Лейкоциты человека в отличие от эритроцитов. Кровь и лимфа

Являются производными мезенхимы. Вместе с органами кроветворения и иммунопоэза., лимфоидными образованиями, ассоциированными со структурами некроветворных органов, они связаны генетически и функционально, обеспечивая поддержание постоянства внутренней среды (гомеостаз), внутреннее дыхание, трофику, регуляцию и интеграцию всех систем организма, экскрецию шлаков и защиту (фагоцитоз, клеточный и гуморальный иммунитет, тромбообразование).

Морфология крови

Кровь состоит из плазмы (55-60%) и форменных элементов (40-45%).

Плазма – жидкая часть крови. В ней содержатся белки (более 100 разновидностей), жиры, углеводы, соли, гормоны, ферменты, антитела, растворенные газы и др. На сухой остаток плазмы приходится 7-10%, остальную часть составляет вода (90-93%). Основным компонентом сухого остатка являются белки (6,5-8,5%). Среда ее слабощелочная (рН 7,4). Белки плазмы делятся на 2 фракции: легкую фракцию составляют альбумины (60%) и тяжелую – глобулины (40%).

Альбумины синтезируются в печени. Они обеспечивают коллоидно-осмотическое давление крови, удерживают воду в кровотоке (при их недостатке – отёки), выполняют транспортную функцию, адсорбируя ряд соединений.

Глобулины имеют двоякое происхождение. Одни из них, γ-глобулины (антитела), продуцируются В-лимфоцитами и плазмоцитами, а другие, β-глобулины, фибриноген и протромбин, образуются в печени. β-глобулины способны связывать и переносить ионы Fe, Cu, Zn и др., а фибриноген и протромбин участвуют в тромбообразовании.

Форменные элементы крови. Д. Л.Романовский в 1891г. предложил окраску мазков крови смесью двух красителей – эозином и азуром-II, что позволило дифференцировать форменные элементы крови, к которым относятся эритроциты, лейкоциты, стволовые клетки и кровяные пластинки.

Эритроциты. У млекопитающих – это безъядерные клетки, у птиц, пресмыкающихся, амфибий и рыб они содержат ядра. Размеры эритроцитов имеют видовые особенности и в каждом конкретном случае они делятся на нормоциты, микроциты и макроциты (разнообразие размеров эритроцитов называется анизоцитозом).

В норме эритроциты имеют форму двояковогнутого диска (дискоциты). Однако при старении и различного рода патологических состояниях они могут изменять свою форму, в связи с чем различают: планициты - с плоской поверхностью, стоматоциты - куполообразной формы, сфероциты – шаровидные, эхиноциты – шиповидные и др.

– (разнообразие форм эритроцитов называется пойкилоцитозом - греч. пойкилис - разновидный).

Функции эритроцитов: транспорт О2 и СО2 (дыхательная), аминокислот, антител, токсинов, лекарственных веществ путём адсорбции. Дыхательная функция связана со способностью гемоглобина (Hb) присоединять к себе кислород (O2) и диоксид углерода (CO2). Однако Hb может образовывать прочные связи и с другими химическими соединениями:

Нb – дезоксигемоглобин,

НbО – оксигемоглобин,

НbСО2 – карбгемоглобин,

НbСО – карбоксигемоглобин (СО - угарный газ, прочность связи с Нb у которго в 300 раз выше, чем с О2),

Нb + сильные окислители (КМnO4; анилин, нитробензол и др.) → НbОН – метгемоглобин (в этих случаях Fe+2→ Fe+3, вследствие чего способность Нb присоединять кислород утрачивается).

Особенности строения плазмолеммы эритроцитов . Плазмолемма эритроцитов представляет собой типичную биологическую мембрану, состоящую из билипидного слоя и белков в комплексе с углеводами. Соотношение липидов и белков в ней 1:1. Углеводы входят в состав гликокаликса. На наружной поверхности мембраны расположены фосфолипиды, сиаловая кислота, антигенные олигосахариды, адсорбированные протеины. На внутренней - гликолитические ферменты, Na+-АТФазы и K+-АТФазы, гликопротеины и цитоскелетные белки.

В состав липидов внешнего слоя плазмолеммы входят фосфатидилхолин и сфингомиелин, содержащие холин, а внутреннего – фосфатидилсерин и фосфатидилэтаноламин, которые на конце молекулы несут аминогруппу. С внешней стороны имеются гликолипиды (5%). К трансмембранным гликопротеинам относится гликофорин. Его 16 олигосахаридных цепей располагаются в гликокаликсе. Среди них сиаловая кислота обеспечивает отрицательный заряд наружной поверхности мембраны зрелых эритроцитов. Это позволяет выходить зрелым клеткам из красного костного мозга. С гликофоринами связывают антигенные свойства различных групп крови.

Примембранный белок спектрин входит в состав цитоскелета и участвует в поддержании формы эритроцита. Спектрин вместе с другим белком – актином связаны белком полосы 4.1 в «узловой комплекс», который соединен с белком гликофорином. Изменение количества спектрина приводит к изменению формы эритроцита (сфероциты).

С плазмолеммой спектриновый цитоскелет связан другим белком – анкирином в зоне локализации трансмембранного белка полосы 3, который участвует в обмене О2 и СО2. Он формирует также гидрофильные «поры» – водные ионные каналы.

Состав цитоплазмы эритроцитов: Вода – 66%, гемоглобин – 33% (гем в нём составляет – 4%).

При различных патологических состояниях эритроциты могут подвергаться:

1. склеиванию, образуя монетные столбики (вследствие утраты заряда, обеспечивающего поверхностное натяжение);

2. гемолизу (при воздействии гипотоническим раствором, плазмой других видов, змеиным ядом гемоглобин поступает в плазму, при этом оболочка остаётся неповрежденной);

3. кренированию – сморщиванию (при воздействии гипертоническим раствором); от греч. сrеnа – вырезка;

Стареющие эритроциты фагоцитируются макрофагами. Продолжительность жизни эритроцитов 120 дней

Лейкоциты. В отличие от эритроцитов, «работающих» непосредственно в крови, лейкоциты «работают» в тканях тела, мигрируя (путем диапедеза) через стенки капилляров. Это ядросодержащие клетки.

Лейкоциты классифицируют на зернистые (гранулоциты) и незернистые (агранулоциты).

Гранулоциты. Своё название зернистые лейкоциты (гранулоциты) получили в связи с неоднозначностью окрашиваемости их гранул красителями при разных значениях рН среды, в связи с чем различают базофильные, эозинофильные и нейтрофильные зернистые лейкоциты.

Базофилы – клетки шаровидной формы, диаметром до 10–12 мкм. Ядро имеет лопастную или бобовидную форму (в зависимости от степени зрелости клеток). В их базофильной цитоплазме содержатся довольно крупные гранулы, окрашивающиеся основными красителями. Одной из особенностей содержимого гранул базофилов является метахроматическое их окрашивание красителями тиазинового ряда (метиленовый синий, толуидиновый синий и др., при этом вместо синей окраски гранулы приобретают фиолетовый, розовый или красный цвет).

В гранулах базофилов содержатся биологически активные вещества: протеогликаны, ГАГ (в том числе гепарин), вазоактивный гистамин, нейтральные протеазы, серотонин, пероксидазы, кислая фосфатаза, серотонин (гормон эпифиза, который ослабляет или угнетает секрецию гонадолиберинов в гипоталамусе), гистидиндекарбоксилаза (фермент синтеза гистамина) и др.

Функции базофилов . Базофилы могут фагоцитировать бактерии, препятствуют свёртыванию крови (гепарин), способствуют расширению сосудов и повышают проницаемость их стенки (гистамин), вследствие чего возникают отёки. Они опосредуют воспаление, активируют макрофаги, участвуют в иммунологических реакциях аллергического характера: секретируют эозинофильный хемотаксический фактор, который стимулирет миграцию эозинофилов. При астме, анафилаксии, сыпи наблюдается немедленного типа дегрануляция, пусковым механизмом которой является IgE-рецептор для IgE. Вместе с тучными клетками участвуют в антисвёртывающей системе крови и регуляции проницаемости стенки сосудов, вместе с нейтрофилами образуют биологически активные метаболиты арахидоновой кислоты – лейкотриены и простагландины. Базофильные гранулоциты не являются активными индукторами в развитии гиперчувствительности замедленного типа.

В периферической крови базофилы пребывают примерно 1-2 суток, а затем мигрируют в межклеточное вещество соединительной ткани, где продолжительность их жизни не велика.

Эозинофилы . Размеры этих клеток достигают 12-17 мкм. Ядро зрелых клеток обычно содержит 2 сегмента, но у овец – больше. Очень редко встречаются палочкоядерные и юные эозинофилы. Гранулы в цитоплазме довольно крупные. Различают две их разновидности: первичные азурофильные и вторичные – эозинофильные (модифицированные лизосомы). В центре эозинофильной гранулы содержится кристаллоид, который содержит главный основной белок, богатый аргинином, катионный белок, лизосомные гидролитические ферменты, пероксидазу, гистаминазу и др. Пероксидазная активность эозинофильных гранулоцитов не связана с пресутствием миелопероксидазы, которая строго специфична для системы нейтрофильных гранулоцитов.

В аллергических реакциях принимают участие Fс-рецептор плазмолеммы для IgE, а также С3- и С4– рецепторы.

Эозинофильные гранулоциты в крови находятся около 12-ти часов, а затем мигрируют в межклеточное вещество соединительной ткани, где функционируют до 8-12 суток (в соед. ткани их в 500 раз больше, чем в крови). Пероксидазная активность эозинофильных гранулоцитов не связана с пресутствием миелопероксидазы, которая строго специфична для системы нейтрофильных гранулоцитов.

Нейтрофилы . Размеры этих клеток варьируют в пределах 9–12 мкм. Форма ядра непостоянна и зависит от степени зрелости клеток. В связи с этим различают юные, палочкоядерные и сегментоядерные нейтрофильные гранулоциты. У юных нейтрофилов ядро имеет бобовидную форму, гранул в цитоплазме относительно не много. Ядра палочкоядерных нейтрофилов выглядят в виде в разной степени изогнутой палочки, а в зрелых клетках – оно фрагментировано на сегменты, соединенные между собой тонкими перемычками. В цитоплазме нейтрофилов содержится 2 вида гранул:

1) первичные азурофильные неспецифичные (ПАН), их размеры - 0,4-0,8 мкм (до 20%), представляют собой первичные лизосомы, содержащие ß-глюкуронидазу, кислую ß-глицерофосфатдегидрогеназу, кислую протеазу, лизоцим (мурамидазу), кислую фосфатазу, миелопероксидазу (превращает перекись водорода в молекулярный кислород).

2) вторичные нейтрофильные специфические гранулы (ВНС), размеры которых составляют 0,1-0,3 мкм; они содержат щёлочную фосфатазу, фагоцитины, аминопептидазы, лизоцим, катионные белки и белок лактоферрин, обеспечивающий склеивание бактерий (бактериальная мультипликация) и торможение образования лейкоцитов в красном костном мозге.

Описание нейтрофильных гранулоцитов следует дополнить современными данными о третичных гранулах, секреторных пузырьках и адгезивных молекулах.

Функция нейтрофилов – неспецифическая антибактериальная защита путём фагоцитоза и выделения бактерицидных веществ, участие в воспалительных реакциях (осуществляется вне сосудов, в межклеточном веществе соединительных тканей). В образовании эндогенного пирогена, который теперь идентифицирован как интерлейкин-1, нейтрофильные гранулоциты не участвуют, его продуцируют клетки моноцитарно-макрофагальной системы. В крови они находятся до 8-12 часов, а в тканях - до 9 суток, где они погибают.

Агранулоциты . К незернистым лейкоцитам относятся лимфоциты и моноциты. Обе эти группы клеток принимают активное участие в иммунных реакциях организма. Иммунитет - это способ защиты организма от живых тел и веществ, несущих на себе признаки генетической чужеродности.

Лимфоциты . По степени зрелости лимфоциты делятся на большие (10 мкм), средние ((7-10 мкм) и малые (4,5-6 мкм). Зрелыми являются малые лимфоциты. Они содержат крупное круглое с небольшим вдавлением ядро, занимающее почти всю клетку. Оно окружено узким ободком базофильной цитоплазмы. По происхождению и функциональным свойствам различают 4 основные группы лимфоцитов: В-лимфоциты, Т-лимфоциты, натуральные киллеры (NK) и К-клетки. Все они участвуют в обеспечении иммунных реакций, защите от всего чужеродного, попадающего извне и образующегося в самом организме.

В-лимфоциты Образуются в лимфатических узлах и осуществляют специфический гуморальный иммунитет (поставляют антитела в кровь, лимфу и тканевую жидкость). На поверхности плазмолеммы В-лимфоцитов имеются антигенспецифические рецепторы, представляющие собой антитела – иммуноглобулины (Ig) классов M и D, или поверхностные иммуноглобулины (SIg). Распознаваемые рецепторами антигены присоединяются к ним, вследствие чего В-лимфоциты активируются, многократно пролиферируют и дифференцируются в эффекторные клетки – плазмоциты, или антителообразующие клетки (АОК), способные вырабатывать антитела (иммуноглобулины). Антитела на своей поверхности имеют связующие участки к данному конкретному антигену.

Процесс активации лимфоцитов можно представить в следующей последовательности: Активированный В-лимфоцит → плазмобласт (диаметр до 30 мкм) → проплазмоцит → зрелый плазмоцит (диаметр около 10 мкм).

В-лимфоциты – живут от нескольких недель до десятков месяцев.

Т-лимфоциты, натуральные киллеры ( NK ) и К-клетки образуются в тимусе. Они осуществляют реакции специфического клеточного иммунитета и регулируют гуморальный иммунитет. В плазмолемме Т-лимфоцитов содержатся поверхностные антигенные маркеры (антигены гистосовместимости) и много рецепторов, с помощью которых они распознают чужеродные антигены и иммунные комплексы. После встречи с антигенами Т-лимфоциты превращаются в Т-эффекторы: Т-киллеры, Т-хелперы и Т-супрессоры.

Эффекторные клетки Т-лимфоцитов Т-киллеры (цитотоксические) – обеспечивают клеточный иммунитет. Обладая цитотоксическим эффектом, они взаимодействуют с клетками-мишенями вследствие непосредственного с ними контакта или благодаря вырабатываемым ими близкодействующим токсическим медиаторам. В результате такого взаимодействия изменяется проницаемость мембраны клетки-мишени, что и приводит её к гибели.

При действии антигенов в Т-лимфоцитах вырабатываются особые растворимые вещества лимфокины, которые передают информацию об антигенах В-лимфоцитам.

Т-хелперы являются помощниками В-лимфоцитов, они распознают антиген и усиливают выработку антител; Т-супрессоры, наоборот, подавляют выработку антител В-лимфоцитами.

Продолжительность жизни Т-лимфоцитов до 10 лет.

В последнее время в научных публикациях (Г. М.Могильная и соавт., 2002) указывается, что следует ввести принятую иммунологами классификацию Т-лимфоцитов, которая основывается на определении с помощью иммунноцитохимии поверхностных дифференцировочных антигенов (cluster of differentiation - CD).

Тимус покидают две субпопуляции нативных Т-лимфоцитов с антигеном CD23. Т-хелперы маркируются антигеном CD4, а Т-киллеры - CD8. Установлено, что в ходе иммунного ответа CD4+ Т-хелперы (ThO) дают начало двум субпопуляциям Th1- и Th2-хелперов с преобладанием одной из них в зависимости от внутри - или внеклеточной локализации возбудителя, или от особенностей антигена. Путём продукции различных наборов цитокинов Th1 (интерферон гама, фактор некроза опухолей-альфа, лимфотоксин, интерлейкин-2) и Th2 (интерлейкины -4, -5, -6, -10, -13 и трансформирующий фактор роста - бета) регулируют развитие иммунного воспаления. Т-лимфоциты гиперчувствительности относятся к классу Th1-хелперов, поэтому их не обязательно выделять в отдельную клеточную форму. Стоит отметить, что после контакта с антигеном и синтеза цитотоксинов (перфорин, гранзимы) CD8+ Т-киллер получает название цитотоксического Т-лимфоцита (ЦТЛ).

В процессе локального контакта ЦТЛ с клеткой-мишенью происходит строгая направленность выброса цитотоксинов в зону пространственной связи Т-клеточного рецептора и антигена. Помимо этого, наблюдается осмотический лизис клетки, обусловленный самостоятельным эффектом перфорина, что ведёт к освобождению и рассеиванию внутриклеточно локализованного возбудителя. Целесообразно указать, что гибель клетки-мишени путём апоптоза, наступающая при сочетанном воздействии перфорина и гранзимов, биологически целесообразна, поскольку она ведёт к мембранной изоляции деградированного возбудителя или другого антигена.

Т - и В-клетки памяти – лимфоциты, возвращающиеся в неактивное состояние, но уже приобретшие информацию (память) от встречи с конкретным антигеном. При повторной встрече с этим антигеном они быстро обеспечивают иммунный ответ значительной интенсивности.

Т - и В-лимфоциты в сосудистом русле – в функциональном плане относительно неактивны. Их активация осуществляется антигенами, в результате чего эти клетки превращаются в эффекторные формы клеточного и гуморального иммунитета, за счёт чего увеличивается фонд клеток памяти.

Моноциты – довольно крупные клетки, в мазке крови их размеры достигают 15-20 мкм. Содержат крупные ядра лопастной, бобовидной и иной формы. Цитоплазма базофильна. Не смотря на то, что эти клетки относятся к агранулоцитам, в их цитоплазме могут обнаруживаться в небольшом количестве мелкие азурофильные гранулы, представляющие собой лизосомы. В функциональном плане – это типичные макрофаги, которые в периферическом русле крови находятся по пути из красного костного мозга в ткани, где они выполняют специфические защитные функции.

Процентное соотношение различных видов лейкоцитов в периферическом кровеносном русле (лейкоцитарная формула) у разных видов животных варьирует (табл. 2):

Таблица 2. Лейкоцитарная формула (в %)

Примечание : Б Базофильный гранулоцит ; Э Эозинофильный гранулоцит; Ю Юный нейтрофильный гранулоцит ; П Палочкоядерный нейтрофильный гранулоцит; С Сегментоядерный нейтрофильный гранулоцит.

Как явствует из таблицы, у одних видов животных среди лейкоцитов преобладающими являются лимфоциты, а у других – зернистые лейкоциты.

Таким образом, в периферической крови циркулирует целый ряд клеток, которые обладают специфическими функциями, направленными на обеспечение защиты организма от чужеродных факторов (антигенов). К таковым относятся различные популяции лимфоцитов, потомки моноцитов – макрофаги и зернистые лейкоциты.

Кровяные пластинки. Кровяные пластинки. У млекопитающих – это обломки цитоплазмы мегакариоцитов. У птиц - это ядросодержащие клетки – тромбоциты. Размеры кровяных пластинок варьируют в пределах 2-4 мкм. Они состоят из периферической зоны – гиаломера и центральной - грануломера. Гиаломер в молодых кровяных пластинках окрашивается базофильно, а в старых – оксифильно. В гиаломере есть актин, который участвует в ретракции (уменьшении объёма) кровяных пластинок.

На поверхности плазмолеммы кровяных пластинок содержится гликоликс, гликопротеины которого представляют рецепторы, принимающие участие в адгезии и агрегации кровяных пластинок (агрегация пластинок - их склеивание).

По степени зрелости различают 5 видов кровяных пластинок: юные, зрелые, старые, дегенеративные и гигантские формы раздражения.

Функция кровяных пластинок : в них содержится примерно 12 факторов свёртывания крови. Они принимают участие в коагуляции фибриногена: фибрин → протромбин → тромбин.

В плазме крови содержится фактор свёртывания фон Виллебранда (vWF), к которому в плазмолемме кровяных пластинок имеется специальный рецептор P Ib. Другой рецептор P IIb – IIIа связывает фибриноген, вследствие чего кровяные пластинки агрегируют.

Кроме того, тубулярная система цитоплазмы кровяных пластинок синтезирует циклоксигеназы и простагландины. Она является также резервуаром для ионов Са.

Тромбоциты птиц и пресмыкающихся выполняют аналогичные функции.

В переводе с греческого это «красные клетки», самые многочисленные клетки крови, у взрослого человека их примерно 25 триллионов . Количество эритроцитов в крови меняется, например, при недостатке кислорода, в разреженном горном воздухе или при физических нагрузках оно увеличивается.

По форме эритроцит представляет собой двояковогнутый диск – такая форма значительно увеличивает его поверхность, кислород быстро и равномерно поступает в клетку. Эритроциты к тому же эластичны, благодаря чему проникают даже в самые мелкие капилляры. Живет эритроцит недолго – от 100 до 125 дней. Образуется он в красном костном мозге, а разрушается в селезенке.

Примерно на треть клетка эритроцита состоит из гемоглобина, сложного соединения, состоящего из белка (глобина) и двухвалентного железа (гема) . Гемоглобин содержится только в эритроцитах и в свободном состоянии в крови здоровых людей отсутствует.

В каждом эритроците содержится примерно 200-300 молекул гемоглобина . Благодаря своему строению гемоглобин является идеальным транспортным средствам для газов. В капиллярах легких к нему присоединяются молекулы кислорода, эритроцит приобретает ярко-красный цвет. Отдав кислород клеткам, гемоглобин присоединяет молекулы углекислого газа, меняя свой цвет на темно-красный.

Помимо переноса кислорода и углекислого газа, эритроциты транспортируют также аминокислоты, липиды, белки, помогают организму освободиться от различных ядов, которые образуются в результате обмена веществ и жизнедеятельности микроорганизмов. Эритроциты участвуют и в поддержании кислотно-щелочного, ионного равновесия, и в свертывании крови .

Эритроциты очень чувствительны к изменению химического состава плазмы, и в некоторых случаях происходит их преждевременное разрушение, называемое гемолиз. Это случается при увеличении в плазме концентрации хлористого натрия, под воздействием эфира, хлороформа. Чувствительны эритроциты и к температурному режиму, поэтому при переохлаждении или перегреве организма они разрушаются в первую очередь. Гемолиз происходит также при переливании несовместимой крови, при нарушениях иммунной системы, под действием ядов змей, пчел.

Размеры и форма эритроцитов . Анизоцитоз – гетерогенность выборок эритроцитов в мазках периферической крови по размеру клетки. В норме преобладают нормоциты с диаметром 7,8 мкм (68 ± 0,4 %).

Среди патологических клеток встречаются микроциты (< 6,5 мкм), макроциты (8,9 мкм) и мегалоциты (> 12 мкм).

Истории наших читателей

В норме доля микроцитов и макроцитов составляет 15,3 ±0,4 % и 16,7 ±0,5 %; мегалоцитов в норме не бывает.

СЕНСАЦИЯ! Врачи ошарашены! АЛКОГОЛИЗМ уходит НАВСЕГДА! Нужно всего лишь каждый день после еды...

Наряду с этим в мазках крови можно встретить эритроциты вытянутой, грушевидной, овальной, веретинообразной и других форм (пойкилоцитоз).

Ряд обратимых пойкилоцитов (в норме не более 3 %, что связано со старением клеток) включает эхиноциты , т.е. зубчатые клетки, и стоматоциты с центральным просветлением в виде рта.

Необратимо измененные эритроциты подразделяются на 6 групп :

Наша постоянная читательница поделилась действенным методом, который избавил ее мужа от АЛКОГОЛИЗМА. Казалось, что уже ничего не поможет, было несколько кодирований, лечение в диспансере, ничего не помогало. Помог действенный метод, который порекомендовала Елена Малышева. ДЕЙСТВЕННЫЙ МЕТОД
  1. Микроциты, лептоциты (тонкие клетки с обычным диаметром), анулоциты (широкое просветление) и макроциты.
  2. Серповидные.
  3. Плантоциты (увеличен диаметр, но не объем) мишеневидные, акантоциты без просветления с многочисленными шипами и каплевидные.
  4. Ксероциты, уплотненные, неправильной формы.
  5. Сфероциты (трансформация эхиноцитов, акантоцитов и стоматоцитов), овалоциты.
  6. Укушенные клетки и шизоциты.

Регенеративные изменения циркулирующих эритроцитов . К регенеративным формам эритроцитов относятся незрелые элементы эритропоэза – ядросодержащие эритроциты: нормобласты и мегалобласты , а также эритроциты с включениями ядерного или цитоплазматического происхождения.

В число первых входят тельца Жолли (Гоуэла ) – одно или два мелких темно-фиолетовых включения (редко обнаруживаются в единичных эритроцитах здоровых людей, хотя при раздражении эритрона частота маркированных ими эритроцитов колеблется от 1 до 5 %).

В число вторых – базофильная пунктация (рассеянные по поверхности эритроцита и связанные с РНК-содержащими органеллами гранулы темного цвета) и сидеросомы, выявляемые реакцией с берлинской лазурью включения негемоглобинового железа в эритробластах (сидеробластах ) и в эритроцитах (сидероцитах ).

Неэффективный эритропоэз . Неэффективный эритропоэз обусловлен тем, что часть эритробластов и нормобластов (обычно не более 3-8 %) не завершает цикл дифференцировки и разрушается в костном мозге.

В норме этот процесс является одним из физиологических механизмов регуляции равновесия в системе эритрона при постоянно меняющейся потребности организма в эритроцитах. При изменении условий жизнедеятельности костномозговая продукция эритроцитов увеличивается или уменьшается в зависимости от потребности организма.

Неполноценные, обреченные на разрушение в костном мозге эритронормобласты накапливают полисахариды (выявляются ШИК-реакцией), что при патологических состояниях превышает нормальные для здорового человека значения и может проявляться на всех стадиях дифференцировки эритроидных клеток.

Для образования полноценных эритроцитов в организме должно быть :

– 3,7 г активного железа, 70 % которого связывается гемоглобином, а почти все остальное сохраняется ферритином;

– 3-5 мг витамина В12 (кобаламин инициирует транскрипцию эритропоэтина);

– 2,5 ЕД/мл эритропоэтина.

Факторы контроля эритропоэза . Основным стимулирующим эриропоэз фактором является гипоксия .

Считается, что наблюдаемое при этом снижение уровня кислорода в специфических сенсорных клетках корковой части почек (область наиболее низкого давления кислорода) усиливает продукцию простагландинов в клетках клубочков почек и одновременное высвобождение нейтральных протеаз и лизосомных гидролаз. Все вместе стимулирует продукцию эритропоэтина (ЭП ). Биосинтез эритропоэтина стимулируют также гормоны гипоталамо-гипофизарной системы, щитовидной железы и некоторые стероидные гормоны. Ген ЭП расположен на длинном плече хромосомы 7. Чувствительными к ЭП являются проэритробласты и эритробласты, которые несут на своей поверхности рецепторы к гормону. По мере дальнейшей дифференцировки в эритроне число таких рецепторов на клетках падает.

Эти клетки называют еще белыми кровяными тельцами . Их содержание в крови значительно меньше, примерно 60 млрд. Содержание лейкоцитов в крови взрослого человека может изменяться под влиянием самых различных факторов. Например, после еды возникает пищеварительный лейкоцитоз и количество лейкоцитов значительно повышается.

По внешнему виду и строению выделяют две основные группы лейкоцитов :

зернистые (гранулоциты ), содержащие в цитоплазме мелкие зерна. В зависимости от окраски, в которую гранулы лейкоцитов окрашиваются при лабораторных исследованиях, выделяют базофилы (окрашиваются щелочными красителями), нейтрофилы (нейтральными красителями) и эозинофилы (кислыми красителями);

незернистые лейкоциты (лимфоциты и моноциты ).

В крови существует определенное соотношение лейкоцитов – лейкоцитарная формула, которая указывается в листочке с результатами анализа крови. По ее изменениям специалист может судить о процессах, проходящих в организме. Изменяется лейкоцитарная формула и с возрастом. В крови маленького ребенка лимфоцитов больше, чем нейтрофилов, где-то к 6 годам их количество выравнивается, а затем постепенно нейтрофилы начинают превалировать над лимфоцитами.

Какую роль играют лейкоциты? Основная их задача – защита. Благодаря своему строению они поглощают и уничтожают чужеродные элементы – бактерии, вирусы, токсины. Это явление, открытое И.И. Мечниковым, получило название фагоцитоза, а сами клетки – фагоцитов.

Каждый из лейкоцитов выполняет свои четкие задачи. Нейтрофилы – это наиболее являются наиболее активными фагоцитами, один нейтрофил способен поглотить 20-30 микробов. Также они участвуют в рассасывании и переваривании погибших клеток крови, в очистке организма от омертвевших тканей. Лимфоциты и моноциты захватывают внедрившиеся бактерии и микробы, а также разрушенные нейтрофилы и поглощают их.

Эозинофилы участвуют в транспортировке особого вещества – гистамина, избыток которого вызывает аллергию. Повышенное содержание эозинофилов в крови как раз указывает на аллергическую реакцию в организме. Базофилы, также участвуя в регуляции уровня гистамина, кроме этого играют свою роль в свертывании крови.

Тромбоциты – самые мелкие клетки крови. Их основная задача – участие в свертывании крови, точнее, в образовании тромба, который подобно пробке закрывает просвет в стенке сосуда и предотвращает отток крови из организма .

Образование тромбоцитов – клеток, в совокупности с другими факторами обеспечивающих свертывание крови, осуществляется посредством мегакариоцитопоэза . Первыми в этом ряду гемопоэза стоят мегакариобласты , затем – мегакариоциты , в результате отшнуровки цитоплазмы которых и возникают тромбоциты.

Происхождение тромбоцитов из цитоплазмы мегакариоцитов доказано иммунологическими, радиоизотопными методами и подтверждено как прямым наблюдением, так и цейтраферной киносъемкой.

Факторы контроля мегакариоцитопоэза . Образование клеток-предшественников мегакариоцитопоэза осуществляется по общему для всех гранулоцитов принципу: избыток тромбоцитов в кровеносном русле тормозит мегакариоцитопоэз, тромбоцитопения – стимулирует (через тромбоцитарный кейлон).

Регуляцию продукции тромбоцитов осуществляет тромбопоэтин , молекулярная масса которого равна 80-90 кДа, а период полужизни – 20-40 ч. Рецепторы к тромбопоэтину (c-mpl) выявляются на тромбоцитах, мегакариоцитах и на небольшом количестве клеток-предшественников.

Наиболее быстрый путь увеличения числа тромбоцитов – заключительный эндомитоз мегакариоцитов. Закономерности вызревания мегакариоцитов, как выяснено экспериментально, состоят в том, что оно ускоряется при усиленной регенерации, например, после кровопотери, и замедляется в условиях дефицита витаминов, пищевых ингредиентов или при воздействии антитромбоцитарных антител, химиотерапии. Восстановившийся костномозговой резерв мегакариоцитов по принципу обратной связи замедляет темпы пролиферации клеток в ростке.

В цитоплазме зрелых мегакариоцитов всегда содержатся вполне зрелые тромбоциты, у которых, однако, отсутствует широкий рыхлый слой наружной мембраны (гликокаликс ). Именно уникальная способность деления ядра в морфологически зрелой цитоплазме мегакариоцита, т. е. заключительный эндомитоз, завершает формирование гликокаликса и делает тромбоциты полноценными.

В образовании тромба кроме тромбоцитов участвует белок фибрин . Его нити, выпадая в осадок, образуют в поврежденной стенке сосуда густую сеть, которая преграждает путь крови. В эту сеть загоняются также, кроме тромбоцитов, эритроциты и лейкоциты. Образуется сгусток, и кровотечение прекращается. После того как начинается восстановление поврежденных тканей, тромб постепенно рассасывается, фибрин растворяется (фибринолиз).

Процесс свертывания крови в слабовыраженной степени происходит постоянно даже в неповрежденных сосудах. Это необходимо для образования на внутренней поверхности сосудов фибриновой пленки, которая препятствует выходу эритроцитов и белков плазмы крови из сосудов. Чтобы пленка не заполнила весь просвет сосуда, свертывание крови постоянно сопровождается фибринолизом .

Активность и количество тромбоцитов в крови очень сильно зависят от состояния здоровья. Плохо как пониженное их количество, так и повышенное.

В первом случае нарушается процесс свертывания крови. Это случается, например, при апластической анемии.

Избыток тромбоцитов повышает риск инфаркта и инсульта, он может сигнализировать о некоторых инфекционных заболеваниях, например, лихорадке Денге, переносимой комарами. Поэтому очень важно регулярно сдавать анализы крови для контроля над тромбоцитами.

Лейкоциты нормальной крови, в отличие от эритроцитов, пред­ставляющих собой однородные безъядерные образования, содер­жат ядро и отличаются разной величиной, формой, строением и отношением к окраске.

Во взрослом организме лейкоциты образу­ются в костном мозге, а лимфоциты, кроме того, - в селезенке, ви- лочковой железе и лимфоузлах. В кроветворных органах зрелые формы лейкоцитов образуются путем последовательных делений стволовых (родоначальных) кроветворных клеток, постепенно дифференцирующихся в соответствующие клетки-предшественни- ки, которые, в свою очередь, дают начало всем видам лейкоцитов, поступающих в кровь и лимфу. Различают две основные группы лейкоцитов: зернистые (гранулоциты) и незернистые (агрануло- циты). К зернистым клеткам относят нейтрофилы, эозинофилы и базофилы, которые отличаются между собой характером зернисто­сти в цитоплазме. К незернистым клеткам относят лимфоциты и моноциты.

Эти классы лейкоцитов различаются по морфологии и, главным образом, по наличию и свойствам специфической зернистости, ко­торая выявляется после окраски клеток специальными красителя­ми. Гранулоциты - крупные клетки от 9 до 15 мкм, циркулирую­щие в периферической крови, а затем перемещающиеся в ткани. В процессе дифференциации гранулоциты проходят стадии метамие­лоцитов и палочкоядерных форм. В метамиелоцитах ядро нежного строения, имеет бобовидную форму, а в палочкоядерных формах ядра, содержащие хроматин, более плотно упакованы. Ядро обычно вытягивается, иногда в нем намечается образование сегментов, и в зрелых клетках число последних составляет от 2 до 5.

Большое количество лейкоцитов депонировано в костном мозге и различных тканях организма. Продолжительность жизни зрелых гранулоцитов от 4 до 16 суток. При этом 10-20% лимфоцитов жи­вут от 3 до 7 дней, а 80-90% - до 100-200 суток и более. Зрелые лейкоциты, в отличие от молодых, наряду с выраженной амебоид­ной подвижностью за счет псевдоподий обладают также высокой электрофоретической подвижностью, способностью к изоагглюти­нации, агглютинации (склеивание и выпадение в осадок) и адгезив- ности (способность слипаться с поверхностью другого тела). Благо­даря перечисленным свойствам зрелые лейкоциты способны осуще­ствлять свою основную функцию - фагоцитоз (захват и перевари­вание посторонних частиц) и пиноцитоз (поглощение жидкости че­рез наружную мембрану). Нейтрофильные гранулоциты - основная популяция лейкоцитов, которые посредством фагоцитоза осуществ­ляют защитную функцию организма.

Эритроциты - эластичны, что помогает проходить им по узким капиллярам. Диаметр эритроцита человека 7-8 мкм, а толщина - 2-2,5 мкм. Отсутствие ядра и форма двояковогнутой линзы (поверхность двояковогнутой линзы в 1,6 раза больше поверхности шара) увеличивают поверхность эритроцитов, а также обеспечивают быструю и равномерную диффузию кислорода внутрь эритроцита. В крови человека и высших животных молодые эритроциты содержат ядра. В процессе созревания эритроцитов ядра исчезают. Общая поверхность всех эритроцитов человека более 3000 м кв., что в 1500 раз превышает поверхность его тела. Общее количество эритроцитов. Находящихся в крови человека, огромно. Оно примерно в 10 тыс. раз больше населения нашей планеты. Если расположить все эритроциты человека в один ряд, то получилась бы цепочка длиной около 150000 км; если положить эритроциты один на другой, то образовалась бы колонна высотой, превосходящей длину экватора земного шара (50000-60000 км). В 1 мм куб. содержится от 4 до 5 млн. эритроцитов (у Ж. - 4,0-4,5 млн., у М.-4,5-5,0 млн.). Количество эритроцитов не строго постоянно. Оно может значительно увеличиваться при недостатке кислорода на больших высотах, при мышечной работе. У людей, живущих в высокогорных районах, эритроцитов примерно на 30% больше, чем у жителей морского побережья. При переезде из низменных районов в высокогорные количество эритроцитов в крови увеличивается. Когда же потребность в кислороде уменьшается количество эритроцитов в крови снижается. Средняя продолжительность эритроцитов 100-120 суток. Разрушаются старце эритроциты в селезенке и частично в печени. Основная функция эритроцитов заключается в переносе О2 от легких ко всем клеткам тела. Находящийся в эритроцитах гемоглобина легко соединяются с О2 и легко отдает его в тканях. Важная роль гемоглобина и в удалении углекислого газа из тканей. Таким образом эритроциты поддерживают относительное постоянство газового состава крови. В состав эритроцитов входит белковое вещество - гемоглобин (более 90%), придающее крови красный цвет. Гемоглобин состоит из белковой части глобина и небелкового вещества - гема (простетическая группа), содержащего двухвалентное железо. В капиллярах легких гемоглобин соединяется с кислородом, образуя оксигемоглобин. Своей способности соединяться с кислородом гемоглобин обязан гему, а точнее, присутствию в его составе двухвалентного железа. В капиллярах тканей оксигемоглобин легко распадается с освобождением кислорода и гемоглобина. Этому способствует высокое содержание в тканях углекислого газа. Оксигемоглобин имеет ярко-красный цвет, а гемоглобин темно-красный. Этим объясняется различие в окраске венозной и артериальной крови. Оксигемоглобин обладает свойствами слабой кислоты, что имеет важное значение в поддержании постоянства реакции крови (рН). Наиболее прочное соединение гемоглобина образует с угарным газом (СО). С ним гемоглобин образует соединение легче, чем с кислородом. Поэтому при содержании в воздухе 0,1% угарного газа больше половины гемоглобина крови соединяется с ним, в связи с чем клетки и ткани не обеспечиваются необходимым количеством кислорода. В результате кислородного голодания появляются мышечная слабость, потеря сознания, судороги и может наступить смерть. Первая помощь при отравлении угарным газом - обеспечить приток чистого воздуха, напоить пострадавших крепким чаем, а дальше необходима медицинская помощь. Лейкоциты, или белые кровяные тельца, - это бесцветные клетки, содержащие ядра разнообразной формы. В 1 мм куб крови здорового человека содержится около 6-8тыс лейкоцитов. При рассмотрении в микроскоп мазка окрашенной крови можно заметить, что лейкоциты имеют разнообразную форму. Различают две группы лейкоцитов: зернистые и незернистые. У первых в цитоплазме содержатся мелки зерна (гранулы), окрашивающиеся разными красителями в синий, красный или фиолетовый цвет. У незернистых форм лейкоцитов таких зерен нет. Среди незернистых лейкоцитов различают лимфоциты (круглые клетки с очень темными, округлыми ядрами) и моноциты (клетки большей величины, с ядрами неправильной формы). Зернистые лейкоциты по-разному относятся к различным красителям. Если зерна цитоплазмы лучше окрашиваются основными (щелочными) красками, то такие формы называют базофилами, если кислыми - эозинофилами (эозин - кислый краситель), а если цитоплазма окрашивается нейтральными красками - нейтрофилами. Между отдельными формами лейкоцитов существует определенное соотношение. Соотношение различных форм лейкоцитов, выраженное в процентах, называют лейкоцитарной формулой. При некоторых заболеваниях наблюдаются характерные изменения соотношения отдельных форм лейкоцитов. В случае глистной инвазии увеличивается число эозинофилов, при воспалениях возрастает число нейтрофилов, при туберкулезе часто отмечают увеличение количества лимфоцитов.

Часто лейкоцитарная формула меняется в течение заболевания. В острый период инфекционного заболевания, при тяжелом течении болезни, эозинофилы могут не обнаружиться в крови, а с началом выздоровления, еще до видимых признаков улучшения состояния больного, они отчетливо видны под микроскопом. Кол-во лейкоцитов в крови может меняться. После приема пищи, тяжелой мышечной работы содержание этих клеток в крови увеличивается. Особенно много лейкоцитов появляется в крови при воспалительных процессах. Лейкоцитарная формула также имеет свои возрастные особенности: высокое содержание лимфоцитов и малое количество нейтрофилов в первые годы жизни постепенно выравнивается, достигая к 5-6 годам почти одинаковых величин. После этого процент нейтрофилов неуклонно растет, а процент лимфоцитов понижается. Основная функция лейкоцитов - защита организма от микроорганизмов, чужеродных белков, инородных тел, проникающих в кровь и ткани. Лейкоциты обладают способностью самостоятельно двигаться, выпуская ложноножки (псевдоподии). Они могут покидать кровеносные сосуды, проникая через сосудистую стенку, и передвигаться между клетками различных тканей организма. При замедлении движения крови лейкоциты прилипают к внутренней поверхности капилляров и в огромном кол-ве покидают сосуды, протискиваясь м/у клетками эндотелия капилляров. По пути своего следования они захватывают и подвергают внутриклеточному перевариванию микробов и другие инородные тела. Лейкоциты активно проникают через неповрежденные сосудистые стенки, легко проходят через мембраны, перемещаются в соединительной ткани под действием различных химических веществ образующихся в тканях. В кровеносных сосудах лейкоциты передвигаются вдоль стенок. Иногда даже против тока крови. Скорость движения не всех клеток одинаковы. Наиболее быстро движутся нейтрофилы - около 30 мкм в 1 мин, лимфоциты и базофилы передвигаются медленнее. При заболеваниях скорость движения лейкоцитов, как правило, возрастает. Это связано с тем, что проникшие в организм болезнетворные микробы в результате жизнедеятельности выделяют ядовитые для человека вещества - токсины. Они-то и вызывают ускоренное движение лейкоцитов.

Красные кровяные тельца, или, по-научному, эритроциты , доставляют вдыхаемый нами кислород от легких к клеткам тела. Помогает им в этом гемоглобин — иссиня-красный пигмент, содержащий железо. Вот как это происходит. В легких, где капиллярные сосуды особенно узкие и длинные, эритроцитам приходится буквально протискиваться сквозь них. Они прижимаются к стенкам капилляров, и лишь тончайший слой эпителия отделяет их от альвеол — легочных пузырьков, в которых заключен кислород. Этот слой не мешает железу гемоглобина захватывать кислород и, образуя с ним нестойкое соединение оксигемоглобин, снабжать кислородом красные кровяные тельца. При этом гемоглобин меняет свой цвет. То же происходит и с кровью: из темно-красной она, насытившись кислородом, становится ярко-алой. Теперь эритроциты разносят кислород по всему телу. С помощью кислорода клетки тела сжигают (окисляют) водород, добытый ими из пищи, превращая его в воду и вырабатывая АТФ. Попутно образуется углекислый газ. Часть его проникает в красные кровяные тельца. Большую же часть кровяная плазма доставляет в легкие, а оттуда углекислый газ при выдохе выводится наружу.

Нелегко обеспечить кислородом 100 трлн. клеток. Поэтому количество эритроцитов в крови человека очень велико: около 25 трлн. Если их вытянуть в цепочку, то ее длина составит 200000 км — можно пять раз опоясать земной шар. Так же велика и общая площадь поверхности красных кровяных телец, участвующих в газообмене, — 3200 кв. м. Это площадь квадрата со стороной около 57 м.

Эритроциты живут очень недолго. Уже через четыре месяца они разрушаются (происходит это в основном в селезенке). Поэтому каждый день в костном мозге образуется более 200 млрд. новых красных кровяных телец.

Лейкоциты

Мы уже знаем, что эритроциты переносят кислород и углекислый газ. Мы убедились, что они содержат вещества, от которых зависит, какая группа крови у человека. Их родственники лейкоциты — так ученые именуют белые кровяные тельца — мало на них похожи. Выполняют они совсем другие задачи. Всюду, куда проникают возбудители заболеваний, немедленно собирается множество лейкоцитов. По капиллярам они пробираются в ткань, пораженную болезнью, и обрушиваются на врага. Начинается настоящая война.

Гранулоциты, как и остальные белые кровяные тельца, выполняют роль защитников организма, При инфекционном заболевании количество их резко возрастает. На этом рисунке видно, как гранулоцит-фагоцит нападает на палочковидную бактерию и я пожирает» ее, то есть захватывает бактерию, поглощает и переваривает ее.

Одни лейкоциты выделяют вещества, от которых вторгшиеся бактерии гибнут. Другие набрасываются на непрочных гостей, поглощают и переваривают их. В этой борьбе погибают и сами лейкоциты. Но их жертвы оправданны: погибшие лейкоциты источают вещества, которые приманивают их собратьев. К очагу заболевания устремляются другие белые кровяные тельца. Ряды бойцов, защищающих организм, смыкаются все плотнее. Наконец лейкоциты окружают очаг болезни. Они действуют, словно армия, берущая противника в кольцо. Это явление, называемое фагоцитозом, открыл в 1883 г. русский ученый Илья Ильич Мечников, один из основоположников микробиологии и иммунологии. Мечников назвал лейкоциты «пожирающими» — фагоцитами. Иногда из остатков уничтоженных клеток, бактерий и лейкоцитов образуется вязкая желтая жижа — гной. Позднее сами же лейкоциты расчищают место былого «сражения». Теперь понятно, почему в крови человека, инфицированного бактериями, количество белых кровяных телец резко увеличивается. Случается такое и после пересадки пациенту чужого — донорского — органа. Лейкоциты воспринимают инородную ткань как своего врага и пытаются во что бы то ни стало уничтожить ее. Поэтому пересадка органа часто оканчивается неудачей — организм отторгает его.

Известно несколько видов белых кровяных телец: гранулоциты, лимфоциты, моноциты. Различают их по форме и месту образования — в костном мозге и в лимфатических узлах. Роднит лейкоциты разных видов одно: все они защищают организм.