятие речи (зона Вернике), «выходит в сеть» примерно после двенадцати месяцев жизни, а еще примерно через восемнадцать месяцев к ней присоединяется зона, ответственная за способность говорить (зона Брока). Так что в жизни маленьких детей есть непродолжительный период, в течение которого они понимают больше, чем могут сказать. Связанные с этим затруднения, возможно, играют немалую роль в приступах «вредности», характерных для двухлетних детей.

Примерно в то же время, когда активизируются речевые зоны, начинается интенсивная миелинизация префронтальной коры лобных долей. В этот период у детей развивается самосознание: ребенок больше не тычет пальцем в свое отражение в зеркале. А если мазнуть ребенка цветной пудрой, когда он смотрит на себя в зеркало, он просто сотрет этот мазок с лица, а не станет пытаться стереть его с зеркала, как бывает в более раннем возрасте. Самосознание предполагает возникновение внутреннего исполнителя - то самое «я», которое, по словам многих, ощущается как нечто существующее в голове.

Созревание некоторых участков мозга занимает многие годы. Например, ретикулярная формация, играющая важную роль в поддержании внимания, полностью миелинизируется обычно только к периоду полового созревания или позднее. Именно поэтому дети препубертатного возраста отличаются невысокой продолжительностью концентрации внимания. Лобные доли оказываются полностью миелинизированы только у вполне взрослых людей. Эти части мозга отвечают за мышление, рассудок и подавление эмоций, и до их созревания люди в целом больше руководствуются чувствами и меньше - разумом. В связи с этим молодые взрослые эмоциональнее и импульсивнее людей старшего возраста, они сильнее склонны к неоправданному риску и совершению преступлений в состоянии аффекта.

Человеческий мозг пластичнее всего в младенчестве. Из мозга младенца можно удалить целое полушарие, и система связей оставшегося полушария перестроится так, чтобы взять на себя функции их обоих. Обычно ей удается научиться делать даже то, на что в норме способно только другое полушарие. Однако по мере взросления работа мозга распределяется все жестче и дифференцируется все сильнее. К тому времени, когда мы становимся взрослыми, ландшафты головного мозга каждого из нас оказываются настолько своеобразными, что невозможно найти двоих, кто совершенно одинаково смотрел бы на одно и то же. Например, совместный просмотр фильма может вызывать у человеческой пары совершенно разные конфигурации нейронной активности, потому что эти двое будут обращать внимание на разные стороны того, что они видят, и ассоциировать наблюдаемое с какими-то своими мыслями и воспоминаниями. Например, она будет гадать, когда же мытарства влюбленных подойдут к счастливому концу и можно будет поужинать, а он будет тем временем вспоминать бывшую подругу, похожую формой верхней губы на симпатичную героиню фильма.

Именно поэтому эксперименты, которые проводят для выяснения того, какие участки мозга за что отвечают, приходится основывать на выполнении узкоспециальных задач, отличающихся искусственной жесткостью условий. В связи с этим испытуемые, которым приходилось, например, два с лишним часа лежать в позитронно-эмиссионном томографе, не делая ничего, кроме поднимания пальца в ответ на определенный сигнал, вероятно, не раз задумывались, какие открытия можно сделать благодаря этому скучнейшему занятию.

Подобные незатейливые упражнения позволили ученым сделать поистине удивительные открытия. Например, опыты с подниманием пальца, проведенные Крисом Фритом и его коллегами из Университетского колледжа Лондона, позволили выяснить кое-что, до недавнего времени казавшееся одной из вечных тайн жизни: установить источник самостоятельного принятия решений. Исследователям удалось это сделать, разработав методику, позволившую регистрировать в мозге испытуемого несколько процессов, которые, как было известно из предшествующих исследований, проявляются в виде определенных конфигураций активности в известных областях мозга. В данном случае испытуемых просили двигать конкретным пальцем в ответ на поступающий определенный стимул. Выполнение этого задания, как и ожидалось, сопровождалось активностью в соматосенсорной коре (когда стимул был тактильный) и в моторной коре (области, управляющей движениями). Затем задание дополнили элементом, работу которого ученые и пытались локализовать в мозге: произвольной деятельностью. Теперь вместо того, чтобы говорить испытуемому, какой палец поднять, исследователи оставляли этот вопрос на его усмотрение, регистрировали активность мозга, сопровождающую выполнение задания, и выявляли ее отличия от активности, сопровождавшей поднимание заранее определенного пальца.

Разница была налицо: как только участники эксперимента начинали сами принимать решения, «мертвая» область мозга оживала. Элегантная и осторожная постановка эксперимента почти не оставляла сомнений в том, что обнаруженная область мозга и есть та его часть, которая позволяет людям совершать действия по собственной воле.

Но может ли установленная конфигурация активности мозга, задействованной в принятии решения, какой из пальцев поднимать, пролить свет на принятие решений в запутанном и бесконечно более сложном мире, лежащем за стенами нейробиологической лаборатории?

Косвенно - может. Область мозга, в которой была обнаружена зона собственной воли, - это префронтальная кора, часть лобных долей коры больших полушарий, расположенная преимущественно под лобными костями черепа. Повреждения этой области нередко приводят к характерным нарушениям поведения, в том числе к масштабной потере способности к самостоятельному принятию решений. Классический пример - случай Финеаса Гейджа, железнодорожного рабочего, жившего в XIX веке и потерявшего немалую часть переднего мозга, когда в результате взрыва его голову насквозь пробил стальной стержень. Гейдж выжил, но превратился из целеустремленного, трудолюбивого человека в пьяницу и бродягу. Джон Харлоу, его лечащий врач, писал, что после перенесенной травмы Гейдж без конца изобретал планы различных предприятий, но каждый бросал, едва приступив к нему, и казался «по своим интеллектуальным способностям и поведению ребенком, вместе с тем отличающимся брутальной пылкостью сильного мужчины». Дамам советовали избегать его общества. Характерной особенностью нового состояния Гейджа была его полная неспособность контролировать свои поступки.

Но если способность к самостоятельному принятию решений заключена в особом фрагменте ткани мозга, значит, тем, кому ее не хватает, вероятно, просто не повезло, и их можно считать не более чем жертвами нарушения работы одного из модулей мозга. И разумно ли тогда осуждать тех из наших современников, кто ведет себя подобно Финеасу Гейджу? Стоит ли нам быть строгими к тем, кто не может преодолеть свою наркозависимость? Следует ли наказывать преступников-рецидивистов?

Новейшие открытия, касающиеся работы мозга, возобновляют давний спор об этих проблемах. Некоторые формы антиобщественного поведения определенно связаны с повреждениями мозга или нарушениями его работы. Вероятно, следует признать, что будущее скорее за манипуляциями с мозгом таких личностей, чем за практикуемыми сейчас наказаниями или попытками изменить их поведение путем убеждения или принуждения. Если вас передергивает от самой мысли об этом, задумайтесь, что мы делаем с такими людьми сейчас. Что хуже: искусственное изменение психики или длительный тюремный срок?

Как увидеть психику

В прилагаемом к одной из марок магнитно-резонансных томографов видеоролике, демонстрирующем правила техники безопасности, показан человек, который подходит к аппарату с металлическим гаечным ключом в руке. Когда он оказывается в паре шагов от томографа, рука, держащая ключ, внезапно вытягивается вперед: зажатый в ней ключ указывает прямо на притягивающий его прибор. Следующие несколько секунд напоминают эпизод из мультфильма: человек борется за ключ, как будто в другую сторону его тянет незримый противник. Человек приближается к аппарату, и ключ в его руке трепещет, как флаг в аэродинамической трубе, пока не начинает выскальзывать из стиснутых пальцев, устремляясь к входному отверстию томографа. Человек хватает ключ обеими руками и отклоняется назад, но явно не может его удерживать. Инструмент вылетает из рук, попадая в трубу аппарата, где врезается в специально поставленный кирпич. Сила удара столь велика, что кирпич рассыпается на кусочки.

Эти кадры должны показать, как опасно подносить металлические предметы к магнитно-резонансному томографу. По сути, этот аппарат представляет собой огромный кольцевой магнит. Создаваемая им сила притяжения примерно в 140 тысяч раз больше силы земного тяготения. Нетрудно представить, к каким последствиям приведет, например, попытка сканирования с помощью такого прибора организма пациента с кардиостимулятором. Однако если на теле человека и внутри него нет ничего металлического, магнитно-резонансная томография (МРТ), судя по всему, совершенно безопасна: вредных для организма последствий применения этого метода не отмечено.

Сканирование мозга


Магнитно-резонансная томография (МРТ , иногда называется ядерным магнитным резонансным сканированием - ЯМР ) - основана на регулировании атомов в тканях тела электромагнитными волнами и дополнительным воздействием на них радиочастотных волн. Это вызывает выделение атомами энергии, специфически различающейся в зависимости от типа ткани. Сложная система программного обеспечения компьютерной томографии преобразует эту информацию в трехмерную картину любой части тела. Результат такого сканирования выглядит как рентгенограмма.


Диффузионная тензорная визуализация - разновидность МРТ, основанная на измерениях интенсивности диффузии воды в волокнистых тканях. Она особенно подходит для выявления связей между различными участками мозга и, скорее всего, принесет много пользы при выявлении взаимодействия модулей мозга.


Функциональная магнитно-резонансная томография (ФМРТ) позволяет дополнять схему принципиального строения мозга картиной участков наибольшей активности мозга. Для возбуждения нейронов нужны глюкоза и кислород, поступающие с кровью. Активация того или иного участка мозга сопровождается усилением притока этих веществ, и ФМРТ позволяет наблюдать те участки, куда кислорода поступает особенно много. Новейшие аппараты для ФМРТ позволяют сканировать мозг с частотой четыре раза в секунду. Чтобы отреагировать на внешний стимул, мозгу требуется примерно полсекунды, поэтому данный метод позволяет наблюдать вспышки и затухания активности, возникающие в определенных частях мозга в ответ на стимулы или в процессе выполнения заданий. Метод ФМРТ оказался самым информативным из всех современных, но он необычайно дорогой, и исследователям, занимающимся картированием мозга, нередко приходится ждать очереди, деля аппарат с врачами.


Позитронно-эмиссионная томография (ПЭТ) позволяет делать примерно то же, что и ФМРТ, то есть отслеживать по потреблению «топлива» особенно интенсивно работающие участ ки мозга. Картины, получаемые с помощью ПЭТ, весьма отчетливы, но не достигают столь же высокого разрешения, как с помощью ФМРТ. Еще один существенный недостаток метода состоит в том, что он требует введения испытуемому в кровь радиоактивного маркера. Доза радиоактивности, требуемая для одноразового сканирования, ничтожна, но чтобы не подвергать здоровье добровольцев риску, им обычно запрещается проходить больше одного сеанса сканирования в год.


Ближняя инфракрасная спектроскопия (БИКС) также дает возможность получать изображения, основанные на измерениях количества топлива, сжигаемого в определенные моменты времени разными частями мозга. Этот метод работает за счет облучения мозга слабыми инфракрасными лучами и отслеживания изменений количества света, отражаемого теми или иными участками. БИКС дешевле ФМРТ и, в отличие от ПЭТ, не предполагает использования радиоактивных веществ. Пока он не позволяет получать отчетливые картины происходящего в самой глубине мозга.


Электроэнцефалография (ЭЭГ) основана на отслеживании волн электрической активности мозга, создаваемых ритмичным возбуждением нейронов. Эти волны претерпевают закономерные изменения, отражающие текущий характер активности мозга. Регистрация таких волн осуществляется с помощью электродов, закрепляемых на поверхности головы. Новейшие разновидности ЭЭГ позволяют считывать показания десятков расположенных в разных точках датчиков и сравнивать их, складывая единую картину изменений возникающей в мозге активности. При картировании работы мозга с помощью ЭЭГ часто используются так называемые вызванные потенциалы - регистрируемые пики электрической активности (потенциалы), возникающие в ответ на определенные стимулы, такие как слово или прикосновение.


Магнитоэнцефалография (МЭГ) похожа на ЭЭГ тем, что также основана на регистрации сигналов, поступающих от ритмично возбуждающихся нейронов, но отличается тем, что здесь регистрируются не электрические колебания, а связанные с ними слабые магнитные импульсы. Развитие МЭГ по-прежнему затруднено рядом еще не решенных проблем, таких как слабые и легко перекрываемые сигналы, но потенциал этого метода огромен, потому что он работает быстрее других методов сканирования мозга и позволяет картировать изменения активности мозга гораздо точнее, чем ФМРТ или ПЭТ.

Высокоэффективные методы сканирования головного мозга, такие как ФМРТ, делают возможным его исследование способами, о которых несколько десятилетий назад никто и не мечтал. Однако картирование мозга началось задолго до изобретения высокотехнологичных приборов для сканирования.

Две основные речевые зоны, по-прежнему входящие в число важнейших ориентиров на карте коры больших полушарий, были обнаружены Брока и Вернике более ста лет назад. Ученым удалось сделать это, исследуя мозг пациентов, страдающих расстройствами речи. Они заметили, что речевые нарушения определенного рода сопряжены с повреждениями одних и тех же участков мозга. Зону, дающую нам способность к членораздельной речи, Брока открыл, препарируя трупы людей, при жизни (обычно после перенесенного инсульта) не способных внятно произносить слова. Классический случай, исследованный Брока, касался человека по имени Тан.

Называли его так потому, что он произносил это слово, когда его спрашивали, как его зовут. То же самое он говорил, когда у него спрашивали, когда он родился, где живет или что ему приготовить на ужин. Он вообще ничего не говорил, кроме «Тан», и при этом прекрасно понимал речь других.

Брока пришлось дождаться смерти Тана, чтобы заглянуть в его мозг и узнать, какой участок был травмирован. Современная аппаратура позволяет нейробиологам находить поврежденные участки нервной ткани еще при жизни пациентов, что значительно ускоряет исследование функций, выполняемых соответствующими структурами в здоровом мозге.

Еще один проверенный временем метод основан на непосредственной стимуляции различных участков мозга и отслеживании эффектов такой стимуляции. Именно этот метод использовали нейрохирурги из Калифорнии, отметившие, что оперируемые ими пациенты-эпилептики начинают веселиться при стимуляции определенных участков мозга, и обнаружившие часть модуля, отвечающего за чувство юмора.

Одним из первых непосредственную стимуляцию мозга стал применять в 50-х годах XX века канадский нейрохирург Уайлдер Пенфилд, картировавший обширные участки коры больших полушарий, прикладывая электроды к разным точкам мозга сотен больных эпилепсией. В ходе этих опытов Пенфилд показал, что вся поверхность нашего тела представлена (как будто нарисована) на поверхности мозга: участок, связанный с локтем, располагается рядом с участком, связанным с предплечьем, тот, в свою очередь, располагается рядом с участком, связанным с плечом, и так далее. Но еще больше Пенфилд прославился открытием того, что стимуляция определенных участков височных долей может вызывать в сознании нечто похожее на яркие воспоминания из детства или обрывки давно забытых мелодий.

Большинство пациентов говорило, что эти воспоминания были похожи на сон, но при этом совершенно отчетливы. «Мне казалось... что я стою в дверях своей школы», - рассказывал молодой человек (21 год). «Я слышал, как мать говорит по телефону и приглашает мою тетю навестить нас вечером, - рассказывал другой. - У нас в гостях были мои племянник и племянница... Они собирались домой, надевали пальто и шапки... это было в столовой... моя мать говорила с ними. Она торопилась - очень спешила».

В то время наблюдения Пенфилда были истолкованы в пользу того предположения, что воспоминания хранятся в мозге в виде отдельных связок (энграмм ) и их можно в любой момент вызвать. С тех пор выяснилось, что все не так просто. Долговременная память распределена по всему мозгу и закодирована в тех же участках, где исходно возникали соответствующие ощущения. Например, детские воспоминания о том, как в один солнечный день мы ели мороженое за городом, где пели птицы, хранятся в нескольких сенсорных областях: вкус мороженого - во «вкусовых» областях мозга, ощущение кожей солнечного тепла - в соматосенсорной коре, звуки птичьего пения - в слуховой коре, вид деревьев - в зрительной коре, и так далее. Если исходно мы ощущали все это вместе, то, вызывая в сознании одну из многих составляющих воспоминания, мы, как правило, можем вызвать и остальные, воссоздавая «полное» воспоминание из набора таких составляющих. Пенфилд, по-видимому, стимулировал только один сенсорный аспект памяти, а наблюдал ответ многих.

В свою очередь, область, которую стимулировали у смеявшейся пациентки, как выяснилось, представляет собой лишь один из узлов гораздо более обширного модуля, укорененного в самых простых отделах мозга. Эти маленькие участки, отвечающие, казалось бы, за строго определенные функции, оказываются лишь верхушками глубоко сидящих нейронных конгломератов - вершинами айсберга психики.

Возможно также, что участки, мозга, активирующиеся при выполнении мысленного задания, не сами ответственны за его решение, а просто передают стимулы к действительно связанным с данной задачей участкам. Подобную возможность иллюстрирует анекдот об ученом, который утверждал, что лягушки «слышат ногами». Когда от него потребовали доказательств, он продемонстрировал лягушку, которую приучил прыгать по команде. Показав, как она прыгает, он отрезал ей ноги, после чего вновь стал произносить команду. Лягушка не двинулась с места. «Вот видите! - заключил ученый. - Она меня больше не слышит!»

Еще одна проблема состоит в том, что часть наблюдаемой активности мозга может быть просто отражением интерференции систем, случайными выбросами. Один исследователь обнаружил это, проводя эксперименты с использованием ФМРТ для изучения нейронной активности, задействованной в социальных взаимодействиях. В одном из таких экспериментов исследователь поместил в сканер не живого человека, а пассивный «объект тестирования» - мертвую рыбу. Эта рыба - большая красивая семга - была куплена в местном магазине бесспорно мертвой и никак не реагировала (что неудивительно) на демонстрацию ей «серии фотографий, изображающих людей в различных ситуациях». Однако при изучении томограмм выяснилось, что участок, соответствующий крошечному мозгу рыбы, при этом как будто возбуждался, и это якобы свидетельствовало о том, что рыба все-таки задумывалась над предъявленными ей фотографиями.

Исследователи, занимающиеся визуализацией мозга, прилагают массу усилий, чтобы избегать подобных ловушек, но иногда им это не удается. Есть мнение, что в этой науке пока очень много от золотой лихорадки: исследователи слишком часто стремятся «застолбить» новые выводы и слишком редко пытаются воспроизводить чужие результаты. И все же почва под ногами ученых постепенно твердеет. Разработка стандартных протоколов сканирования, резко сокращающих возможность получения ложных результатов, и общая методология постановки экспериментов, - все это находится под строгим контролем. «Новые френологи» убеждены, что их открытия, в отличие от открытий Франца Галля, выдержат проверку временем.

«Реки» мозга

Нервные клетки разных типов выделяют разные нейромедиаторы. Информация распространяется в мозге по проводящим путям - цепочкам нейронов, выделяющими вещества и с их помощью возбуждающими или подавляющими активность друг друга. Любой из нейромедиаторов довольно широко распространен в мозге, но работает лишь в определенных его участках и может оказывать разное действие в зависимости от того, где он выделяется. Нейромедиаторы бывают возбуждающими (способствуют возбуждению нейронов, на которые они действуют) и тормозными (подавляют активность нейронов). Науке известны сотни нейромедиаторов, но самые важные из них следующие.

Серотонин - нейромедиатор, действие которого усиливает препарат «Прозак». Серотонин иногда называют «веществом хорошего настроения». Он и в самом деле оказывает существенное влияние на настроение: повышенная концентрация серотонина (или чувствительность к нему) сопряжена с оптимизмом и спокойствием. Кроме того, серотонин влияет на сон, чувствительность к боли, аппетит и давление крови.

Ацетилхолин управляет активностью в участках мозга, связанных с концентрацией внимания, обучением и памятью. У людей, страдающих болезнью Альцгеймера, его уровень в коре больших полушарий обычно понижен.

Норадреналин - преимущественно возбуждающий нейромедиатор, способствующий повышению уровня физической и умственной активности и оказывающий бодрящее действие. Основной центр выработки норадреналина находится в голубом пятне - одном из нескольких участков мозга, претендующих на то, чтобы в просторечии именоваться «центром удовольствия».

Глутамат - основной возбуждающий нейромедиатор головного мозга, обеспечивающий формирование связей между нейронами, работа которых лежит в основе обучения и долговременной памяти.

Энкефалины и эндорфины - эндогенные опиоиды, которые, подобно наркотикам, облегчают восприятие боли, снижают стресс и способствуют возникновению ощущения легкости и безмятежности. Кроме того, они подавляют некоторые физиологические процессы, такие как дыхание, и могут вызывать физиологическую зависимость.

Окситоцин помогает «размывать» границы «я», создавая ощущение единства с другими и тем самым формируя теплые и доверительные отношения между людьми, особенно между влюбленными и между матерью и младенцем. Он в огромных количествах выделяется у женщин при родах и у людей обоих полов во время оргазма.

Эволюция

В анатомии человеческого мозга записана история его эволюции. Эта эволюция началась в воде, когда рыбы обзавелись нервной трубкой, по которой нервные волокна передавали сигналы от разных частей тела к общему центру управления. Сначала на спинной стороне переднего конца трубки возник нарост, а затем вошедшие в его состав нейроны стали разделяться на специализированные модули. Некоторые из них выработали чувствительность к различным веществам и легли в основу обонятельных долей мозга.

Другие стали чувствительными к свету и образовали глаза. Эти структуры были связаны с мозжечком - сгустком нервной ткани, управлявшим движениями. Из данного набора впоследствии сформировался мозг рептилий, работавший бессознательно, автоматически.

Его основные части сохранились и у нас и составляют нижний ярус трехъярусной конструкции мозга. Позже к этой основе пристроились новые модули: таламус, помогающий одновременно пользоваться зрением, слухом и обонянием, миндалина и гиппокамп, образовавшие первичную систему памяти, а также гипоталамус, позволившие организму реагировать на большее число стимулов.

Так появился мозг млекопитающих, называемый также лимбической системой. В нем возникают эмоции, но их сознательное восприятие (которые мы и представляем себе, например, как «гнев» или «страх») происходит лишь тогда, когда лимбическая система передает информацию в кору больших полушарий, развившуюся у наших предков еще позже.

Кора больших полушарий возникла в ходе эволюции млекопитающих благодаря функционированию чувствительных модулей, запустивших развитие тонкого слоя клеток. Сложная форма позволила сформировать множество связей между ними, лишь незначительно увеличив его объем. Этот слой стал корой больших полушарий, работа которой лежит в основе сознания.

У тех млекопитающих, от которых произошли люди, в ходе эволюции кора постепенно увеличивалась, сместив мозжечок вниз, где он и сейчас. У австралопитека африканского, жившего три миллиона лет назад, мозг имел почти такую же форму, как наш, но был втрое меньше. Около полутора миллионов лет назад мозг гоминид начал стремительно увеличиваться. Кости черепа разрослись вверх, сделав голову куполообразной с высоким уплощенным лбом, отличающим нас от других приматов. Сильнее всего при этом увеличились области, отвечающие за мышление, планирование, упорядочивание и общение. Для объяснения этого «большого скачка» выдвигался ряд теорий. Судя по всему, его причиной было сочетание нескольких факторов.

Двуногость

Гоминиды встали на две ноги около четырех миллионов лет назад. Это могло произойти оттого, что они жили в болотах и по берегам водоемов, где им нужно было ходить по дну без помощи рук. Другое объяснение состоит в том, что они жили в саванне, где передвижение на двух ногах позволяло видеть дальше.

Двуногость освободила руки, что, по-видимому, способствовало совершенствованию навыков изготовления орудий, способствовавших, в свою очередь, развитию сноровки. Полагают, что двуногость также могла привести к смещению вниз гортани, что позволило эффективнее управлять дыханием и издавать членораздельные звуки, без которых не могла бы развиться речь.

В результате возникли проблемы с деторождением

(см. Продленное младенчество).

Водный образ жизни

Возможно, что на каком-то этапе предки человека вели водный (полуводный) образ жизни, благодаря чему они лишились шерсти и приобрели нос с направленными вниз ноздрями, многочисленные сальные железы и ряд других черт, характерных для современных людей. В соответствии с этой теорией развитию мозга способствовало питание водными организмами, содержащими много жирных кислот.

Орудия труда

Более 2,5 миллиона лет назад наши предки уже активно пользовались орудиями труда. Процесс изготовления орудий, по-видимому, способствовал координированию работы зрения и рук. Владение руками позволило мозгу использовать их для жестикуляции, помогавшей общаться на расстоянии и способствовавшей охоте и коммуникации, что увеличивало сплоченность групп. Жестикуляция считается предшественницей речи, и область в левом полушарии, первоначально ответственная за жестикуляцию, впоследствии развилась в речевой центр, свойственный лишь людям.

Охота

Умение изготавливать и использовать орудия труда и коммуникация помогали в охоте, которая сделала рацион наших предков богатым белками. Это позволило удовлетворять энергетические потребности увеличивающегося мозга. Возникла система с положительной обратной связью: чем успешнее древние люди изготавливали орудия и общались, тем крупнее становился их мозг. Это вело к дальнейшему совершенствованию орудийной деятельности и коммуникации.

Продленное младенчество

Разросшийся мозг и двуногость означали, что младенцы должны были появляться на свет на более ранних этапах развития, чем у большинства приматов. Если бы беременность длилась дольше, голова младенца становилась бы слишком большой, и матери для прохождения ребенка через родовые пути требовался бы столь широкий таз, что она не смогла бы бегать.

Беспомощность новорожденных означала, что их матери сильнее зависели от поддержки других членов группы. В результате эволюционное преимущество получали те, чей мозг лучше всего выполнял социальные функции. Кроме того, продленное детство означало, что у детей стало больше времени на освоение и отработку взрослых форм поведения. Теперь мозг мог дольше оставаться пластичным, а значит открытым для развития.

Язык

Полагают, что именно язык стал тем ключевым фактором, благодаря которому около 80 тысяч лет назад довольно неожиданно у нас появилась культура. Язык послужил основой для абстрактного мышления, которое, в свою очередь, способствовало рефлексии и умению представлять себе будущее и далекие миры, а значит и умению планировать и изобретать.

Группы

Люди жили довольно большими группами, и связанная с этим потребность понимать друг друга, общаться и манипулировать друг другом создавала давление отбора, которое поощряло развитие у человека навыков общения, языка и абстрактного мышления.

Индивидуальный взгляд каждого из нас определяется генами и формированием мозга под влиянием всего жизненного опыта. Например, мозг музыкантов даже на анатомическом уровне отличаются от мозга других людей, и когда музыкант исполняет или слышит музыку, его мозг работает иначе, чем мозг немузыканта. Гак, в ходе одного исследования выяснилось, что часть мозга, реагирующая на звуки, у музыкантов в среднем на 130 % больше, чем у немузыкантов, и что объем этой части мозга увеличивается у них под непосредственным влиянием опыта исполнения п восприятия музыки. Причем, судя по всему, своеобразный “взгляд” музыкантов на мир не ограничивается повышенной чувствительностью к музыке. Похоже, что они также отличаются повышенной чувствительностью к эмоциям, по крайней мере в некоторых аспектах. Например, они легче улавливают интонации голоса собеседника или нотки отчаяния в крике младенца, и все это делает их жизнь в среднем эмоционально насыщеннее жизни немузыкантов.
Необычные индивидуальные особенности восприятия вещей могут возникать также из “причуд” развития мозга. Например, Альберт Эйнштейн имел очень необычный мозг, чем, возможно, объясняются его поразительные открытия, касающиеся пространства и времени. В 1955 году, когда Эйнштейн умер, мозг великого физика был препарирован и его фрагменты распределены среди ученых. Идея состояла в том, что эти кусочки нервной ткани, возможно, позволят лучше разобраться в природе гения. Как теперь выясняется, идея была совершенно правильной, но в То время большинство исследователей понятия не имели, что именно нужно искать, и не располагали оборудованием, необходимым для таких поисков. Поэтому многие из фрагментов мозга оказались надолго забытыми. Полвека спустя канадские исследователи из Университета им. Макмастера в Онтарио вновь собрали эти фрагменты и реконструировали мозг Эйнштейна. Они выяснили, что он отличался от мозга большинства людей несколькими особенностями. Самая существенная заключалась в том, что две борозды теменной коры слились, образовав один большой участок ткани там. где обычно имеется два отдельных участка. У большинства людей одна из этих областей задействована преимущественно в пространственном восприятии, а другая (в числе прочего) — в математических расчетах. Вполне возможно, что слияние двух областей в мозге Эйнштейна позволило ему вывести из своего видения пространства и времени формулу Е =мс2 — самое известное в истории уравнение.
Животные, которых выращивают в условиях, где они совершенно не сталкиваются с какой-нибудь разновидностью элементов видимой картины мира, скажем с горизонтальными линиями, с трудом распознают эти элементы впоследствии или вообще неспособны их распознавать. У них не хватает клеток, в норме выполняющих эту функцию, потому что без стимуляции на определенном этапе развития таким клеткам сложно сформироваться.
Нечто подобное происходит со всеми нашими способностями. Про Джеймса Кука рассказывают, что он встретил группу островитян, которые, казалось, не видели огромного силуэта его корабля, стоявшего на якоре у берега. Они никогда в жизни не встречали таких гигантских предметов и поэтому были лишены понятийного аппарата, необходимого для их восприятия. Это легенда, но она отражает истину: мы воспринимаем не общую для всех нас картину мира, а только изображающую его конструкцию, выстраиваемую у нас в голове на основе тех элементов окружающей действительности, которые лучше всего регистрируются соответствующими модулями нашего мозга.
Большинство различии в строении и работе мозга разных людей слишком тонки, чтобы их легко было выявлять с помощью методов пейровизуализации, но исключительно необычная обработка сенсорной информации, свойственная синестетикам, проявляется при сканировании мозга вполне отчетливо.

Индивидуальный взгляд каждого из нас определяется генами и формированием
В последнее время исследователи получают все больше данных, указывающих на то, что синестезия у взрослых людей — это, по-видимому, не простое отклонение, а отражение исходного устройства нашей системы сенсорного восприятия, которая работает сначала на подкорковом уровне, подавляемом у большинства людей в процессе обучения. Согласно этим представлениям, любой стимул, будь то свет, вещество или звук, в принципе может вызывать мультисенсорные ощущения, что он и делает в нашей лимбической системе. В младенчестве мы воспринимаем окружающее именно так, но по мере развития коры больших полушарий она, по сути, перетягивает на себя поток поступающей информации, безжалостно ее категоризируя и посылая сигналы о каждом типе стимулов лишь в одну определенную сенсорную систему. В результате связи между частями мозга, чувствительными к разным типам стимулов (например, к звукам или к свету), постепенно выходят из строя за невостребованностью, и нейроны коры каждой сенсорной зоны все сильнее привыкают представлять получаемую ими информацию только в одной модальности. Поэтому обычно мозг взрослых разделяет воспринимаемое на несколько общеизвестных чувств6.
Если так, то свойственная нам строгая категоризация информации, приводящая к се распределению по разным сенсорным системам, возникла, по-видимому, потому, что она позволила нам ускорить распознавание воспринимаемых стимулов. Если бы оса воспринималась нами не только как жужжащее полосатое существо, но и как нечто, обладающее вкусом и запахом, нам могло бы потребоваться больше времени на то, чтобы сообразить, что ее лучше поскорее прихлопнуть.

ОДНОСТОРОННЕЕ ПРОСТРАНСТВЕННОЕ ИГНОРИРОВАНИЕ
Половина тела пациента оказалась парализована в результате инсульта, но пациент, судя по всему, не сознает этого. Вот какой диалог происходит между ним и его лечащим врачом (приводится в сокращении):
ВРАЧ. Не могли бы вы похлопать в ладоши?
(Пациент поднимает правую руку и двигает ей, будто хлопает, а затем кладет обратно на кой-ку. Улыбается, выглядит удовлетворенным.) Врач. Это была только правая рука. Не могли бы вы поднять также левую руку и сделать то же самое обеими руками?
Пациент. Левую руку? А... Она немного онемела сегодня. Это все мой артрит.
ВРАЧ. НО не могли бы вы все-таки попытаться поднять ее?
(Пауза. Пациент не двигается.)
ВРАЧ. Не могли бы вы попытаться поднять левую руку?
ПАЦИЕНТ. Так ведь я уже сделал это. Разве вы не видели?
ВРАЧ. Нет, не видел. Вы правда двигали рукой? ПАЦИЕНТ. Ну конечно двигал. Вы, наверное, не смотрели.
ВРАЧ. А можно попросить вас еще раз поднять ее?
(Пациент не двигается.)
ВРАЧ. ВЫ ею сейчас двигаете?
П А ц и Е н т. Разумеется, двигаю.
Врач (показывает па кисть левой руки, лежащую на койке). Ну а это что такое?
ПАЦИЕНТ (смотрит). А, это. Это не моя рука. Должно быть, это рука кого-то другого.

Это странное нежелание признавать очевидное связано с хорошо известным расстройством —так называемой анозогнозией, “непризнанием болезни”. Анозогнозия развивается в результате повреждений области мозга, связанной с вниманием к собственному телу. Этот синдром довольно часто встречается у пациентов, которые перенесли инсульт, вызвавший паралич левой стороны тела. Дело в том, что область, повреждения которой приводят к анозогнозии, располагается очень близко к моторной коре правого полушария, и инсульт (или какое-либо другое повреждение), поражающий моторную кору этого полушария (а значит, левую половину тела), нередко захватывает и область, связанную с анозогнозией. Иногда это странное игнорирование половины тела может и не сопровождаться параличом. В таких случаях пациенты просто ведут себя так, будто все, что находится слева от вертикальной оси тела, пере-стало существовать. Они забывают двигать левыми конечностями. При ходьбе у них волочится левая нога. Они причесывают волосы только на одной стороне головы. Иногда (в той мере, в какой это возможно) они даже забывают одевать половину своего тела. Это расстройство представляет собой одну из форм так называемого одностороннего пространственного игнорирования. Одностороннее пространственное игнорирование может касаться только левой половины тела, 
но может и распространяться па псе, что расположено в одной половине поля зрения, обычно также левой. Пациенты, страдающие этой формой игнорирования, судя по всему, не видят или не осознают ничего, что находится по левую сторону от них. Они оставляют еду нетронутой на левой половине тарелки, не замечают людей, которые подходят к ним слева, поворачиваются только направо. Если их просят нарисовать часы, они обычно изображают искаженный циферблат, в котором цифры располагаются только справа, а левая половина не прорисована.
Эта “однобокость” обычно распространяется даже на воображение. Если попросить пациента закрыть глаза и представить себе путь по знакомой улице, он сможет по памяти описать здания, стоящие справа, но даже не упомянет те, что стоят на левой стороне. Единственный способ добиться от такого пациента, чтобы он описал другую сторону улицы, состоит в том, чтобы попросить его мысленно развернуться и пойти в обратную сторону18. Люди, страдающие этим расстройством, как будто ничего не видят слева от себя, но это нечто иное, чем обычная слепота. Та часть их мозга, которая отвечает исключительно за поступающую от глаз зрительную информацию (первичная зрительная кора), остается у них неповрежденной, и сканирование мозга показывает, что она обрабатывает зрительную информацию совершенно нормально. Слепота возникает на более высоком уровне обработки информации, на котором она превращается из простых сигналов в мысленные представления.
Люди, страдающие этим расстройством, не думают: “Я не вижу ничего, что находится слева”. Все, что находится слева, для них просто не существует, и думать об этом они не могут. Человек с “нормальной” левосторонней слепотой может компенсировать слепоту половины поля зрения, поворачивая голову и тело так, чтобы видеть находившиеся по левую руку предметы, но при одностороннем пространственном игнорировании человек никогда не чувствует потребности так делать. Такие люди обычно начинают читать каждую строчку с середины страницы, и продолжают это делать, даже если становится ясно, что текст, читаемый таким способом, превращается в бессмыслицу. Им просто не приходит в голову, что слева вообще есть на что смотреть.

Одностороннее пространственное игнорирование легче понять, если рассматривать его как нарушение внимания — неспособность мозга сознательно воспринимать часть окружающего мира. Нас не может огорчать нехватка того, чего мы не осознаем. Видимо, именно поэтому пациенты так легкомысленно пренебрегают своим расстройством. В очень невысокой степени пространственное игнорирование свойственно всем. В поле зрения любого здорового человека есть слепое пятно, соответствующее участку сетчатки, где из глаза выходит зрительный нерв. В этом месте нет светочувствительных нейронов, поэтому попадающий туда свет в принципе не может регистрироваться мозгом. В итоге на нашем поле зрения имеется довольно большое слепое пятно, угловой диаметр которого составляет 5-6 градусов. Когда мы смотрим на что-либо двумя глазами, слепое пятно одного из них перекрываются с областью, видимой для другого. Но если закрыть один глаз, то недалеко от середины поля зрения возникает участок, в пределах которого мы ничего не видим.
+ +
В этом можно убедиться, посмотрев одним глазом па один из плюсов, напечатанных выше. Если, глядя правым глазом на левый плюс, расположить книгу на расстоянии вытянутой руки, а затем постепенно приближать ее к себе, настанет момент, когда правый плюс исчезнет. Однако это не создает у нас сознательного ощущения частичной слепоты. Наше поле зрения кажется нам сплошным, включающим всю страницу, просто второго плюса на ней как будто нет.
Фокусники иногда используют знания о слепом пятне, чтобы обманывать с его помощью зрителей. На самом деле такие трюки работают только прямо перед носом, потому что на большем расстоянии слепое пятно слишком легко компенсируется за счет другого глаза, чтобы на его месте можно было что-то спрятать. Кроме того, фокусники мастерски умеют отвлекать внимание зрителей от того, что нужно скрыть, вызывая у них своего рода временное пространственное игнорирование.
Некоторые формы пространственного игнорирования возникают из-за повреждений теменной доли, где располагаются наши внутренние карты собственного тела и окружающего мира. Результатом таких повреждений могут быть своего рода концептуальные ампутации. Другие формы этого недуга связаны с нарушениями концентрации внимания и вызываются повреждениями лобных долей, поясной коры (расположенной внутри глубокой щели, разделяющей полушария) и отвечающих за управление движениями участков базальных ганглиев. Пространственное игнорирование может быть связано с так называемым ориентированием — аспектом концентрации внимания, выражающимся в том, что мы машинально поворачиваемся в направлении привлекающего наше внимание стимула. Как и многие другие бессознательные процессы, ориентирование контролируется преимущественно правым полушарием. Специализация правого полушария на ориентировании определяется, в частности, его способностью обращать внимание на правую или на левую часть поля зрения. В связи с этим повреждения левого полушария обычно не вызывают одностороннего игнорирования, связанного с ориентированием. Левое же полушарие, по-видимому, обращает внимание исключительно на правую часть поля зрения, поэтому повреждения правого полушария могут приводить к тому, что человек начинает игнорировать все, что происходит по левую сторону. В этом, по-видимому, состоит одна из причин того, что люди с правополушарными травмами гораздо чаще страдают односторонним пространственным игнорированием, чем люди с левополушарными травмами.

Крайняя форма анозогнозии проявляется в непризнании собственной полной слепоты. Это расстройство называют синдромом Антона — Бабинского. Пациенты, страдающие им, ничего не видят, но, судя по всему, живут в полностью воображаемом визуальном пространстве.
На другом конце спектра подобных расстройств располагаются легкие формы игнорирования, в той или иной степени свойственные многим из нас. Рассеянный профессор, не замечающий, что на нем носки разного цвета, муж-трудоголик, однажды обнаруживающий, вернувшись домой, что жена от него ушла, безответственный должник, как будто не замечающий растущую гору счетов: все это примеры сенсорного игнорирования, возможно, имеющего неврологическую основу.
Точно так же, как склонность воспринимать скорее формы, чем цвета, может быть связана с избытком нейронов, чувствительных к формам, и недопонимать, когда мы “перебарщиваем” с повторением каких-либо действий. Обе эти способности нередко не наблюдаются у людей, получивших повреждения лобных долей.
Повреждения данной части префронтальной коры приводят к нарушениям способности следить за своими успехами и учиться на собственных ошибках. Они также могут вызывать нарушения рабочей
статном чувствительных к цветам, рассеянность профессора может быть связана с недостатком нейронов в области мозга, связанной с заботой о своем теле, и избытком в области, связанной с решением абстрактных задач. У трудоголика также может быть недос таток каких-то нейронов или нейромедиатора (возможно, окситоцина), обеспечивающего стимуляцию области мозга, ответственной за привязанность к дому и семье. У человека, погрязшего в долгах, может быть понижена активность лобных долей, где, возможно, также не хватает нейронов. Особенности поведения этих людей напрямую связаны с особенностями их восприятия.
Если неоднократно напоминать им, такие люди обычно начинают обращать внимание на то, чем обычно пренебрегают, точно так же как людей, страдающих слабыми формами левополушарного игнорирования, можно приучить обращать внимание на “пустую” сторону поля зрения, неоднократно давая им задания из серии “похлопайте в ладоши”. Выражение “войдите в мое положение” есть нечто большее, чем фигура речи. Но без неоднократных напоминаний профессор едва ли начнет обращать больше внимания на свои носки, чем требуется, чтобы их снимать и надевать, и трудоголик едва ли станет уделять жене больше внимания, чем потребуется, чтобы уговорить ее вернуться. Большинству из нас не свойственно прилагать ощутимые усилия к изменению своего взгляда на мир, и с течением времени свойственное нам игнорирование нередко лишь закрепляется. Наши представления о воспринимаемом мире могут быть гораздо более адекватными, чем у людей, страдающих синдромом Антона — Бабинского. Но в чем-то все мы похожи на них.

Относится к «О системной нейрофизиологии»

Комментарии к книге Риты Картер «Как работает мозг».


Рита Картер - журналистка, пишущая на темы психофизиологии для популярных журналов, написавшая несколько книг и выступающая с популярными лекциями, т.е. она представляет свои обобщения доступных ей фактов исследования в виде научно-популярного изложения. Примерно такое пытался проделывать Российский журналист Александр Никонов, более широко и менее научно.

У Риты Картер тоже много странных фраз, далеких от понимания сути явлений, вроде той, что диссонировала в самом начале книги: " Активностью мозга управляют токи, химические вещества и загадочные колебания . Не исключено даже, что на нее влияют квантовые эффекты, искажающие ход времени . ". Формат популярного изложения как бы дает моральное право быть нарочито неточным и даже шутливо-абсурдным, но часто за этим скрывается и далекое от реальности понимание.

К сожалению и ожидаемо, что ничего нового по отношению к ранее опубликованному в плане обобщения, Р.Картер в книге не сказала, хотя сделала много новых и достаточно нелепых утверждений. Поэтому комментарии в большей степени являются работой над ошибками.

Постараюсь не придираться к несущественным мелочам, касаясь только важного в понимании механизмов психи ки.

Отсюда я вывожу «парадокс Брокса»: мы склонны верить в дуализм души и тела, даже если понимаем его ошибочность. Это относится и к нейробиологам. Рассмотрим следующий мысленный эксперимент, предложенный философом Дереком Парфитом. Представьте себе, что в каком-то не столь отдаленном будущем вам доведется совершать командировки на Марс. Средством передвижения будет служить телепортация. Сканирующее устройство регистрирует состояние вашего организма с точностью до атомов и переводит эту информацию в цифровой формат для радиотрансляци и. Ваше тело разрушается, но на Марсе оно незамедлительно воссоздается в соответствии с расшифрованными радиосигналами.
Полученная копия точно соответствует оригиналу: и тело, и мозг, и воспоминания, и весь характер активности мозга - все как было . Это будете снова вы . Сомневаться в этом не приходится. Большинство нейробиологов говорит, что охотно согласились бы на такую процедуру. Стоит ли им беспокоиться о разрушении и восстановлении собственного тела? Как настоящие материалисты, они знают, что их «я» (секулярный аналог того, что религия называет душой) есть не что иное , как совокупность физических ощущений и состояний, связанных друг с другом работой центральной нервной системы. А теперь представьте следующее. В устройстве для телепортации происходит сбой. Ваше тело сканируется, и информация о нем передается на Марс, но оригинал при этом не уничтожается. Хуже того, сбой в работе сканера вызывает у вас смертельную болезнь сердца. Жить вам остается всего несколько дней. На чьем месте вы предпочли бы оказаться: копии на Марсе или умирающего оригинала на Земле?
Для последовательного материалиста это должно быть безразлично. Во втором примере уничтожение оригинала просто оказалось отсрочено, только и всего. Личный путь человека, прибывшего на Марс, в обоих случаях будет одинаков. При этом сохраняется полная психологическая преемственность, как при пробуждении ото сна, которое мы ежеутренне переживаем. И все же второй пример мало кого оставляет равнодушным. Он лишает участников эксперимента спокойной уверенности в оправданности подобной телепортации (а значит, и в своем материализме), приводя их к мысли: «Если в настоящий момент моя копия - это не я, то...»

Сразу замечу, что такой парадокс впервые был описан вовсе не Дереком Парфитом , а одним из советских фантастов, Г.Гуревичем , опубликовавший живописания дублирования личности еще в 1965 году, что напрямую и повлияло на мои собственные попытки понять суть происходящего при этом и, в конце-концов, вылилось в статьи про Эго , непосредственно основывающиеся на представлениях об организации психи ки любых животных, обладающих таковой. В статьях по ссылке несоразмерно более глубоко и обоснованно рассмотрен этот вопрос.

Внутренняя среда мозга отчасти занята тем, что побуждает нас без конца искать новые стимулы и собирать информацию, особенно о событиях будущего. Сбор информации служит нам не только полезным руководством к действию, но и наградой: он вызывает в нейрон ах реакции, создающие у нас приятное чувство предвкушения9. Эта жажда информации составляет одно из фундаментальных свойств мозга и проявляется в наших самых базовых реакциях . Даже у людей с полностью разрушенными участками мозга, ответственными за поддержание сознания, взгляд может скользить по окружающему помещению, задерживаясь на движущихся объектах и отслеживая их перемещения.

К сожалению, несмотря на преемственные работы по исследованию "ориентировочного рефлекса" , его внешне наблюдаемые эффекты, все еще, интерпретируются как угодно, но не по сути механизмов. Сначала были описания И.Павлова о том, как новое и значим ое привлекает внимание, потом фундаментальный труд О.Виноградовой в книге Гиппокамп, позже последовали работы Е.Соколова по роли детект оров нового в привлечении внимания, затем - работы А.Иваницкого. Все это как бы не замечается (судя по всему вообще не известно зарубежным исследователям), не обобщается в целостную картину функциональности сознания и его роли , а допускаются недоопределенные сентенции насчет "жажды информации".

Компьютерные модели нейрон ных сетей показывают, что даже простейшая из них может за непродолжительное время достигать поразительных уровней сложности, если запрограммировать ее на воспроизведение выгодных для выживания конфигураций и избавление от невыгодных. Сходным образом развивается активность мозга каждого индивида.
Этот процесс, иногда называемый нейродарвинизмом, гарантирует закрепление конфигураций активности мозга, вызывающих мысли (а через них и формы поведения) , полезные для успешного существования нашего организма, и угасание тех, что ему не полезны.

Здесь можно понять так, что формы поведения как бы всегда являются следствием мыслей. При этом никак не определено, что же понимается под словом мысль в психофизиологических механизмах (в самом конце книги сделано очень лаконичное и бесполезное определение). На самом деле мысли (совокупность мыслительных автоматизмов и творческих навыков использования мыслительных прогно стических картин) - не находятся в какой-то определенной зависимой последовательности от поведенческих автоматизмов и произвольн ых действий . Все это возможно представить, только на основе хорошо согласованной модели системы взаимодействий в адаптивн ой функциональности мозга. Такой модели в данной книге (как, впрочем, и любой другой на сегодня), не представлено ни в каком, даже упрощенном виде.

Отдельные паттерны активности мозга (даже довольно сложные, вроде механизмов использования языка) наследуются в такой высокой степени, что лишь исключительные аномалии среды могут приводить к нарушениям их развития. Формы активации мозга, сопровождающие, скажем, припоминание того или иного слова, обычно оказываются настолько сходными, например, у десятка испытуемых, что при наложении результатов сканирования работы их мозга можно по-прежнему отчетливо наблюдать общую конфигурацию активности . Именно поэтому исследователи, занимающиеся картированием мозга, могут уверенно говорить о карте работы человеческого мозга в целом, а не только об индивидуальных картах.

К сожалению, не приведены источники такой информации. Напротив, есть данные (Н.Бехтеревой) о том, что активности, соответствующие в одном опыте какому-то слову, в других условиях находятся совершенно в другом месте, что дало повод говорить о "гибких звеньях" и не позволило реализовать техническую телепатию. Эмоциональный контекст восприятия существенно разносит локализации связанных с ними распознавателей .

Понимание того, что вовлекается в субъективированный образ , что может представлять символьный эквивалент такого образа (не только вербальны й) говорит о невозможности осуществления телепатии при том, что некоторые из активностей в схожих условиях могут быть локализованы примерно однотипно у разных людей. При всем этом Р.Картер противоречиво пишет:

Это не значит, что мы мыслим одинаково. Благодаря бесконечно сложным взаимодействиям наследственности и среды на свете нет двух людей с совершенно одинаковым мозгом. Даже генетически идентичные однояйцевые близнецы (клоны одного организма) появляются на свет с разным мозгом, потому что малейших расхождений в среде развития между зародышами оказывается достаточно для возникновения различий в устройстве мозга. В результате кора больших полушарий у близнецов заметно отличается уже в момент рождения, и ее структурная изменчивость неизбежно приводит к различиям в работе мозга.

Младенцам свойственны бурные проявления эмоций, но те участки мозга, которые связаны у взрослых с сознательным переживанием эмоций, у новорожденных младенцев неактивны.
Поэтому проявляемые ими эмоции могут быть бессознательными.
Выражение «бессознательные эмоции» может показаться парадоксальным: что такое эмоции, если не осознанные чувства ? Но на самом деле сознательное переживание эмоций чем дальше, тем больше представляется лишь одним небольшим и иногда несущественным элементом системы механизмов выживания, работающих (даже у взрослых) преимущественно на бессознательном уровне.

Здесь и далее упускается функциональность "эмоций", то зачем и для чего возникли разные стили реагирования, способные очень быстро переключаться . При этом исследование функциональности эмоциональных контекст ов восприятия и поведения никак не назовешь недостаточными .

Даже если бессознательные эмоции не вызывают осознанных ощущений, они вполне могут запечатлеваться в мозге не хуже, чем сознательные. Мы не помним ничего, что происходило с нами примерно до трех лет, потому что до этого времени гиппокамп (область мозга, связанная с формированием долговременной памяти) остается незрелым. Однако эмоциональные воспоминания могут храниться в миндалине-крошечной структуре в глубине мозга, по-видимому функционирующей уже у новорожденных.

В данном случае речь идет о формировании так называемой "системы значим ости" - уровней примитивов распознавателей различных контекст ов понимания - основы личного отношения (см. ).

Опыты с подниманием пальца, проведенные Крисом Фритом и его коллегами из Университетского колледжа Лондона, позволили выяснить кое-что, до недавнего времени казавшееся одной из вечных тайн жизни: установить источник самостоятельного принятия решений. Исследователям удалось это сделать, разработав методику, позволившую регистрировать в мозге испытуемого несколько процессов, которые, как было известно из предшествующих исследований, проявляются в виде определенных конфигураций активности в известных областях мозга. В данном случае испытуемых просили двигать конкретным пальцем в ответ на поступающий определенный стимул. Выполнение этого задания, как и ожидалось, сопровождалось активностью в соматосенсорной коре (когда стимул был тактильный) и в моторной коре (области, управляющей движениями). Затем задание дополнили элементом, работу которого ученые и пытались локализовать в мозге: произвольн ой деятельностью. Теперь вместо того, чтобы говорить испытуемому, какой палец поднять, исследователи оставляли этот вопрос на его усмотрение, регистрировали активность мозга, сопровождающую выполнение задания, и выявляли ее отличия от активности, сопровождавшей поднимание заранее определенного пальца.
Разница была налицо: как только участники эксперимента начинали сами принимать решения, «мертвая» область мозга оживала. Элегантная и осторожная постановка эксперимента почти не оставляла сомнений в том, что обнаруженная область мозга и есть та его часть, которая позволяет людям совершать действия по собственной воле.

Но может ли установленная конфигурация активности мозга, задействованной в принятии решения, какой из пальцев поднимать, пролить свет на принятие решений в запутанном и бесконечно более сложном мире, лежащем за стенами нейробиологической лаборатории?
Косвенно- может. Область мозга, в которой была обнаружена зона собственной воли, - это префронтальная кора, часть лобных долей коры больших полушарий, расположенная преимущественно под лобными костями черепа. Повреждения этой области нередко приводят к характерным нарушениям поведения, в том числе к масштабной потере способности к самостоятельному принятию решений. Классический пример- случай Финеаса Гейджа, железнодорожного рабочего, жившего в XIX веке и потерявшего немалую часть переднего мозга, когда в результате взрыва его голову насквозь пробил стальной стержень. Гейдж выжил, но превратился из целеустремленного, трудолюбивого человека в пьяницу и бродягу. Джон Харлоу, его лечащий врач, писал, что после перенесенной травмы Гейдж без конца изобретал планы различных предприятий, но каждый бросал, едва приступив к нему, и казался «по своим интеллектуальным способностям и поведению ребенком, вместе с тем отличающимся брутальной пылкостью сильного мужчины». Дамам советовали избегать его общества. Характерной особенностью нового состояния Гейджа была его полная неспособность контролировать свои поступки.

Здесь размываются понятия: "произвольн ое движение" и "волевое усилие" (далее в книге есть рассуждения о "свободе воле" в том же духе), что провоцируется недоопределенностью этих понятий . Для того, чтобы выполнить чью-то команду не обязательно осознавать это, достаточно быть готовым выполнить эту команду, особенно, если это - не первое такое выполнение (уже было осмысл ено что нужно сделать, осталось только автоматически, не раздумывая выполнять). В первые такие попытки могла проявляться произвольн ость движения, исходящая из лобных долей, но учли ли эту разницу экспериментаторы? Было ли замечено, что самое первое движение под команду было осознаваемо, не активировались ли те зоны, что потом оказывались активными при произвольн ом выборе? Об этом ничего не сказано, а это - очень важно. Скорее всего, этот момент был просто упущен. Про то, насколько поверхностно склонен интерпретировать данные Крис Фрит было показано в комментариях: Комментарии к книге Крис Фрит: Мозг и душа.

Произвольн ость или осознанность поведения характеризует "следящую функциональность" сознания : выбор одного из уже наработанных вариантов выполнения действия в данных условиях (перепрыгнуть лужу, а не пройти через нее, что сделал бы пьяный). Волевое же усилие - преодоление старого стереотипа творчески найденным новым, но пока не испытанным на практике. Старый стереотип в данных условиях прогно зирует на основе прежнего опыта нежелательность последствий (почему и пришлось задуматься, чтобы найти новый вариант (в крайнем случае, перенять его у другой особи), и, чтобы попробовать действовать по новому, необходимо преодолеть негативную блокировку старого стереотипа (ребенок увидел как взрослый выхватывает печеную картошку из горячей золы и ему нужно преодолеть страх чтобы сунуть руку в золу). Вот что такое "волевое усилие", см . Воля .

Все эти моменты просто остаются без внимания в книге Р.Картер, а пытаться что-то сформулировать с помощью недоопределенных понятий - значит незаметно для себя оказаться на бытовом уровне понимания. Соответственно, возникают абсурдные выводы:

Но если способность к самостоятельному принятию решений заключена в особом фрагменте ткани мозга, значит, тем, кому ее не хватает, вероятно, просто не повезло, и их можно считать не более чем жертвами нарушения работы одного из модулей мозга. ...Стоит ли нам быть строгими к тем, кто не может преодолеть свою наркозависимость? Следует ли наказывать преступниковрецидивистов?...Вероятно, следует признать, что будущее скорее за манипуляциями с мозгом таких личностей, чем за практикуемыми сейчас наказаниями или попытками изменить их поведение путем убеждения или принуждения.

Как верно сказано: ...исследователи слишком часто стремятся «застолбить» новые выводы и слишком редко пытаются воспроизводить чужие результаты.

Информация, поступающая в одно полушарие, почти сразу становится доступна и второму, и реагируют полушария настолько слаженно, что складывается впечатление единства восприятия и единого потока сознания. Но стоит отделить полушария друг от друга, и разница между ними становится очевидной. У каждого полушария зрелого мозга свои сильные и слабые стороны, собственные методы обработки информации и особенные способности. Им соответствуют две разные области нашего сознания - по сути, чуть ли не две личности , заключенные в одной черепной коробке.

Почему только две?.. Если удалять определенные участки мозга одного из полушарий, будут обнаруживаться и более частные особенности, определяемые функциональностью удаленного участка. И тогда можно говорить о множестве личностей. То, что разделение половинок мозга обедняет каждую функциональностью, развитой в другой половинке, не дает основания даже условно выделять именно две личности. Но, в полном соответствии с фразой о поспешности выводов, выводы об асимметрии половинок мозга, связанные с приданием этой асимметрии неоправданно большого знания порождает многие неадекватн ые выводы. Нет ничего удивительного в локализованной специализации участков мозга, а две половинки просто обрабатывают двойные каналы восприятия и мышечного реагирования, которые совместно координируются, что дает определенные преимущества. При этом, различная нагрузка навыков на эти двойные каналы развивает различия особенностей реагирования на уровне отдельных участков. А различия эмоциональных (и более утонченных) стилей реагирования развивают множество обособленных этим часто независимыми контекст ами "личностей", см. Личность. Множественность личностей в голове и социуме .

Но, оказывается:

Благодаря левому полушарию головного мозга человек достиг поразительных успехов. Наше левое полушарие расчетливо, общительно и способно изобретать и осуществлять сложные планы....работы по нейровизуализации подтверждают, что два полушария нашего мозга действительно функционируют по-разному, и характер различий между ними столь жестко “запрограммирован”, что в обычных условиях структуры, отвечающие за определенные навыки, всегда развиваются в одной и той же половине мозга.
Более того, общая схема работы мозга более или менее соответствует распространенным представлениям. Левое полушарие занимается анализом и логикой, отличается точностью и следит за временем. Правое характеризуется мечтательностью, оно обрабатывает информацию обобщенно, не разбивая на составляющие, и больше задействовано в чувственном восприятии, чем в абстрактных когнитивных функциях.

И т.п. попсовка... Опять же, отсутствие общей модели функциональности не позволяет говорить более однозначно.

В то же время Р.Картег пишет совершенно противоположное и на этот раз верное:

Есть ли во всем этом хоть какой-нибудь смысл ? Специалисты по головному мозгу убеждены, что идея жесткого разделения функций между полушариями - не более чем миф. Они даже придумали специальный термин для массового увлечения этим предметом - “дихотомания”....Наш головной мозг и в самом деле изумительно сложен, и в связи с постоянным взаимодействием его полушарий крайне трудно разбираться в том, что и где в нем происходит.
Даже те наши способности, которые наиболее явно сосредоточены в одной половине мозга, а именно речевые, локализованы нетипично примерно у 5 % людей и в течение жизни нередко \"сдвигаются вправо”. Кроме того, мозг весьма пластичен, и на характер связей в нем может влиять множество факторов среды....Какую функцию нашего мозга ни возьми, почти все они связаны с одним полушарием в какой-то степени сильнее, чем с другим (!!!) . Что именно лежит в основе такой специализации, не вполне понятно, но, судя по всему, поступающая в мозг информация расходится по нескольким параллельным путям, на каждом из которых она обрабатывается несколько по-разному.

Узнавание лиц не требует мышлени я: как и все прочие правополушарные функции, оно просто осуществляется, и все. Пациенты, лишившиеся участка правого полушария, ответственного за эту способность, могут узнавать своих знакомых, лишь сознательно запоминая их отличительные черты, а затем выискивая эти черты в лицах людей.

Распознавание вообще чего угодно не требует осознания (а не мышлени я) . Распознаватель - основной элемент структуры нейросети и иерархия распознавателей развивается, начиная от примитивов восприятия первичных зон к распознавателям более сложных сочетаний признаков восприятия - в ассоциативных зонах. Это касается обоих полушарий, хотя локализация отдельных распознавателей, конечно же, может быть разная в полушариях. К сожалению, даже на уровне понимания общей функциональности нейрон а и нейросети до сих пор есть разногласия у исследователей (например, у Ю.Александрова ), и тогда что вообще могут говорить исследователи, не имеющие адекватн ого понимания даже наиболее общей функциональности нейрон а?...

В некоторых случаях метод “терапевтической беседы” действительно полезен, но, по-видимому, не потому, что дает людям возможность высвободить эмоции , а скорее потому, что помогает вывести эмоции на такой уровень коры головного мозга, где они могут быть подвергнуты сознательной обработке. Одна из самых успешных разновидностей психологической терапии - так называемая когнитивно-поведенческая терапия, в которой по определению задействована левополушарная активность. Говоря и думая о своих эмоциях, мы можем научиться управлять ими, сделать так, чтобы они перестали переполнять нас. С другой стороны, если просто позволять эмоциям изливаться , пока они не охватят нас целиком, нам может стать еще больнее, если, конечно, эти эмоции причиняют нам боль. Например, когда психотерапевт, пытающийся помочь человеку, страдающему посттравматическим расстройством, просто заставляет пациента рассказывать о вызвавшем расстройство опыте, это может только усугубить проблему, усиливая ужасные воспоминания и связанные с ними страхи7-8. Однако если человеку помогают заменить негативные воспоминания позитивными мыслями, это вполне может облегчить его страдания.

Еще один образец непонимания функциональности эмоциональных контекст ов или стилей поведения. О том, что на самом деле обеспечивают "эмоции" уже говорилось выше. Здесь же еще путаница с сознательно закрепляемой оценкой тех или иных происшествий с участием оценивающего, что не имеет отношения к эмоциональным контекст ам, но затрагивает систему значим ости, ассоциирующуюся с результатами поведения - в виде негативных или позитивных оценок случившемуся. Р.Картер не избежала поверхностного, бытового (в понятиях эмпирическ ой психологии ) описания заезженных примеров и утверждений.

В глубине мозга располагается группа модулей, называемых лимбической системой. Эта система играет в работе мозга центральную роль, задавая потребности, желания, эмоции и настроения, управляющие поведением . Наше сознательное мышлени е всего лишь трактует и корректирует деятельность жизненно необходимых сил, возникающих в недрах бессознательного, и в тех случаях, когда сознательные процессы и эмоции влекут нас в разных направлениях, организация нейрон ных сетей мозга может обеспечивать победу эмоций над рассудком.

Утверждение интересно тем, что сделано без малейшей конкретизации, а что же такое сознание, какова его функция, как эта функция и чем обеспечивается. Ну как можно делать подобные утверждения, не зная того, о чем говоришь?...Пусть это сказано словами Питера Чедуики, но они вынесены в начало темы.

А вот если роль сознания понимается, то и столь абсурдных утверждений не сделаешь . Именно сознание и формирует то, что потом реализуется как поведенческие стереотипы, выполняющиеся затем уже без участия сознания, а лимбическая система в этом играет свою, конечно важную роль придания субъективного смысл а (значим ости), но ее нельзя выделять как главную, а сознанию определить роль некоего побочного эффекта.

Главная функция головного мозга состоит в поддержании жизни и репродуктивных функций организма .
Все остальные трюки нашего мозга, такие как способность наслаждаться музыкой, влюбляться или создавать единую теор ию Вселенной, возникают на основе этого важнейшего стремления. Поэтому не так уж странно, что значительная доля структур и функций мозга предназначена для обеспечения постоянной работы других частей тела, требуемой для поиска пищи, половых партнеров, укрытий и других жизненно важных вещей.

Тогда чем высшие животные отличаются от виноградной улитки? У улитки, в самом деле, главная функция головного мозга состоит в поддержании жизни и репродуктивных функций организма. У высших животных мозг заточен для поведенческой адаптивн ости к новым условиям, при которых старое поведение может приводить к нежелательным результатам. Именно этой цели следует функция сознания, обеспечивая привлечение внимания (ориентировочный рефлекс) к наиболее актуальному в данный момент из всех выполняющихся цепочек поведенческих автоматизмов.
Мозг делает эго с помощью сложной системы, действующей по принципу кнута и пряника. Ее функционирование включает три основных этапа. Во-первых, в ответ па соответствующий стимул мозг создает побуждение, требующее удовлетворения. Например, если стимулом служит падение уровня глюкозы в крови, то побуждением будет голод, а если стимул будет половым, то в роли побуждения выступит половое влечение . Стимулы более сложные, такие как социальная изоляция или отрыв от знакомого окружения, могут вызывать не столь легко определимые влечения, например стремление к социализации или тоску по дому. Какую бы форму они ни принимали, нередко они сопровождаются ощущением “пустоты” .
Эта пустота может напоминать пустоту в буквальном смысл е, как в случае “пустого” желудка, а может быть чем-то не столь отчетливым, как в случае чувства душевной опустошенности. Так или иначе, функция этого чувства одна - побудить нас к действиям .

Вот такой прямолинейно-вульгарный вывод:) поддержка социализации - тоже потребность потому, что чувство пустоты похоже на голод! Но этот "голод" имеет совершенно иную природу, см. Социализация . А "потребности", определяемые разбалансом гомеостаза образуют мотивации лишь самого начального уровня, см. Гомеостаз и Система значим ости .

Действие, вызываемое первым этапом (например, прием пищи, секс, возвращение домой или общение), вознаграждается положительным ощущением удовольствия. Заметьте, что вознаграждается прежде всего действие, а не просто еда, половой акт или нахождение дома. Когда в кровь поступают питательные вещества, эго поддерживает в нас жизнь, но не дает такого же удовольствия, как приготовление, сервировка, пережевывание и глотание пищи. Именно поэтому многие жизненно важные функции обрастают всевозможными ритуалами .

Опять утверждение сделано без понимания того как именно организуется поведенческая адаптивн ость , . В результате - абсурдный вывод.

Все эти психи ческие и поведенческие ритуалы, подобно тикам у пациентов, страдающих синдромом Туретта, представляют собой фрагменты ранее полученных навыков. Но в данном случае в основе таких действий лежат не обрывки личных воспоминаний, а врожденные инстинкты . Инстинктивная склонность к чистоте, к постоянной проверке окружающей обстановки на предмет обнаружения чего-либо неправильного, стремление к порядку и равновесию - все это функции, необходимые для выживания. У людей, страдающих ОКР, они просто отрываются от системы выживания и принимают форму самостоятельных, неуместных и непропорционально усиленных привычек.

Почему сделан такой вывод - неясно. Вот просто Р.Картер взяла и сказала это, и не важно, что такое "инстинкты" и в какой мере могут проявляться наследуемые предрасположенности, см. Наследование признаков . Какой смысл пытаться что-то объяснить, прибегая с довольно глубокой детализации, если вдруг в самом важном месте делается такой вот скоропостижный вывод из ниоткуда?..

Хвостатое ядро соединено со скорлупой и в ходе развития зародыша формируется как единая с ним структура. Главное различие между ними состоит в том, что скорлупа связана преимущественно с премоторной корой, а хвостатое ядро связано с лобными долями, где осуществляются высшие когнитивные функции: мышлени е, оценивание и планирование. Хвостатое ядро здорового человека присматривает за некоторыми сторонами машинального мышлени я, точно гак же как скорлупа контролирует машинальные движения. Именно хвостатое ядро машинально заставляет нас мыть руки, когда они испачканы , напоминает, что нужно проверить, заперта ли дверь, когда мы выходим из дома, и предупреждает обо всем, что не в порядке, обращая на это наше внимание.

Опять непонятно каким образом взялся такой вывод. Типа хвостатое ядро выполняет роль гомункулуса? И не важно, что существуют наработанные автоматизмы выполнения определенных действий, которые актуализуются в определенном эмоциональном контекст е пусковым стимулом. Имеется ли в виду отслеживающая функция сознания, что требует привлечения внимания именно к мытью рук как наиболее актуальному (максимум новизны и значим ости) из всего происходящего? Вымыть руки можно совершенно не осознавая этого. А можно осознать это действие. И есть совершенно определенные условия, когда фокус сознания не следует за звеньями цепи текущего автоматизма, а когда она отслеживается: наличие новых условий в важной ситуации, требующее выбора направления ветвления цепи по одной из ранее наработанных продолжений. Об этих основополагающих для адаптивн ости условиях осознания ничего не сказано, а типа именно хвостатое ядро машинально заставляет нас мыть руки, когда они испачканы и вроде как неважно насколько рутинно это действие и требует ли осознания.

Хвостатое ядро проделывает все это, активируя конкретную область лобной доли - небольшой участок орбитальной коры (расположенной прямо над глазом части лобной доли). Именно эта область активируется у нас в мозге всякий раз, когда мы сталкиваемся с чем-нибудь неожиданным .

Вот! Но, кроме этого упускаются множество других механизмов реализации "ориентировочного рефлекса" . А если нет неожиданного (нового), то не возникает такой активации, но руки мы все равно вымоем.

Это была реакция, осуществляемая встроенным в мозг механизмом обнаружения ошибок.

А вот это - ничем не обоснованный, произвольн ый вывод. Дело вовсе не в ошибках, а в новых условиях выполнения привычного:

Когда же обезьяны привыкали время от времени получать при синем свете соленое питье вместо обычного сладкого, такая реакция больше не наблюдалась.

Аутизмом называют психи ческое расстройство, имеющее сильную наследственную составляющую и характеризующееся аномалиями социального и коммуникативного развития, узостью интересов, склонностью к монотонной деятельности и ограниченностью воображения. Мальчики в четыре раза чаще девочек страдают аутизмом и в девять раз чаще страдают синдромом Аспергера (“чистой” разновидностью аутизма, не сопряженной с другими патологиями).
Теперь я берусь показать, что аутизм и синдром Аспергера есть не что иное , как крайние проявления мужского типа мозга.

Ранее "типы мозга" рассматривались по признакам, выявленным Отделением экспериментальной психологии

Кембриджского университета (т.е. эмпирическ ими психологами, не имеющими системной модели функционирования психи ки). Эти "типы", как и любые другие попытки типологизации психологов, носят выраженный субъективный характер (то, на что обратили внимание сами психологи) и грешат некорректностью методолог ии, о чем уже говорилось: Эмпирическ ая психология , Карл Густав Юнг , Наука психология . На основе этого делается утверждение:

...я утверждаю, что для мужчин и для женщин, судя по всему, характерны разные когнитивные стили . ...Разумеется, указанные различия между полами могут быть связаны либо с различиями социальных ролей , либо с разной биологической предрасположенностью, либо с тем и с другим. Я склонен думать, что подобные психологические различия хотя бы отчасти объясняются связанными с полом биологическими особенностями развития мозга , которые, в свою очередь, определяются генетическими и гормональными различиями полов .

Это - осторожное, предположительное утверждение (гипотез а) о том, что, возможно, мозг представителей разного пола, кроме особенностей, формируемых средой, воспитанием и личной склонностью (определяемой, опять же средой и ролью в обществе) имеет еще и неследственно-биологические особенности, которые проявляются вот в таких очень ярких отличительных признаках (что делают мужины лучше, а что - женщины). Это предположение не обосновано строго, оно имеет эвристический характер. Но если подойти к этому более системно то возникают очень серьезные сомнения в том, что наследуемые признаки могут оказывать столь выраженное влияние в социальной специфике и специфике навыков личного исследования (в чем, по сути, и проявляются найденные различия) и вот почему: Наследование признаков .

В любом случае нельзя использовать гипотез у эмпирическ ого психолога Саймон Бэрон-Коэна в качестве аксиом атики для последующих выводов. Но журналистка Р.Картер это делает: я берусь показать, что аутизм и синдром Аспергера есть не что иное , как крайние проявления мужского типа мозга.

Дети, страдающие аутизмом, показывают лучшие результаты, чем другие дети того же возраста, при прохождении тестов со спрятанными фигурами, более успешное решение которых среди здоровых испытуемых характерно для представителей мужского пола. При этом аутисты хуже здоровых детей справляются с тестами на социальные когнитивные способности, особенно если в этих тестах требуется приписывать другим людям то или иное психи ческое состояние (такие задания, в свою очередь, легче даются здоровым испытуемым женского пола, чем мужского).
Я полагаю, что это не случайно и что эти различия могут определяться связанными с полом процессами развития нервной системы.

Перечисленное, в случае отсутствия явной психопатологии, соответствует для девочек - более глубоко пройденно й социализации , а для мальчиков - более глубоко развитым навыкам исследования окружающего физического мира при иной специфике социализации . Все перечисленное относится к высшим, ассоциативным зонам мозга и функциональности сознания, что очень далеко от наследуемых факторов, так, что адаптивн ость личности способна совершенно непредсказуемо, в зависимости от целей, изменить это далеко за рамки, определяемые наследованием.

Неоднократно высказывалось предположение, что тестостерон может оказывать на развитие мозга существенное влияние, приводящее к тому, что уже у новорожденных можно наблюдать отчетливые половые различия в функциях мозга. По некоторым данным, новорожденные девочки дольше мальчиков фокусируют внимание на социальных стимулах, таких как лица и голоса, в то время как новорожденные мальчики сильнее девочек интересуются пространственными стимулами, такими как подвижные игрушки.

Совершенно естественно, что, имея различия в строении тела и социальной роли, девочки обращают внимание на другие вещи, чем мальчики, что формирует различные навыки. Тестостерон (как вообще любая специфика гормонального баланса на уровне мозга обеспечивает преимущество определенного стиля реагирования, т.е. того, на что привлекается внимание и какие реакции предпочитаются. На уровне тела гормональный баланс обеспечивает оптимум данного стиля реагирования. Во всех случаях при описании особенностей психи ки, в первую очередь, необходимо иметь в виду адаптивн ые особенности, то, что определяет личную адаптивн ость, и тогда все не будет переворачиваться с ног на голову. Российский бывший ученый, а теперь фальсификатор науки С.Савельев занимает в этом вопросе сходную с Р.Картер позицию, но развивает ее еще более гротескно . Делаются сходные ошибки из-за отсутствия системной модели организации психи ки и ухода от основы - механизмов личной адаптивн ости.

Мозг музыкантов даже на анатомическом уровне отличаются от мозга других людей, и когда музыкант исполняет или слышит музыку, его мозг работает иначе, чем мозг немузыканта1. Так, в ходе одного исследования выяснилось, что часть мозга, реагирующая на звуки, у музыкантов в среднем на 130 % больше, чем у немузыкантов, и что объем этой части мозга увеличивается у них под непосредственным влиянием опыта исполнения и восприятия музыки. Причем, судя по всему, своеобразный “взгляд” музыкантов на мир не ограничивается повышенной чувствительностью к музыке.

И никаких лишних рассуждений о роли наследуемых признаков, гормонов и выделения в отдельную типологию "музыкант". Правда, тут же, говоря про мозг Эйнштейна:

Вполне возможно, что слияние двух областей в мозге Эйнштейна позволило ему вывести из своего видения пространства и времени формулу E = m с 2 - самое известное в истории уравнение.

Почему-то Р.Картер не подумала о том, что такие анатомические особенности мозга могут являться следствием особенностей его увлечения, а не наоборот. И не стоило бы лажаться в том, что приведенная формула никак не касается понимания пространства и времени.

Тут же Р.Картер дает подсказку тому, как модифицируется мозг в особенностях развития:

Животные, которых выращивают в условиях, где они совершенно не сталкиваются с какой-нибудь разновидностью элементов видимой картины мира, скажем с горизонтальными линиями, с трудом распознают эти элементы впоследствии или вообще неспособны их распознавать. У них не хватает клеток, в норме выполняющих эту функцию , потому что без стимуляции на определенном этапе развития таким клеткам сложно сформироваться. Нечто подобное происходит со всеми нашими способностями .

Ну, очень противоречивая женщина! :)

Эмоции играют ключевую роль в формировании наших нравственных оценок. Мы склонны считать нравственность одним из величайших достижений человечества, чем-то неизмеримо далеким от законов инстинктивного поведения низших животных. Но при ближайшем рассмотрении оказывается, чтозначительная часть того, что мы считаем решениями, продиктованными соображениями нравственности, на самом деле не что иное , как простые эмоциональные рефлексы .

Далее приводится примеры "нелогичных", "эмоциональных" решений. Без попыток представить, а что будет, если эти решения окажутся подкрепленными прежним практическим опытом, ведь это кардинально повлияет на их адекватн ость. Приравнивая ситуацию недостаточности опыта, неуверенности к "эмоциональным рефлексам", опять все становится с ног на голову: как раз у неискушенного и нет пока что "рефлексов", т.е. уверенно выполняющихся стереотипов, и они еще не скорректировали свои представления практическим опытом . Это - не говоря про то, что опять используются недоопределенные понятия типа " эмоциональные рефлексы ".

Что представляют собой эмоции, в столь высокой степени определяющие наши поступки? Мы думаем об эмоциях как о чувствах, но называть их чувствами не совсем правильно, потому что слово “чувство” описывает лишь часть этого загадочного явления - ту часть, которую мы и вправду чувствуем.

Загадочное для Р.Картер явление называется явлением субъективизации .

Но эмоции, по сути, представляют собой не столько чувства, сколько набор присущих организму механизмов выживания, выработанных эволюцией, чтобы отвращать нас от того, что может быть для нас опасно, и подталкивать к тому, что может быть нам полезно. Психи ческая составляющая эмоции (чувство) - это дополнительное усложнение лежащего в основе базового механизма.

Если бы Р.Картер посмотрела на эволюционный процесс усложнения нейросети , начиная с насекомых, как изменяется способ переключения стилей поведения в зависимости от нейромедиаторов (и выплеска соответствующих гормонов, поддерживающих на уровне тела этот стиль), то не стала бы путать эмоции с "чувствами". Не эмоции отвращают и подталкивают, а связанные с системой значим ости результаты прежнего опыта. Эмоции - стили поведения, система значим ости - система оценки случающегося. Хотя основа у этих двух систем и одна .

Эмоции вырабатываются в лимбической системе, в частности, в миндалине - небольшом участке мозга в глубине височных долей.

Этот вульгаризм оставляю без комментариев. Вот только позже будет сказано: " У нас в мозге нет “отдела эмоций”, как нет некоей системы, отвечающей исключительно за эмоции.".

Информация, поступающая от органов чувств, передается на обработку в разные отделы мозга параллельными путями.
Кратчайший ведет в миндалину, где оценивается значение этой информации. Если она требует нашего внимания (угроза или что-либо, сулящее выгоду), миндалина реагирует, вызывая физиологические изменения, побуждающие нас к действию . Затем полученная информация, “окрашенная” данной оценкой, передается в кору лобных долей для дальнейшей обработки.
Одновременно эта информация поступает и непосредственно в кору лобных долей, так что мыслящая часть мозга получает как бы двойное послание.
Сведения, поступающие непосредственно от органов чувств, могут сообщать: “Приближается нечто крупное, покрытое шерстью, с длинными зубами”, в то время как сведения из миндалины гласят: “Берегись!
Приближается нечто крупное, покрытое шерстью - ПЛОХО”. Организм тем временем уже начинает спасаться бегством.

О каком внимании идет речь? Явно не осознаваемом, раз это - реакция миндалины, а не лобных долей. А по смысл у фразы - как бы осознаваемое внимание.

Миндалина ни в коей мере не определяет новизну ситуации, этим занимаются детект оры новизны для привлечения осознаваемого внимания в районе гиппокампа , , . Если реакция неосознаваемая (это значит, что в нет достаточной новизны и значим ости для привлечения внимания), то она формируется вовсе не в миндалине, а с участием миндалины и ассоциативной зоне цепей поведенческих автоматизмов. Осознаваемое внимание может быть скоммутировано гиппокампом в случае преобладающей актуальности для отслеживания или прерывания автоматизма для осмысл ения. Общая структура связей: схема основных функциональных блоков в организации адаптивн ости поведения

...Есть основания полагать, что подобное доступно только человеку, но не другим животным .

К сожалению, не дается даже намека на эти основания. У всех высших животных организация мозга - как адаптивн ой системы личности - однотипна. И в организации эмоционального стиля реагирования эта однотипность начинается уже даже не с высших животных.
Но даже это еще не готовое блюдо. Чтобы эмоции работали как механизм выживания, они должны находить выражение , а для этого требуется еще один раунд когнитивной обработки информации. Внешние проявления эмоций требуют определенных действий от тела. Это могут быть рыдания, хмыканье, бегство или просто прибавление слегка язвительного оттенка к нейтральному по содержанию устному сообщению.

Выделенное утверждение настолько абсурдно, что даже не стану комментировать.

Именно для донесения мыслей до окружающих прежде всего и нужны эмоции.

Аналогично абсурдно и совершенно не обосновано: (не)вербальны е символы общения - одно, стили поведения - другое, хотя для каждого из стилей характерны свои коммуникативные навыки. В этом и заключается разделение стилей реагирования: В каждом эмоциональном контекст е - свой смысл воспринимаемого и действий, свои наработанные стереотипы реакций. С пониманием "эмоций" у Р.Картег - полная неразбериха... При этом - явная склонность фантазировать на тему, вплетая эвристически кажущимися очевидными связи, как, например, с "зеркальными нейрон ами":

Это происходит потому, что в мозге человека (как и некоторых других приматов) есть зеркальные нейрон ы, которые реагируют на демонстрируемые кем-либо проявления эмоций, вызывая соответствующие эмоции и у наблюдател я.

Наблюдатель может переключиться так же в наблюдаемый стиль реагирования, а может и не переключиться или оказаться в совершенно ином стиле реагирования. По поводу необоснованности увлечения "зеркальными нейрон ами" и придания им излишне драматической роли было :

"...стоит осознать, что название "зеркальные нейрон ы" - чрезвычайно условно и вовсе не говорит, что существуют нейрон ы, имеющие функции отслеживать поведение других особей. Это - большая ошибка, которая потянет неправильные представления о явлении отзеркаливания чужого поведения.

Нейрон - всегда лишь распознаватель и никаких других функций у него нет.

То, что какие-то нейрон ы проявляют визуально наблюдаемую активность в акте отзеркаливания вовсе не говорит, что они обеспечивают преемственное поведение. Распознавание при восприятии чужого поведения элементов, которые уже наработаны у особи в области контекст ной зоны, характерной для данных условий (эмоциональный контекст , сужающий область работы нейросети), приводит к активации таких распознавателей вне зависимости от того, будем ли мы зеркалить поведение или просто наблюдаем за знакомыми нам (по наработанным своим) элементам. Так же распознается и возможный прогно з такого поведения (если был такой опыт) и мы поморщимся, переживая неминуемую боль от того, что кто-то схватился за раскаленный предмет. "

Далее пропускаю то, что связано с концепцией Р.Картер об "эмоциях", неоднозначные описания отдельных стилей поведения, интерпретации опытов, в которых делает лишь один предвзятый вывод из множества возможных (например, опыт с лишением мыши слуховой коры, когда, несмотря на это, она продолжала реагировать на устрашающий звук: это может быть и следствием того, что звук оказывал влияние, например еще на тактильные рецептор ы, что и объясняет большую неспецифичность; а как вообще без слуховой коры могут влиять звуки?..Если бы мне сделали такую операцию, то я бы использовал многие косвенные признаки: видел бы на что и как нажимает экспериментатор и даже его выражение лица, которое он, возможно, никак не скрывал.). Важно то, что, опять же, системной модели не появилось, и рассуждения наобум имеют мало шансов быть адекватн ыми.

Сведения (воспоминания) о знакомых лицах хранятся в головном мозге в виде особых нейрон ных сетей - единиц распознавания лиц (ЕРЛ). Когда любой новый образ человеческого лица достигает сознания, происходит сканирование многих ЕРЛ в поисках соответствия . Если оно обнаруживается, то соответствующая ЕРЛ активируется, извлекается из нашей памяти и соединяется с новым образом.
Это совмещение воспоминания и стимула играет ключевую роль в процессе распознавания.

Никакого такого процесса сканирования в мозге не происходит. И никакого подобного сканирующему механизма никем не было обнаружено. Р.Картер опять допустила своеволие в важном месте (а еще утверждает, что свобода воли - иллюзия:). Распознавание происходит сразу по всему полю данной зоны мозга (каждый нейрон имеет как раз функцию распознавания, подобную однослойному персептрону) . Не требуется никакого такого последовательного сканирования, а те профили входных связей, что соответствуют ранее сформированной функции распознавания срабатывают и нейрон возбуждается.

В мозг “встроены” некоторые гипотез ы о мире. Нам, например, не приходится обучаться тому, что от предмета, летящего в нас, лучше уклониться . Другие гипотез ы возникают в результате обучения...

А пусть Р.Картер бросит предмет в младенца и посмотрит, уклониться ли он. Опять скоропостижное утверждение... Многие байки о том, что достаточно сложные поведенческие реакции наследуемы и что они заранее образуют связи в мозге, в пристальном рассмотрении оказываются неверными. Наводит же на верное понимание то, что связи вообще устанавливаются только в последовательно созревающих слоях мозга (критические периоды развития, последний из которых остается на всю жизнь) при должной стимуляции воспринимаемым (вспомним про кошек и деприваци ю вертикальных линий) уже дает подсказку о принципе. Связи могут быть сильно облегчены, но они никогда не реализуются без обучения (два вида обучения распознавателей: "без учителя" - характерно для первичных зон мозга и "с учителем" - характерно для формирования поведенческих цепочек с участием сознания).

Согласно одной теор ии, мозг пользуется методом статистического анализа, описанным в XVIII веке Томасом Байесом.

Есть много предвзятых теор ий насчет мозга, но ни одна из них не приводит к целостной системной модели. Это касается и упомянутой: ничего подобного мозгом не проделывается. Формирование и корректирование опыта, дающее цепочки прогно стических ожиданий в известной ситуации, организуются совершенно по-другому .

Наша способность интуитивно или посредством общения проникать в мысли других дает человеку уникальное преимущество над всеми животными . Она позволила нашему виду создать для себя систему высокоорганизованных обществ, которые мы называем цивилизацией, и осуществлять дела столь смелые, что результатом их оказываются изменения среды нашего обитания в глобальном масштабе.

И тут же:

Коммуникация - вовсе не роскошь. У большинства видов животных она просто необходима для выживания . Непрерывный обмен информацией между живыми существами проходит по большей части бессознательно.

Что делать с такой "женской логикой"? :)

Что если вам захотелось просто вспомнить, что такое банан? Как извлечь из памяти сенсорные воспоминания о нем? Без какого-то символа, например названия, вам не за что будет зацепиться, чтобы извлечь образ банана из памяти. Его можно будет припомнить под влиянием внешних напоминаний (например, при виде еще чего-нибудь желтого), но произвольн о, по собственному желанию вызвать этот образ в сознании будет гораздо сложнее. Научившись же навешивать на предметы и живых существ словесные ярлыки, вы сможете устроить у себя в голове удобную картотеку, где будут храниться разнообразные отображения окружающего мира. У вас появится возможность извлекать эти отображения по собственной воле...

То, что Р.Картер не знает другого способа систематизации запомненного кроме как его вербализация не значит, что его не существует:) И, опять же, бедные бессловесные твари, у которых звуковых символов внутривидового общения относительно немного (изолированные туземцы), а воспоминаний - на всю жизнь хватает, как же они их вспоминают?.. Вовсе не связью с символами общения, а ирерхией текущего контекст а восприятия актуализируются выборки субъективизированных образов, придавая им определенный смысл и не позволяя вспомнить то, что относится к другому контекст у восприятия-действия, см. Контекст понимания и а так же Механизмы забывания .

Один из механизмов социальной интеграции (возможно, важнейший из них ) связан с системой зеркальных нейрон ов. Так называют нейрон ы головного мозга, которые активируются, во-первых, когда человек или животное выполняет какое-либо действие, а во-вторых, когда он (или оно) наблюдает, как это действие выполняет кто-либо другой.

Пагубная иллюзия относительно функции "зеркальных нейрон ов" проистекает только лишь потому, что были отмечены активности определенных нейрон ов во время фокусировки внимания на другом человеке и попытке повторить действие. Тут же возникла гипертрофированная и красивая гипотез а для этих нейрон ов, на которую можно повесить все и объяснить что угодно. Но для отзеркаливания чужих действий и чужого состояния необходимо сначала, как минимум, самому иметь представления о таком состоянии и уметь совершать такие же действия. В период доверчивого обучения формируются навыки безусловно и доверчиво перенимать чужой опыт, - так передаются культур ные атрибуты и приобретения . Затем наступает период переступания догм - период игровой инициативы. И, конечно же, есть нейрон ы, распознающие элементы чужой активности, что и дает возможность воспринимать это, не более того.

Механизм социальной интеграции описан в статье Социализация и не требует привлечения таких сущностей как "зеркальные нейрон ы", хотя можно было бы и описать все то, что вовлекается в этот процесс (практически все ресурсы мозга).

Эффект зеркальных нейрон ов и похожие “зеркальные” свойства нейрон ов, связанных с эмоциями и мыслями, позволяют наблюдателю моментально и автоматически получать представление о том, что в настоящий момент чувствует другой . Например, когда мы видим, как человек поднимает тяжелый предмет, зеркальные нейрон ы, которые возбуждались бы у нас при поднимании тяжестей (и создавали чувство напряжения и тяжести), возбуждаются и создают у нас ощущение (пусть даже настолько слабое, что мы сами его не осознаем), будто мы также поднимаем тяжесть. В итоге нам не приходится даже задумываться о том, что именно тот человек в данный момент чувствует: нам это сразу становится известно из собственных непосредственных ощущений.

Получать представление о том, что думает другой или что делает другой возможно только, уже имя подобный опыт. В этом случае, конечно же, при осознанном внимании на действиях другого будут активироваться соответствующие распознаватели, затрагивающие соответствующие поведенческие цепочки. Предполагать же, что существуют некие нейрон ы, заранее как-то специализированные (все нейрон ы - распознаватели своего профиля возбуждения), как ранее выразилась Р.Картер "таинственно" делающих нас сопричастными: " Узнав об этих нейрон ах, мы получили основу для понимания массы таинственных аспектов человеческой психи ки: “телепатии”, сопереживания, обучения путем подражания, даже эволюции языка. ". Если воспринимать эти нейрон ы всего лишь как ассоциативно откликающиеся на сходный профиль уже наработанной реакции, вся таинственность и драматизм исчезает. Вовсе и не нужным оказывается придавать этому такое большое значение. Но "зеркальным нейрон ам" в книге уделено неоправданно много места и совершенно без какого-либо полезного эффекта для понимания механизмов.

Всякий раз, когда мы смотрим, как другой что-либо делает (или лишь начинает делать), у нас в мозге могут активироваться соответствующие нейрон ы, и это позволяет нам узнать намерения этого человека. Это дает возможность строить сложные модели психи ческого состояния.

На самом деле, всякий раз при этом у нас возникает некий ассоциативный отклик, соответствующий личному, уже имеющемуся опыту, и то, насколько верно мы судим о других, зависит от того, насколько наш опыт схож в этом. А вот несхожесть порождает иллюзии понимания.

Когда мы видим ломающуюся ветром ветку дерева, у нас точно так же активируются нейрон ы, соответствующие распознаванию и пониманию этого явления, и это может даже навести на мысль повторить то, что делает ветер, если такие результаты для нас желательны. Мы буквально во всем наблюдаемом можем найти зацепку для нового поведенческого варианта (Леонардо да Винчи проделывал такую стимуляцию своей фантазии, наблюдая за узорами трещин в штукатурке), и что из того?..

Даже мега-мегаконфигурации мегаконфигурации обычно оставляют в памяти лишь смутный отпечаток. Но бывают и такие, что горят над болотом нашей долговременной памяти как яркие огни.
Это могут быть детские воспоминания о пляже и песке, утекающем сквозь пальцы, или застывший кадр из давнего и в остальном забытого отпуска, или, может быть, поразительно отчетливый образ давно умершего друга. Почему эти конфигурации остаются, а другие исчезают?
В большинстве случаев все дело в эмоциях . У нас в памяти задерживаются именно те сцены, которые по той или иной причине сопровождались эмоциональным возбуждением.

Здесь опять путаются причина и следствие... Осознанное внимание сопровождает наиболее актуальные (новизна и значим ость) моменты наших действий, именно такие звенья цепей реагирования осознаются и, тем самым, субъективируются, осмысл яются , при этом формируя последовательсть касаний сознания моментов актуальности, что создает похожую на поведенческую, но мыслительную цепочку автоматизмов . Далее - попытки придать убедительность неверному посылу:

Это происходит оттого, что эмоциональное возбуждение по определению вызывается всплеском возбуждающих нейромедиаторов, повышающих активность нейрон ов в некоторых отделах мозга. Такое повышение активности приводит к двум эффектам, каждый из которых по очевидным причинам полезен для выживания. Во-первых, это повышение остроты восприятия, создающее ощущение абсолютной отчетливости и замедленности происходящего, которое характерно для критических мгновений. Во-вторых, это усиление долговременной потенциации, благодаря которому возрастает вероятность того, что события, переживаемые в таком состоянии, удастся запомнить и впоследствии избегать их (если это что-то плохое) или стремиться к их повторению (если хорошее).
Вышеописанный эпизод может считаться хорошим кандидатом на сохранение в долговременной памяти, потому что включает несколько ярких сенсорных стимулов (вид моря, звуки музыки, вкус вина), каждый из которых способен стать одной из “рукояток”, за которые сцена может быть извлечена из памяти и воспроизведена в сознании. Причем каждое такое воспроизведение будет все надежнее закреплять ее в памяти. Еще важнее то, что все это пропитано чувством страха. Если дети вернулись целыми и невредимыми, со временем об этом происшествии могут остаться лишь смутные воспоминания.
Но если за этой сценой последовало появление на пороге полицейского, который принес весть о несчастном случае, память о той музыке, том пейзаже и вкусе того вина, вероятно, останется с вами на всю жизнь.
Эпизоды, которым суждено отложиться в долговременной памяти, не сразу запечатлеваются в ней.
Процесс их перевода на постоянное хранение занимает до двух лет . В течение этого времени они остаются уязвимыми и легко стираются из памяти.

На самом деле воспоминания закрепляются долговременно примерно за полчаса. Именно такое время нужно, чтобы осталось воспоминание о события до того, как человек оказывается в бессознанке, например, после удара бутылкой по голове . Активность в виде возбужденных нейроструктур сохраняется обычно лишь до сна, когда такие активности последовательно гасятся общим торможением. Лишь самые сильные, доминантные могут остаться до следующего дня активными.

Лобные доли - это то самое место, где рождаются идеи, возникают планы, где из мыслей и ассоциаций складываются новые воспоминания, где окружающий мир усваивается через множество ощущений, передающихся в долговременную память либо исчезающих бесследно.
Именно в этом отделе мозга сосредоточено сознание - тот светлый край, куда продукты конвейеров нашего мозга поступают из его глубин для проверки. Именно здесь возникает самосознание , а эмоции превращаются из физиологических механизмов выживания в субъективные ощущения .
Если бы нам захотелось разместить на нашей карте мозга стрелочку с подписью “Вы находитесь здесь", она указала бы налобные доли. В этом наши новые представления о мозге совпадают с представлениями древних мист иков, ибо именно здесь они традиционно помещали “третий глаз” - врата, ведущие к вершинам осознания.

Сначала бы нужно определиться в том, что такое сознание, чтобы так вольно помещать его только лишь в лобные доли, хотя контуры субъетивированных образов восприятия-действия организуются в других частях мозга , . Р.Картер не делает даже такой попытки. Функциональность сознания организуется вовсе не только в лобных долях (см. Сознание ). А относительно самосознания, примерно так же как это случилось с лишней сущностью "зеркальных нейрон ов": с подачи психологов возникло излишне значим ое понятие "самосознание", а вот почему это не так: Самосознание . Но пока что в книге актуальным остается вопрос: "Есть ли у сознания особое предназначение - или оно лишь побочный продукт сложной нервной системы? ". То, что сознание является основой адаптивн ости личности как-то остается без внимания.

Кстати, чуть позже написано: " В середине ствола мозга расположены нейрон ы , обладающие необычайно длинными дендрит ами, протянутыми как вверх, так и вниз. Некоторые из них даже достигают коры больших полушарий. Одни из этих нейрон ов отвечают за сознание . Сотрясение мозга часто связано с нарушениями работы данной системы, а серьезные ее повреждения могут приводить к тому, что человек навсегда погружается в кому "

Внимание необходимо для мышлени я, а также для осознания своих ощущений. Наш мозг постоянно сканирует окружающую среду в поисках сенсорных стимулов.

Опять какое-то сканирование, хотя никто не описывал никаких таких сканирующих процессов. А вот то, чем обуславливается "ориентировочный рефлекс" описывалось и его прямая функция привлечения внимания . Внимание - не результат последовательного сканирования, а результат выделения наиболее актуального во всех параллельно протекающих поведенческих цепочках. На этих пиках актуальности и происходит подключение гиппокампом структур актуальных звеньев цепочек к лобным долям.

Воспринимается ли тот или иной стимул сознательно или бессознательно, отчасти зависит от того, подготовлен ли мозг заранее к обращению внимания на данный стимул.

Вовсе не так. Осознается пик актуальности (максимум новизны и значим ости), остальные поведенческие цепочки реализуются, не осознаваясь пока не окажутся в пике актуальности. Так обеспечивается адаптивн ость к наиболее главному (значим ость), что ее требует (новизна) . Это и есть функциональность сознания, а вовсе сознание - не "побочные эффекты огромной памяти мозговой флэшки ".

Рефлекторные действия не сопровождаются потенциал ом готовности (ПГ), но всякий раз, когда человек преднамеренно двигает пальцем, примерно за полсекунды до самого действия процессы, происходящие в мозге и обеспечивающие его совершение, проявляются в виде такого всплеска нейрон ной активности. Казалось бы, можно было ожидать, что в тех случаях, когда решение совершить действие принимается по собственной воле, оно должно приниматься непосредственно до или, возможно, во время активации мозга, вызывающей ПГ. Вместо этого Либет обнаружил, что испытуемые неизменно сообщали о времени принятия решения пошевелить пальцем лишь после начала ПГ . Почти во всех случаях испытуемые говорили, что сознательное побуждение или решение совершить движение возникало через 350-400 миллисекунд после всплесков на энцефалограмме, соответствующих ПГ. Само движение совершалось еще примерно через две десятых секунды.
Важность открытия Либета трудно переоценить.
Если сознательное решение совершить движение принимается, когда механизм совершения движения уже запущен (что, по-видимому, и показывают результаты этого эксперимента), значит, на самом деле действие обусловлено не сознательным решением, а процессами, протекающими в мозге неосознанно, и сознание не вызывает действие, а лишь отражает то, что мозг уже делает бессознательно.
Если это относится ко всем действиям, то наше поведение есть просто конечный продукт автоматических процессов, протекающих в мозге, и наше представление о свободе воли иллюзорно.
Полученные Либетом результаты не кажутся такими уж спорными нейробиологам, которые считают сознательный опыт продуктом активности мозга, а не его причиной. Но, как ни печально, наше общество, и в том числе судебная система, исходит из традиционного понимания свободной воли, которое, судя по всему, расходится с данными науки. Вопрос состоит, прежде всего, в том, какие выводы мы должны сделать из результатов эксперимента Либета и что они означают для наших представлений о человеческой природе.
В настоящее время в психологии и нейропсихологии преобладает детерминистская точка зрения, согласно которой наше поведение полностью определяется прошлым опытом и текущим контекст ом. Исходя из этой точки зрения, наше представление о том, что мы обладаем свободой воли и сами управляем своим поведением, есть не более чем иллюзия.
Эта иллюзия возникает оттого, что мы задним числом причисляем свои действия к следствиям предшествовавших им мыслей. Например, если я думал о том, что в комнате темно, и замечаю, что моя рука тянется к выключателю, я буду считать, что по собственной воле потянулся рукой к выключателю. Если так, то “свободная сознательная воля” представляет собой не реальный опыт, связанный с вызыванием действия, а лишь часть описания, которое мы составляем для самих себя задним числом, чтобы объяснить свои действия самим себе. Многие детерминисты утверждают, что наши действия не только не вызываются нашими волевыми решениями, но и бессознательно определяются событиями, происходящими в окружающем мире.
Главный вопрос состоит в том, остается ли хоть что-нибудь, что мы можем назвать свободной волей, не считая создаваемых задним числом описаний.
Есть ли у нас хоть какие-то ощущения, относящиеся к нашим преднамеренным действиям и испытываемые до их совершения?
...я думаю, что Либет был прав, предполагая существование тесной связи между сознательной волей и преднамеренным подавлением собственных побуждений, хотя его идея, что сознание может накладывать вето на бессознательные решения мозга, и представляется мне неубедительной попыткой возрождения дуализма.

Данные Либета были обсуждены в статье Свобода воли как функция бессознательного , в частности было замечено:

"Статья - чисто в стиле психологических исследований:) т.е. чистая эмпирика, без понимания сути происходящего. Да, в простейших случаях вообще безо всяких инструментальных методов и не за 10 секкунд, а вообще практически за любое время можно предсказать, что мало кто выберет съест тарелку живых тараканав:) А если объект выбора предъявлен неожиданно и выбор нужен немедленный, то не 10 секунд, а мгновенно будет сделан выбор. Но если предмет (ситуация) еще не знаком, то будет задержка на исследовательское поведение (очень индивидуально).
Ясен пень, что конечная мысль проявляется в сознании уже после того, как ее предваряет множество неосознаваемых процессов. И чушь, что можно будет хоть когда-то суметь предсказать сложное поведение потому, что для этого нужно знать точно всю системы связей нейрон ной сети на уровне каждого синапс а и систему гормональной регуляции, включая мозговое обеспечение эмоциональных контекст ов.
Что же касается вопроса о свободе воли то он просто методолог ически некорректен: нельзя смешивать философские понятия, касающиеся формы проявлений психи ческих процессов и механизмы этих процессов, о чем разводятся непонятки в обсуждении Сущность сознания." и далее в обсуждении .

Опять - красивая и бестолковая сенсация... И опять путаница в понятиях "произвольн ое действие" и "волевое усилие", о чем прояснялось уже выше. Главное: как обычно рассуждения ведутся без корректного определения вообще, а что же такое "свобода воли", просто по-бытовому, по-народному. И популярная форма изложения не оправдывает.