Специфичность иммунной системы и неспецифические защитные реакции организма - иммунология. Иммунологические реакции

Применяют с одинаковым успехом для двух целей. Во-первых, по извест­ному антигену (диагностикуму ) определяют в исследуемой сыворотке наличие и количественное содержание специфических к данному антигену антител. Последнее устанавливают путем титрования сыворотки.Титром иммунной сыворотки называют то ее максимальное разведение, которое еще дает положительную реакцию. Во-вторых, с помощью известногоантитела , т. е. диагностической иммунной сыворотки или моноклональных антител, определяют наличие в исследуемом материале специфического микробного антигена или осуществляют серологическую идентификацию выделенного возбудителя.

С диагностической целью используют следующие серологические реакции:

1. Реакция агглютинации в ее различных вариантах.

2. Реакция преципитации и ее различные модификации.

3. Реакции иммунофлуоресценции (РИФ) в прямом и непрямом вариантах.

4. Реакции, протекающие с участием комплемента.

5. Реакции, протекающие с участием фагоцитов.

6. Реакции иммуносорбентного анализа твердой фазы.

7. Реакции нейтрализации биологической активности возбудителя или токсинов.

I. Реакция агглютинации

Агглютинация (от лат.agglutinatio- склеивание) - склеивание (соединение) антигеннесущих корпускулярных частиц (цельные клетки, частицы латекса и др.) молекулами стецифических антител в присутствии электролитов, которое заканчивается образованием видимых невооруженным глазом хлопьев или осадка (агглютината). При помощи реакции агглютинации определяюттолько полные (двухвалентные) антитела .Неполные (моновалентные, блокирующие) антитела этими методамине выявляются , так как, соединяясь с антигеном, блокируют его, но не могут вызвать агрегации антигена в крупные конгломераты.Неполными (блокирующими) называют антитела, у которых функционирует только один активный центр; второй активный центр по неизвестной причине не срабатывает.

Различают агглютинацию прямую , при которой во взаимодействии -со специфическими антителами непосредственно участвуют собственные антигены бактериальной или любой другой клетки, напримерэритроцитов ; инепрямую, илипассивную , при которой бактериаль­ные клетки или эритроциты, или частицы латекса являются носителями не собственных, а сорбиро­ванных на них чужих антигенов (или антител) для выявления специфических к ним антител (или антигенов). В реакции агглютинации участвуют главным образом антитела, относящиеся к классамIgGиIgM. Она протекает в две фазы: вначале происходит специфическое взаимодействие активного центра антител с детерминантом антигена, эта стадия может происходить в отсутствие электролитов и не сопровождается видимыми изменениями реагирующей системы. Для второй стадии - образова­ния агглютината - необходимо наличие электролитов, которые снижают электрический заряд комп­лексов антиген + антитело и ускоряют процесс их склеивания. Эта фаза заканчивается образовани­ем агглютината.

Реакции агглютинации ставят либо на стеклянных, либо в пробирках. Реакции агглютинации (прямые и пассивные) на стекле обычно применяют в качестве ускоренного метода обнаружения специфических антител в сыворотке больного (например, при бруцеллезе) или для серологической идентификации возбудителя. Несомненным достоинством реакции агглютинации на стекле является простота ее постановки и то, что она протекает несколько минут или даже секунд, так как оба компонента в ней используются в концент­рированном виде. Однако она имеет лишь качественное значение и менее чувствительна, чем пробирочная.

Развернутая реакция агглютинации в пробирках дает более точные результаты, ибо она позволяет определить количественное содержание антител в сыворотке (установить ее титр) и при необходимости зарегистрировать факт нарастания титра антител, что имеет диагностическое значе­ние.

Для постановки реакции в агглютинационные пробирки вносят определенным образом разведен­ную 0,85%-ным раствором NaClсыворотку и равный объем (обычно 0,5 мл) суспензии стандартного диагностикума (или исследуемой культуры), содержащего в 1 мл 1 млрд бактерий. Учет результатов реакции агглютинации производят предварительно через 2 ч инкубации пробирок при 37 °С и окончательно через 20-24 ч по двум признакам: наличию и величине осадка и степени прозрачности надосадочной жидкости. Оценку осуществляют по четырехкрестной системе. Реакция обязательно сопровождается контролем сыворотки к антигена.

Необходимо учесть, что при смешивании растворов гомологичных антигенов и антител не всегда наблюдаются видимые проявления реакции агглютинации. Осадок образуется только при оптимальных соотношениях обоих компонентов реакции. Вне этих пределов, при значительном избытке антигена или антител, реакции не наблюдается. Это явление получило название «феномена прозоны » или ложно отрицательного результата. Он наблюдается как при реакции агглютинации, так и при реакции преципитации. Появление прозоны в иммунных реакциях объясняется тем, что участвующие в них антигены, как правило, являются полидетерминантными, а молекулы антителIgGимеют два активных центра. При избытке антител поверхность каждой частицы антигена покрывается молекулами антител так, что не остается свободных детерминантных групп, поэтому второй, несвязанный активный центр антител не может взаимодействовать с другой антигенной частицей и связывать их друг с другом. Образование видимого агглютината или преципитата подавляется также при избытке антигена, когда не остается ни одного свободного активного центра антител, и поэтому комплексы антиген + антитело + антиген не могут более укрупняться.

В XVIII в. многие люди, будучи уверены, что когда-нибудь в жизни они все равно зара-зятся оспой, намеренно подвергали себя возможности заражения, для того чтобы переболеть этой болезнью в более благоприятных условиях и в дальнейшем не опасаться ее. Даже и теперь некоторые родители из тех же соображений не предохраняют своих детей от заражения детскими болезнями, зная, что некоторыми болезнями люди болеют лишь один раз в жизни. Этот тип устойчивости называется приобретенным иммунитетом. Но человек, невосприимчивый к оспе в результате перенесения этой болезни, обладает такой же восприимчивостью к кори или к любой другой болезни, как и тот, кто никогда не болел оспой; поэтому мы говорим, что иммунитет специфичен.

Активно приобретенный иммунитет обусловлен образованием в организме специфических белков, так называемых антител, которые выделяются в кровь и в тканевые жидкости после проникновения в организм какого-либо чужеродного белка, называемого антигеном. Антиген и антитело реагируют друг с другом, и это предохраняет организм от повреждения. Если, например, впрыснуть кролику яичный альбумин (белковое вещество), то клетки животного отвечают выработкой антител, специфичных по отношению к этому альбумину. Кроме того, организм способен вырабатывать особый род антител, называемый антитоксином, в ответ на присутствие токсина (обычно белка), выделяемого бактерией. После того как образовалось достаточное количество антитоксина, данный токсин уже не может причинить вреда организму.

Уже несколько десятков лет назад было известно, что антитела, образующиеся в ответ на введение данного антигена, не всегда однородны - они могут различаться по своей специфичности, по степени активности в отношении реакции с антигеном и по физико-химическим свойствам, (величине и форме молекулы, ее суммарному заряду и последовательности аминокислот).

Антитела, циркулирующие в крови, связаны с определенной фракцией плазмы - гамма-глобулинами. Гамма-глобулины - белки, очень сходные по своим физическим и химическим свойствам, но различающиеся по специфичности в отношении антигенов. Различия между разными антителами совершенно неуловимы; они даже еще более тонкие, чем различия между разными ферментами. По-видимому, лишь небольшая часть белковой молекулы (имеющая молекулярный вес порядка 160 000) иммуноло-гически активна. Различия между разными

антителами, по-видимому, сводятся к незначительным различиям в форме молекулы бедка, в расположении составляющих ее атомов, обеспечивающем комплементарность геометрических конфигураций антигена и антитела, которые должны подходить друг к другу, как ключ и замок.

Лимфатические ткани обычно синтезируют антитела только к «чужеродным» белкам, т. е. к белкам, которые при нормальных условиях не содержатся в организме. Но иногда некоторые нормальные компоненты тела могут обладать антигенным действием и вызывать обра-

зование антител; в результате возникающей при этом реакции антиген-антитело человек может заболеть.

После инъекции антигена наступает латентный период, продолжающийся примерно неделю, а затем в крови появляются антитела. Титр антител медленно повышается, достигает невысокого пика (первичная реакция) и вновь снижается. Вторичная инъекция антигена через несколько дней, недель или даже месяцев вызывает быстрое образование антител после более короткого латентного периода (вторичная реакция). Титр антител достигает более высокого уровня и снижается медленнее. Последующие инъекции антигена вызывают дополнительные вторичные реакции, до тех пор пока не будет достигнут максимальный титр. Со временем этот титр обычно снижается, и периодическая peiиммунизация помогает поддерживать иммунитет на удовлетворительном уровне. У предварительно иммунизированного человека вторичную реакцию можно также вызвать, заразив его естественным инфекционным агентом; антитела при этом обычно образуются достаточно быстро и предотвращают появление симптомов заболевания.

Механизм образования специфических антител под действием антигена неизвестен. Известно только, что антитела синтезируются заново из аминокислот, а не просто образуются путем изменения пространственной конформа-ции предсуществующей полипептидной цепи. Синтез этих специфических белков происходит, вероятно, так же, как и обычный синтез белков в рибосомах клетки, т. е. под контролем рибонуклеиновокислотных матриц (см. разд. 342). Антиген, по-видимому, входит в плаз-моциты и другие «иммунологически компетент-ные» клетки и вызывает образование специфической нуклеиновой кислоты-матрицы, которая в свою очередь определяет образование специфического антитела. Возможно, что информацию, необходимую для синтеза специфических антител, доставляет сам антиген или же она постоянно присутствует в клетке, будучи заключена в генах, но может быть использована только в присутствии специфического антигена. Высказывалось также мнение, что проникновение в клетку антигена ведет к проявлению генетически обусловленной способности к синтезу специфического антитела, находившейся до того в скрытом состоянии. Эта последняя теория дает наилучшее объяснение экспериментальным фактам, известным в настоящее время, и больше соответствует общей теории регуляции синтеза белков. Когда плаз-моциты, образующие специфическое антитело, делятся, обе дочерние клетки сохраняют способность вырабатывать такие же антитела, и эта информация передается на протяжении многих поколений клеток.

Антитела реагируют с антигеном одним или несколькими различными способами. Они могут соединяться с токсином, нейтрализуя его ядовитые свойства; они могут растворять клетки бактерий; наконец, они могут сенсибилизировать бактерии - делать их более уязвимыми для лейкоцитов. Некоторые антитела агглютинируют микробы тем самым препятствуя их распространению и еще вернее обеспечивая их задержку в лимфатических узлах.

Антитела метят, присоединяя к ним флуоресцирующий краситель, после чего их можно выявлять в специфических участках тканей с помощью микроскопа. Этот метод, разработанный в 1941 г. Кунсом, позволил проводить разнообразные исследования с определением локализации в клетке специфических реакций между антигеном и антителом; он используется также в диагностике инфекционных болезней.

Другой способ приобретения иммунитета состоит в прививке при помощи вакцины. Вакцина - это специально производимый в больших количествах антиген, характерный для определенной болезни, достаточно сильный, чтобы стимулировать образование антител в организме, но не настолько сильный, чтобы вызвать самую болезнь. Токсичность антигена понижают различными способами. Некоторые вакцины содержат лишь небольшое количество токсина. Другие представляют собой комбинацию токсина с антитоксином: в то время как

антиген заставляет организм вырабатывать больше антител, антитела самой вакцины защищают клетки от повреждения. Некоторые токсины подвергают тепловой или химической обработке, уничтожающей их вредные свойства, но сохраняющей их способность стимулировать образование антител; такого рода вакцина называется анатоксином. Еще один метод состоит в ослаблении культур бактерий путем длительного выращивания их в пробирках, где они в конце концов утрачивают часть своей токсичности. Антирабическую вакцину (вакцина против бешенства) ослабляют высушиванием, другие вакцины - последовательной прививкой их ряду лабораторных животных. Брюшнотифозную вакцину можно приготовить из убитых бактерий брюшного тифа.

Метод вакцинации был открыт в конце XVIII в. английским врачом Э. Дженнером, который заметил, что работники, имевшие дело с коровами, больными коровьей оспой, никогда не заболевали настоящей оспой. Когда он попробовал втереть немного жидкости, взятой из оспенных пузырьков на коровьем вымени, в царапину на коже человека, то возникло легкое заболевание с появлением одной локализованной оспины в месте втирания. Вакцинированные таким способом люди никогда не заболевали оспой. Коровью оспу и настоящую оспу вызывают два различных, но близкородственных вируса; прививка вируса коровьей оспы вызывает образование антител, способных реагировать также и с близкородственным ему вирусом оспы человека. Теоретически представляется возможным создавать путем прививок иммунитет против всех болезней, но для многих важных заболеваний, в том числе для туберкулеза, гриппа и сифилиса, способы вакцинации еще не разработаны.

Часто случается, что организм не способен достаточно быстро вырабатывать антитела для борьбы с антигенами микроба. В таких случаях производят инъекции антител какого-нибудь животного (обычно лошади), чтобы снабдить ими организм до того времени, когда он сам сможет вырабатывать их в достаточном для защиты количестве. Впрыскивание препарата антител (называемого сывороткой)- это единственный способ получения пассивного иммунитета; хотя такой иммунитет оказывает немедленное действие, он полностью исчезает спустя несколько недель.

Для приготовления сыворотки бактерий выращивают в пробирках до тех пор, пока не образуется большое количество токсина. Затем

этот токсин впрыскивают в возрастающих дозах лошади, и организм животного постепенно вырабатывает огромное количество антитоксина, который накапливается в крови. После этого у лошади время от времени берут кровь, удаляют из нее эритроциты и концентрируют антитоксин.

Естественный иммунитет. У всех животных и растений невосприимчивость к определенным болезням является наследственным свойством, и ее не приходится приобретать. Есть данные, указывающие на то, что различные расы человека наследственно различаются между собой по устойчивости к таким болезням, как туберкулез, дифтерия и грипп. Наследственная невосприимчивость к болезням, называемая естественным иммунитетом, передается из поколения в поколение.

Один из типов естественного иммунитета - это невосприимчивость, выработавшаяся в популяции, которая соприкасалась с возбудителем определенной болезни на протяжении многих поколений. Многие болезни (например, корь), в наши дни сравнительно легко протекающие

у европейцев, чрезвычайно тяжело протекали у американских индейцев и у жителей островов южной части Тихого океана, когда они впервые распространились среди этих народов. Сифилис тоже в настоящее время представляет собой гораздо более легкое заболевание, чем во времена первого появления его в Европе, когда он нередко в первый же месяц приводил к смерти. Многие тропические болезни, например малярия и сонная болезнь, у иностранцев протекают тяжелее, чем у местного населения. Другие болезни, первоначально весьма распространенные, со временем стали редкими: например, проказа чрезвычайно часто встречалась в библейские времена.

Эти изменения к лучшему обычно истолковывают как результат постепенного «естественного отбора»: люди, перенесшие в далекие времена данную болезнь, передавали свою «стойкость» своим потомкам и так далее. Возможно также, что в некоторых случаях адаптировались и сами микроорганизмы, что сопровождалось понижением их вирулентности.

Нормальный вирус или вирус, убитый слабым нагреванием или действием ультрафиолетового света, может препятствовать росту других вирусов в организме хозяина. Этим можно было бы объяснить малое распространение таких заболеваний, как полиомиелит, в областях, где эндемичны другие кишечные вирусы. Присутствие этих вирусов препятствует росту вируса полиомиелита; однако их действие состоит не в том, что они вызывают образование антител, а в том, что они побуждают клетки хозяина вырабатывать вещество, называемое интерфероном. Это вещество удалось выделить; оно представляет собой белок с молекулярным весом около 63 000.

Это недавно открытое явление служит, возможно, другим важным фактором защиты организма от болезней. Антитела имеют особенно важное значение в создании иммунитета к повторному заражению данным возбудителем; интерферон же, вероятно, играет важную роль в защите при первом заражении вирусом.

Исследователи доказали, что интерферон образуется в ответ на вирусную инфекцию; концентрация его достигает максимума на 3- 5-й день после заражения, тогда как антитела к инфекционному агенту появляются гораздо позднее - не ранее 8-го дня.

Интерферон действует не прямо на вирус, а на клетку-хозяина. Вирус проникает в клетки, обработанные интерфероном, но не способен размножаться в них. Интерферон, по-видимому, уменьшает количество АТФ, которое может быть использовано для размножения вируса, возможно путем разобщения процессов фосфо-рилирования и окисления (см. разд. 57). Имеющиеся данные позволяют предполагать, что существует интерферон только одного типа и что он эффективен против самых различных вирусов. Ссылки по теме

ИММУНОБИОЛОГИЧЕСКИЕ РЕАКЦИИ , основаны на взаимодействии антигена и находящегося в иммунной сыворотке антитела (согласно представлениям Эрлиха) или антигена и специфически измененной под влиянием иммунизаторного раздражения сыворотки (согласно новейшим воззрениям). Важнейшие И. реакции-аглютинация, преципитация, бактериолиз, реакция отклонения комплемента, реакция, основанная на действии опсонинов. Аглютинация и преципитация происходят при встрече антигена и соответствующего антитела; для осуществления бактериолиза, реакции отклонения комплемента и др. требуется помимо антигена и антитела также участие комплемента. Значение И. реакций двоякое. С их помощью можно ставить диагноз той или иной заразной болезни, приводя в соприкосновение сыворотку больного с микробом, возбудителем предполагаемой инфекции (реакция Видаля при брюшном тифе и парати-фах, реакция отклонения комплемента при различных инфекциях). С другой стороны, имея сыворотку, иммунную к определенной инфекции, возможно идентифицировать микроб, природа к-рого неизвестна. Преципитация имеет значение также в сан.-гиг. и суд.-мед. практике, позволяя определять видовую принадлежность животного, к которому относится исследуемый материал.

Иммунологические реакции (ИР) широко используются в лабораторной диагностике инфекций. Их применяют:
1) для выявления антител в сыворотке крови, т.е. в серологической диагностике инфекционного заболевания;
2) для определения вида или серовара микроорганизма, т.е. антигенной идентификации его.

ИР выявляют образование комплекса АГ-АТ. При этом неизвестный компонент определяют по известному. ИР отличаются высокой чувствительностью (связывание АТ с АГ при ничтожно малых количествах) и специфичностью (определяется особенностью строения активного центра АТ и детерминант АГ). Они характеризуются стадийностью развития. Первая стадия специфическая, невидимая для глаз, характеризуется соединением детерминантной группы АГ с активным центром АТ. В результате образуется комплекс АГАТ, утративший растворимость а изотонических растворах. Вторая стадия - неспецифическая, видимая на глаз, причем характер проявления зависит от состояния АГ, АТ и условия среды, в которой происходит взаимодействие АГ и АТ.

При взаимодействии АТ с корпускулярными антигенами (бактерии, животные клетки, др. клетки) наступают видимые невооруженным глазом изменения (например, хлопья агглюти-ната, лизис клеток). Если с АТ соединяются растворимые (мелкодисперсные) АГ, образование комплексов выявляют в результате предварительной адсорбции АГ (АТ) на корпускулярных веществах (эритроцитах, частичках угля и др.)

Скорость реакции зависит от:
- оптимального соотношения АГ и АТ;
- степени специфичности АГ и АТ; -рН среды (7,2-7,4);
- концентрации электролитов (0.85 % натрия хлорида).

В зависимости от состояния АГ, АТ и особенностей среды, в которой взаимодействуют АГ и АТ, различают реакции агглютинации, преципитации, лизиса, комплемента, нейтрализации и др.

ИР подразделяются на простые (двухкомпонентные, участвуют только АГ, АТ) и сложные (трехкомлонентные и многокомпонентные, участвуют АГ, АТ и реагирующая система - сенсибилизированные эритроциты, культура клеток, кожа восприимчивого животного и др.).

Рак предстательной железы – одна из наиболее распространенных форм рака среди мужчин среднего и пожилого возраста. Тенденция увеличения показателя смертности по причине рака, снижения возраста мужчин с первичным диагнозом, наблюдаемая в последние годы, говорит о необходимости улучшения информированности населения, а также совершенствования алгоритма онкологического скрининга. Основным инструментом диагностики рака является гистологическое исследование тканей простаты, полученных при биопсии. Перед проведением биопсии рекомендовано выполнение уточняющего лабораторного анализа «Индекс здоровья простаты», который оправдывает назначение инвазивной процедуры диагностики.

ДНК-тест

Названа главная причина смертности в России

Сердечно-сосудистые заболевания являются причиной смертности номер один во всем мире. Высокое кровяное давление, высокий уровень холестерина ЛПНП и курение являются основными причинами заболеваний. Физическая инертность, ожирение и чрезмерное употребление алкоголя также рассматриваются, как факторы риска сердечно-сосудистых заболеваний. Однако существует независимый фактор сердечных заболеваний – гомоцистеин.

ДНК-тест

Ложноположительные результаты анализов на половые инфекции: как предостеречь себя и своих близких?

Венерологические заболевания входят в группу заболеваний, передающихся половым путем. При получении положительных результатов, обязательно рекомендуется провести обследование полового партнера на предмет инфекции. Но что делать, когда по результатам исследования инфекция инфекция есть, однако на самом деле ее нет?

ДНК-тест

Иммунитет


Термин “иммунитет” в переводе с латинского означает освобождение от чего-либо. С медицинской точки зрение термин означает “защита от болезни”. Биологические макромолекулы, обладающие иным генетическим кодом, попав в организм могут нарушить его работу и сдвинуть биологическое равновесие в ту или иную сторону. Поэтому в ходе эволюции была сформирована система, способная оказать противодействие подобным молекулам. Такие молекулы назвали “антигенами”, а систему “иммунной”.

ДНК-тест

Стресс и надпочечники

Надпочечники вырабатывают одни из наиболее важных гормонов организма. Любой дисбаланс может существенно повлиять на здоровье. Дисфункция надпочечников может варьироваться от неопределенных симптомов до опасных для жизни расстройств. В статье описана легкая дисфункция коры надпочечников, которая возникает при длительно существующем стрессовом факторе.


Иммунологические реакции можно классифицировать на четыре типа, исходя из видов участвующих в них антител и модулирующих реакцию клеток, характера антигенов и длительности реакции. Иммунная реакция является очень сложной, с внутрисистемными ауторегуляторными связями на разных уровнях, хотя отдельные реакции обычно классифицируются как функционально разобщенные. Так, одно и то же лекарственное средство (например, пенициллин) у разных больных может вызвать иммунологические реакции как первого, так и второго или третьего типа. Некоторые чрезмерной силы ответные реакции были отнесены к реакциям гиперчувствительности потому, что они приводили к разрушению или повреждению тканей хозяина . Несмотря на это, классификация Gell и Coombs продолжает служить основой для понимания патологической физиологии и того спектра иммунологических реакций, которые практический врач видит в клинике . В табл. 2 приведена характеристика четырех типов иммунологических реакций.
Тип I. Примером реакции первого типа являются анафилактические реакции, которые называются также реакциями гиперчувствительности немедленного типа. Реакция вызывается антителом типа IgE, прикрепляющимся к поверхности тучных клеток и базофильных нейтрофи-

Таблица 2. Классификация иммунологических реакций и Coombis (1975)

Цитотоксическая
реакция
Иммунный комплекс
Г иперчувствитель- ность замедленного типа, клеточноопосредованный иммунитет
Реакция антиген - IgE происходит на поверхности тучных клеток и базофилов с высвобождением медиаторов
Реакция IgG, IgM с антигеном происходит на клеточных мембранах, активируется комплемент, высвобождаются анафилатоксины, разрушаются клетки
IgE и IgM реагируют с антигеном независимо от фиксации и откладываются в микрососудах, комплемент активируется, клетки разрушаются
Не участвуют Специализированные Т-лимфоциты реагируют с антигенами, высвобождаются лимфокины
Анафилаксия Волдыри и эритема на коже
Экзогенная астма
Трансфузионные реакции
Г емолитическая анемия
Резус-конфликт
Сывороточная болезнь Г ломерулонефрит
Контактный дерматит Туберкулиновая реакция

лов; Если к такому прикрепленному антителу IgE присоединится антиген, то активация и дегрануляция клетки приведут к высвобождению различных фармакологически активных веществ, вызывающих классическую анафи- лаксию\ (гл. 2). Однако не все аллергические реакции первого типа являются анафилактическими. К первому типу относятся классическая картина аллергии на введение пенициллина, реакции на пчелиный яд, экзогенно-аллергическая астма и аллергический ринит. Вообще к первому типу относятся все аллергические реакции .
Тип II. Реакции второго типа известны как цитоток- сические реакции. В них участвуют антитела типа IgG или IgM, называемые цитотоксическими антителами. Реакции этого типа возникают тогда, когда антитела соединяются с иммуноспецифическими антигенами. В роли антигенов могут выступать сложные компоненты клеточных мембран (антигены групп крови) или молекулярные компоненты, известные как гаптены, адгезирующие- ся к поверхности эритроцитов (например, пенициллин). Взаимодействие антигена с антителом активирует систему комплемента, которая в свою очередь лизирует клетки. Во время активации комплемента высвобождаются фрагменты пептидов - анафилатоксины, которые вызывают системные реакции. К реакциям второго типа относятся, например, посттрансфузионные реакции на основе несовместимости крови по системе АВО, гемолитическая болезнь новорожденных, аутоиммунные и гемолитические анемии, а также синдром Гудпасчера.
Тип III. Реакции третьего типа известны как реакции иммунных комплексов. Антитела и циркулирующие растворимые антигены образуют нерастворимые комплексы, слишком маленькие для того, чтобы удаляться макрофагами ретикулоэндотелиальной системы печени и селезенки. Вместо этого комплексы откладываются в микроцир- куляторном русле. В реакции участвуют антитела класса IgG или IgM. Взаимодействие антигена с антителами активирует комплемент, вследствие чего возникает воспалительный процесс, локализующийся вокруг отложенных комплексов. Освобожденные анафилатоксины вызывают также миграцию других воспалительных клеток и возникновение васкулита. Механизм повреждения ткани состоит в опосредованном комплементом привлечении к месту фиксации иммунных комплексов полиморфноядерных лейкоцитов. Классическим примером аллерги
ческой реакции III типа является так называемая сывороточная болезнь, возникающая после повторного введения чужеродных иммунных сывороток при змёиных укусах и ботулизме или антилимфоцитарного глобулина. Примерами реакций третьего типа являются такжеваску- литы, возникающие после введения пенициллина, и лекарственная системная красная волчанка.
Тип IV. Реакции четвертого типа известны как клеточно-опосредованные иммунные реакции или реакции гиперчувствительности замедленного типа. Эти реакции не зависят от наличия антител. Вместо выработки антител клеточные антигены или внутрисосудистые протеины активируют лимфоидные клетки, известные как тимусзави- симые лимфоциты. Активированные Т-клетки могут непосредственно убить чужеродные клетки или продуцировать особые вещества - лимфокины, которые организуют иммунный ответ. Лимфокины опосредуют возникновение воспаления на месте расположения чужеродного антигена. Они регулируют действия макрофагов, полиморфноядерных лейкоцитов, лимфоцитов и других клеток, убивающих чужеродные клетки и организмы. Развитие реакций идет медленно; они появляются только через 18-24 ч, достигают максимума к 48 ч и исчезают через 72-96 ч.
Примерами клеточно-опосредованных иммунных ответов могут служить кожная туберкулиновая проба, отторжение трансплантата, аллергия к сумаху укореняющемуся.
Отклонения клеточно-опосредованной иммунной функции вызывают недостаточность системы нормального иммунного надзора, вследствие чего больные подвергаются риску инфекции, вызванной условно-патогенными возбудителями. Синдром приобретенного иммунодефицита (СПИД) является манифестацией отклонений в системе клеточно-опосредованных иммунных реакций. Субпопуляции Т-лимфоцитов, известных как цитотоксические клетки-супрессоры, при инфицировании вирусом иммунодефицита человека (HTVL-III) претерпевают изменения, вследствие чего развивается СПИД. На фоне такого иммунодефицита могут проявляться инфекции, вызванные условно-патогенными возбудителями (например, Pneumocystis carinii) и лимфопролиферативные синдромы (например, саркома Капоши).