Органоиды находятся в клеточном ядре. Строение клеток эукариот


Растительные клетки - эукариотические клетки, однако несколькими своими свойствами они отличаются от клеток остальных эукариот. К их отличительным чертам относят:
  • Крупная центральная вакуоль, пространство, заполненное клеточным соком и ограниченное мембраной - тонопластом. Вакуоль играет ключевую роль в поддержании клеточного тургора, контролирует перемещение молекул из цитозоля в выделения клетки, хранит полезные вещества и расщепляет отслужившие старые белки и органеллы.
  • Есть клеточная стенка, состоящая главным образом из целлюлозы, а также гемицеллюлозы, пектина и во многих случаях лигнина. Она образуется протопластом поверх клеточной мембраны. Она отлична от клеточной стенки грибов, состоящей из хитина, и бактерий, построенной из пептидогликана (муреина).
  • Специализированные пути связи между клетками - плазмодесмы, цитоплазматические мостики: цитоплазма и эндоплазматический ретикулум (ЭПР) соседних клеток сообщаются через поры в клеточных стенках.
  • Пластиды, из которых наиболее важны хлоропласты. Хлоропласты содержат хлорофилл, зелёный пигмент, поглощающий солнечный цвет. В них осуществляется фотосинтез, в ходе которого клетка синтезирует органические вещества из неорганических. Другими пластидами являются лейкопласты: амилопласты, запасающие крахмал, элайопласты, хранящие жиры и др., а также хромопласты, специализирующиеся на синтезе и хранении пигментов. Как и митохондрии, чей геном у растений содержит 37 генов, пластиды имеют собственные геномы (пластомы), состоящие из около 100-120 уникальных генов. Как предполагается, пластиды и митохондрии возникли как прокариотические эндосимбионты, поселившиеся в эукариотических клетках.
  • Деление клеток (митоз) наземных растений и некоторых водорослей, особенно харовых (Charophyta) и порядка Trentepohliales характеризуется наличием дополнительной стадии - препрофазы. Помимо этого цитокинез у них осуществляется при помощи фрагмопласта - «формы» для строящейся клеточной пластинки.
  • Мужские половые клетки мхов и папоротниковидных имеют жгутик, схожий со жгутиком сперматозоидов животных, но у семенных растений - голосеменных и цветковых - они лишены жгутика и называются спермиями.
  • Из присущих животной клетке органелл у растительной отсутствуют только центриоли.

Функции органоидов клетки

Органоиды клетки и их функции:

1. Клеточная оболочка - состоит из 3 слоев:

  • жесткая клеточная стенка;
  • тонкий слой пектиновых веществ;
  • тонкая цитоплазматическая нить.

Клеточная оболочка обеспечивает механическую опору и защиту, скрепляет друг с другом соседние клетки, объединяет протопласты соседних клеток в единую систему.

2. Плазматическая мембрана - имеет сложную структуру, состоит из расположенных определенным образом слоев липидов и белков. Обеспечивает избирательно проницаемый барьер, регулирующий обмен между клеткой и средой.

3. Цитоплазма - внутренняя полужидкая среда клетки. В цитоплазме протекают процессы обмена веществ, она объединяет органоиды клетки в единое целое и обеспечивает их взаимодействие.

4. Ядро - заключено в оболочку из двух мембран, компоненты ядра - клеточный сок, хроматин и ядрышко. Хромосомы ядра регулируют все виды клеточной активности: деление ядра лежит в основе самовоспроизведения.

5. Ядрышко - небольшая структура, включенная в ядро. Ядрышко - это место образования рибосом.

6. Эндоплазматический ретикулум (ЭР) - система уплощенных мембранных мешочков - цистерн. Поверхность шероховатого ЭР покрыта рибосомами, гладкого ЭР - нет. По цистернам шероховатого ЭР транспортируется белок, синтезированный на рибосомах. Гладкий ЭР - место синтеза липидов и стероидов.

7. Рибосомы - состоят из 2 субчастиц - большой и малой. Могут быть связаны с ЭР или свободно лежать в цитоплазме. Рибосомы - место синтеза белков.

8. Митохондрии - окружены оболочками из двух мембран. Внутренние мембраны образуют складки (кристы), внутреннее содержимое митохондрии - матрикс. Участвуют в процессах внутриклеточного окисления, обеспечивают энергетический запас.

9. Аппарат Гольджи - стопка уплощенных мембранных мешочков цистерн с непрерывно отделяющимися пузырьками. Участвует в процессе секреции, в нем образуются лизосомы.

10. Лизосомы - одномембранный мешочек, заполненный пищеварительными ферментами. Выполняют функции, связанные с распадом структур или молекул в клетке.

11. Клеточный центр - состоит из 2 мельчайших частиц - центриолей. Участвует в образовании веретена деления.

12. Пластиды - двухмембранный органоид растительной клетки. Хромопласты содержат пигменты, лейкопласты - запасное вещество (крахмал). Выполняют сигнальную (хромопласты) и запасную (лейкопласты) функции.

13. Хлоропласты - крупная пластида, содержащая хлорофилл. Участвует в процессе фотосинтеза.

14. Вакуоль - органоид содержит клеточный сок, ограничен одной мембраной. Выполняет запасающую функцию.



Органоиды постоянные и обязательные компоненты клеток; специализированные участки цитоплазмы клетки, имеющие определенную структуру и выполняющие определенные функции в клетке. Различают органоиды общего и специального назначения.

Органоиды общего назначения имеются в большинстве клеток (эндоплазматическая сеть, митохондрии, пластиды, комплекс Гольджи, лизосомы, вакуоли, клеточный центр, рибосомы). Органоиды специального назначения характерны только для специализированных клеток (миофибриллы, жгутики, реснички, сократительные и пищеварительные вакуоли). Органоиды (за исключением рибосом и клеточного центра) имеют мембранное строение.

Эндоплазматическая ретикулюм(ЭПР) это разветвленная система соединенных между собой полостей, трубочек и каналов, образованных элементарными мембранами и пронизывающая всю толщу клетки. Открыта в 1943 г. Портером. Особенно много каналов эндоплазматической сети в клетках с интенсивным обменом веществ. В среднем объем ЭПС составляет от 30% до 50% общего объема клетки. ЭПС лабильна. Форма внутренних лакун и кана

лов, их размер, расположение в клетке и количество изменяются в процессе жизнедеятельности. Развита сильнее в животных клетка. ЭПС морфологически и функционально связана с пограничным слоем цитоплазмы, ядерной оболочкой, рибосомами, комплексом Гольджи, вакуолями, образуя вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и передвижения веществ внутри клетки. Вблизи эндоплазматической сети накапливаются митохондрии и пластиды.

Выделяют две разновидности ЭПС: шероховатую и гладкую. На мембранах гладкой (агранулярной) ЭПС локализованы ферменты систем жирового и углеводного синтеза: здесь происходит синтез углеводов и почти всех клеточных липидов. Мембраны гладкой разновидности эндоплазматической сети преобладают в клетках сальных желез, печени (синтез гликогена), в клетках с большим содержанием питательных веществ (семена растений). На мембране шероховатой (гранулярной) ЭПС располагаются рибосомы, где осуществляется биосинтез белков. Часть синтезируемых ими белков включается в состав мембраны эндоплазматической сети, остальные поступают в просвет ее каналов, где преобразуются и транспортируются в комплекс Гольджи. Особенно много шероховатых мембран в клетках желез и нервных клетках.

Рис. Шероховатый и гладкий эндоплазматический ретикулум.

Рис. Транспорт веществ по системе ядро – эндоплазматический ретикулум (ЭПР) – комплекс Гольджи.

Функции эндоплазматической сети :

1) синтез белков (шероховатая ЭПС), углеводов и липидов (гладкая ЭПС);

2) транспорт веществ, как поступивших в клетку, так и вновь синтезируемых;

3) деление цитоплазмы на отсеки (компартменты), что обеспечивает пространственное разделение ферментных систем, необходимое для их последовательного вступления в биохимические реакции.

Митохондрии – присутствуют практически во всех типах клеток одно- и многоклеточных организмов (за исключением эритроцитов млекопитающих). Число их в разных клетках варьирует и зависит от уровня функциональной активности клетки. В клетке печени крысы их около 2500, а в мужской половой клетке некоторых моллюсков – 20 – 22. Их больше в грудной мышце летающих птиц, чем в грудной мышце нелетающих.

Митохондрии имеют форму сферических, овальных и цилиндрических телец. Размеры составляют 0,2 – 1,0 мкм и диаметре и до 5 - 7 мкм в длину.

Рис. Митохондрия.

Длина нитевидных форм достигает 15-20 мкм. Снаружи митохондрии ограничены гладкой наружной мембраной, сходной по составу с плазмалеммой. Внутренняя мембрана образует многочисленные выросты – кристы – и содержит многочисленные ферменты, АТФ-сомы (грибовидные тела), участвующие в процессах трансформации энергии питательных веществ в энергию АТФ. Количество крист зависит от функции клетки. В митохондриях мышц крист очень много, они занимают всю внутреннюю полость органоида. В митохондриях эмбриональных клеток кристы единичны. В растительных выросты внутренней мембраны чаще имеют форму трубочек. Полость митохондрии заполнена матриксом, в котором содержатся вода, минеральные соли, белки-ферменты, аминокислоты. Митохондрии имеют автономную белоксинтезирующую систему: кольцевую молекулу ДНК, различные виды РНК и более мелкие, чем в цитоплазме рибосомы.

Митохондрии тесно связаны мембранами эндоплазматической сети, каналы которой часто открываются прямо в митохондрии. При повышении нагрузки на орган и усилении синтетических процессов, требующих затраты энергии, контакты между ЭПС и митохондриями становятся особенно многочисленными. Число митохондрий может быстро увеличиваться путем деления. Способность митохондрий к размножению обусловлена присутствием в них молекулы ДНК, напоминающей кольцевую хромосому бактерий.

Функции митохондрий :

1) синтез универсального источника энергии – АТФ;

2) синтез стероидных гормонов;

3) биосинтез специфических белков.

Пластиды – органоиды мембранного строения, характерные только для растительных клеток. В них происходят процессы синтеза углеводов, белков и жиров. По содержанию пигментов их делят на три группы: хлоропласты, хромопласты и лейкопласты.

Хлоропласты имеют относительно постоянную эллиптическую или линзовидную форму. Размер по наибольшему диаметру составляет 4 – 10 мкм. Количество в клетке колеблется от нескольких единиц до нескольких десятков. Их размер, интенсивность окраски, количество и расположение в клетке зависят от условий освещения, вида и физиологического состояния растений.

Рис. Хлоропласт, строение.

Это белково-липоидные тела, состоящие на 35-55% из белка, 20-30% - липидов, 9% - хлорофилла, 4-5% каратиноидов, 2-4% нуклеиновых кислот. Количество углеводов варьирует; обнаружено некоторое количество минеральных веществ Хлорофилл – сложный эфир органической двухосновной кислоты – хлорофиллина и органических спиртов – метилового (СН 3 ОН) и фитола (С 20 Н 39 ОН). У высших растений в хлоропластах постоянно присутствуют хлорофилл а – имеет сине-зеленую окраску, и хлорофилл b – желто-зеленую; причем содержание хлорофилла, а в несколько раз больше.

Кроме хлорофилла в состав хлоропластов входят пигменты - каротин С 40 Н 56 и ксантофилл С 40 Н 56 О 2 и некоторые другие пигменты (каратиноиды). В зеленом листе желтые спутники хлорофилла маскируются более яркой зеленой окраской. Однако осенью, при листопаде, у большинства растений хлорофилл разрушается и тогда обнаруживается присутствие в листе каратиноида – лист становится желтым.

Хлоропласт одет двойной оболочкой, состоящей из наружной и внутренней мембран. Внутреннее содержимое – строма – имеет ламеллярное (пластинчатое) строение. В бесцветной строме выделяют граны – окрашенные в зеленые цвет тельца, 0,3 – 1,7 мкм. Они представляют собой совокупность тилакоидов – замкнутых телец в виде плоских пузырьков или дисков мембранного происхождения. Хлорофилл в виде мономолекулярного слоя располагается между белковым и липидным слоями в тесной связи с ними. Пространственное расположение молекул пигментов в мембранных структурах хлоропластов является весьма целесообразным и создает оптимальные условия для наиболее эффективного поглощения, передачи и использования лучистой энергии. Липиды образуют безводные диэлектрические слои мембран хлоропласта, необходимые для функционирования электронно-транспортной цепи. Роль звеньев цепи переноса электронов выполняют белки (цитохромы, пластохиноны, ферредоксин, пластоцианин) и отдельные химические элементы – железо, марганец и др. Количество гран в хлоропласте от 20 до 200. Между гранами, связывая их друг с другом, располагаются ламеллы стромы. Ламеллы гран и ламеллы стромы имеют мембранное строение.

Внутренне строение хлоропласта делает возможным пространственное разобщение многочисленных и разнообразных реакций, составляющих в своей совокупности содержание фотосинтеза.

Хлоропласты, как и митохондрии, содержат специфическую РНК и ДНК, а также более мелкие рибосомы и весь молекулярный арсенал, необходимый для биосинтеза белка. У этих органоидов имеется достаточное для обеспечения максимальной активности белоксинтезирующей системы количество и-РНК. Вместе с тем в них содержится и достаточно ДНК для кодирования определенных белков. Они размножаются делением, путем простой перетяжки.

Установлено, что хлоропласты могут изменять свою форму, размеры и положение в клетке, т. е. способны самостоятельно двигаться (таксис хлоропластов). В них обнаружено два типа сократительных белков, за счет которых, очевидно, и осуществляется активное движение этих органоидов в цитоплазме.

Хромопласты широко распространены в генеративных органах растений. Они окрашивают лепестки цветков (лютика, георгина, подсолнечника), плоды (томатов, рябины, шиповника) в желтый, оранжевый, красный цвета. В вегетативных органах хромопласты встречаются значительно реже.

Окраска хромопластов обусловлена присутствием каратиноидов – каротина, ксантофилла и ликопина, которые в пластидах находятся в различном состоянии: в виде кристаллов, липоидного раствора или в соединении с белками.

Хромопласты, по сравнению с хлоропластами, имеют более простое строение – в них отсутствует ламеллярная структура. Химический состав также отличен: пигменты – 20–50%, липиды до 50%, белки – около 20%, РНК – 2-3%. Это свидетельствует о меньшей физиологической активности хлоропластов.

Лейкопласты не содержат пигментов, они бесцветны. Эти самые мелкие пластиды имеют округлую, яйцевидную или палочковидную форму. В клетке они часто группируются вокруг ядра.

Внутренне структура, еще менее дифференцирована по сравнению с хлоропластами. В них осуществляется синтез крахмала, жиров, белков. В соответствии с этим выделяют три вида лейкопластов – амилопласты (крахмал), олеопласты (растительные масла) и протеопласты (белки).

Возникают лейкопласты из пропластид, с которыми они сходны по форме и строению, а отличаются лишь размерами.

Все пластиды генетически связаны друг с другом. Они образуются из пропластид – мельчайших бесцветных цитоплазматических образований, сходных по внешнему виду с митохондриями. Пропластиды находятся в спорах, яйцеклетках, в эмбриональных клетках точек роста. Непосредственно из пропластид образуются хлоропласты (на свету) и лейкопласты (в темноте), а из них развиваются хромопласты, являющиеся конечным продуктом в эволюции пластид в клетке.

Комплекс Гольджи – впервые был обнаружен в 1898 г. Итальянским ученым Гольджи в животных клетках. Это система внутренних полостей, цистерн (5-20), располагающихся сближено и параллельно друг другу, и крупных и мелких вакуолей. Все эти образования имеют мембранное строение и являются специализированными участками эндоплазматической сети. В животных клетках комплекс Гольджи развит лучше, чем в растительных; в последних он называется диктиосомы.

Рис. Строение комплекса Гольджи.

Попадающие в пластинчатый комплекс белки и липиды, подвергаются различным преобразованиям, накапливаются, сортируются, упаковываются в секреторные пузырьки и транспортируются по назначению: к различным структурам внутри клетки или за пределы клетки. Мембраны комплекса Гольджи также синтезируют полисахариды и образуют лизосомы. В клетках молочных желез комплекс Гольджи участвует в образовании молока, а в клетках печени – желчи.

Функции комплекса Гольджи :

1) концентрация, обезвоживание и уплотнение синтезированных в клетке белков, жиров, полисахаридов и веществ, поступивших извне;

2) сборка сложных комплексов органических веществ и подготовка их к выведению из клетки (целлюлоза и гемицеллюлоза у растений, гликопротеины и гликолипиды у животных);

3) синтез полисахаридов;

4) образование первичных лизосом.

Лизосомы - небольшие овальные тельца диаметром 0,2-2,0 мкм. Центральное положение занимает вакуоль, содержащая 40 (по разным данным 30-60) гидролитических ферментов, способных в кислой среде (рН 4,5-5) расщеплять белки, нуклеиновые кислоты, полисахариды, липиды и другие вещества.

Вокруг этой полости располагается строма, одетая снаружи элементарной мембраной. Расщепление веществ при помощи ферментов называется лизисом, поэтому органоид назван лизосомой. Образование лизосом происходит в комплексе Гольджи. Первичные лизосомы приближаются непосредственно к пиноцитозным или фагоцитозным вакуолям (эндосомам) и изливают свое содержимое в их полость, образуя вторичные лизосомы (фагосомы), внутри которых и происходит переваривание веществ. Продукты лизиса через мембрану лизосом поступают в цитоплазму и включаются в дальнейший обмен веществ. Вторичные лизосомы с остатками непереваренных веществ называются остаточными тельцами. Примером вторичных лизосом являются пищеварительные вакуоли простейших.

Функции лизосом :

1) внутриклеточное переваривание макромолекул пищи и чужеродных компонентов, поступающих в клетку при пино- и фагоцитозе, обеспечивая клетку дополнительным сырьем для биохимических и энергетических процессов;

2) при голодании лизосомы переваривают некоторые органоиды и на какое-то время пополняют запас питательных веществ;

3) разрушение временных органов эмбрионов и личинок (хвост и жабры у лягушки) в процессе постэмбрионального развития;

Рис. Образование лизосом

Вакуоли полости в цитоплазме растительных клеток и протист, заполненные жидкостью. Имеют форму пузырьков, тонких канальцев и другую. Вакуоли образуются из расширений эндоплазматической сети и пузырьков комплекса Гольджи как тончайшие полости, затем по мере роста клетки и накопления продуктов обмена объем их увеличивается, а количество сокращается. Развитая сформировавшаяся клетка имеет обычно одну большую вакуоль, занимающую центральное положение.

Вакуоли растительных клеток заполнены клеточным соком, который представляет собой водный раствор органических (яблочная, щавелевая, лимонная кислоты, сахара, инулин, аминокислоты, белки, дубильные вещества, алкалоиды, глюкозиды) и минеральных (нитраты, хлориды, фосфаты) веществ.

У протист встречаются пищеварительные вакуоли и сократительные.

Функции вакуолей :

1) хранилища запасных питательных веществ и вместилища выделений (у растений);

2) определяют и поддерживают осмотическое давление в клетках;

3) обеспечивают внутриклеточное пищеварение у протист.

Рис. Клеточный центр.

Клеточный центр обычно находится вблизи ядра и состоит из двух центриолей, расположенных перпендикулярно друг другу и окруженных лучистой сферой. Каждая центриоль представляет собой полое цилиндрическое тельце длиной 0,3-0,5 мкм и длиной 0,15 мкм, стенка которого образована 9 триплетами микротрубочек. Если центриоль лежит в основании реснички или жгутика, то ее называют базальным тельцем .

Перед делением центриоли расходятся к противоположным полюсам и возле каждой из них возникает дочерняя центриоль. От центриолей, расположенных на разных полюсах клетки, образуются микротрубочки, растущие навстречу друг другу. Они формируют митотическое веретено, способствующее равномерному распределению генетического материала между дочерними клетками, являются центром организации цитоскелета. Часть нитей веретена прикрепляется к хромосомам. В клетках высших растений клеточный центр центриолей не имеет.

Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы. Они возникают в результате дупликации уже имеющихся. Это происходит при расхождении центриолей. Незрелая центриоль содержит 9 одиночных микротрубочек; по-видимому, каждая микротрубочка является матрицей при сборке триплетов, характерных для зрелой центриоли.

Центросома характерна для клеток животных, некоторых грибов, водорослей, мхов и папоротников.

Функции клеточного центра :

1) образование полюсов деления и формирование микротрубочек веретена деления.

Рибосомы - мелкие сферические органоиды, от 15 до 35 нм. Состоят из двух субъединиц большой (60S) и малой (40S). Содержат около 60% белка и 40% рибосомальной РНК. Молекулы рРНК образуют ее структурный каркас. Большинство белков специфически связано с определенными участками рРНК. Некоторые белки входят в состав рибосом только во время биосинтеза белка. Субъединицы рибосом образуются в ядрышках. и через поры в ядерной оболочке поступают в цитоплазму, где располагаются либо на мембране ЭПА, либо на наружной стороне ядерной оболочки, либо свободно в цитоплазме. Сначала на ядрышковой ДНК синтезируются рРНК, которые затем покрываются поступающими из цитоплазмы рибосомальными белками, расщепляются до нужных размеров и формируют субъединицы рибосом. Полностью сформированных рибосом в ядре нет. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка. По сравнению с митохондриями, пластидами, клетками прокариот рибосомы в цитоплазме эукариотических клеток крупнее. Могут объединяться по 5-70 единиц в полисомы.

Функции рибосом :

1) участие в биосинтезе белка.

Рис. 287. Рибосома: 1 - малая субъединица; 2 - большая субъединица.

Реснички, жгутики выросты цитоплазмы, покрытые элементарной мембраной, под которой находится 20 микротрубочек, образующих 9 пар по периферии и две одиночные в центре. У основания ресничек и жгутиков расположены базальные тельца. Длина жгутиков достигает 100 мкм. Реснички – это короткие – 10-20 мкм – жгутики. Движение жгутиков винтовое, а ресничек – веслообразное. Благодаря ресничкам и жгутикам передвигаются бактерии, протисты, ресничные, перемещаются частицы или жидкости (реснички мерцательного эпителия дыхательных путей, яйцеводов), половые клетки (сперматозоиды).

Рис. Строение жгутиков и ресничек эукариот

Включения - временные компоненты цитоплазмы, то возникающие, то исчезающие. Как правило, они содержатся в клетках на определенных этапах жизненного цикла. Специфика включений зависит от специфики соответствующих клеток тканей и органов. Включения встречаются преимущественно в растительных клетках. Они могут возникать в гиалоплазме, различных органеллах, реже в клеточной стенке.

В функциональном отношении включения представляют собой либо временно выведенные из обмена веществ клетки соединения (запасные вещества - крахмальные зерна, липидные капли и отложения белков), либо конечные продукты обмена (кристаллы некоторых веществ).

Крахмальные зерна . Это наиболее распространенные включения растительных клеток. Крахмал запасается у растений исключительно в виде крахмальных зерен. Они образуются только в строме пластид живых клеток. В процессе фотосинтеза в зеленых листьях образуется ассимиляционный , или первичный крахмал. Ассимиляционный крахмал в листьях не накапливается и, быстро гидролизуясь до сахаров, оттекает в части растения, в которых происходит его накопление. Там он вновь превращается в крахмал, который называют вторичным. Вторичный крахмал образуется и непосредственно в клубнях, корневищах, семенах, то есть там, где он откладывается в запас. Тогда его называют запасным . Лейкопласты, накапливающие крахмал, называют амилопластами . Особенно богаты крахмалом семена, подземные побеги (клубни, луковицы, корневища), паренхима проводящих тканей корней и стеблей древесных растений.

Липидные капли . Встречаются практически во всех растительных клетках. Наиболее богаты ими семена и плоды. Жирные масла в виде липидных капель - вторая по значению (после крахмала) форма запасных питательных веществ. Семена некоторых растений (подсолнечник, хлопчатник и т.д.) могут накапливать до 40% масла от массы сухого вещества.

Липидные капли, как правило, накапливаются непосредственно в гиалоплазме. Они представляют собой сферические тела обычно субмикроскопического размера. Липидные капли могут накапливаться и в лейкопластах, которые называют элайопластами .

Белковые включения образуются в различных органеллах клетки в виде аморфных или кристаллических отложений разнообразной формы и строения. Наиболее часто кристаллы можно встретить в ядре - в нуклеоплазме, иногда в перинуклеарном пространстве, реже в гиалоплазме, строме пластид, в расширениях цистерн ЭПР, матриксе пероксисом и митохондриях. В вакуолях встречаются как кристаллические, так и аморфные белковые включения. В наибольшем количестве кристаллы белка встречаются в запасающих клетках сухих семян в виде так называемых алейроновых 3 зерен или белковых телец .

Запасные белки синтезируются рибосомами во время развития семени и откладываются в вакуоли. При созревании семян, сопровождающемся их обезвоживанием, белковые вакуоли высыхают, и белок кристаллизуется. В результате этого в зрелом сухом семени белковые вакуоли превращаются в белковые тельца (алейроновые зерна).

Органеллы, они же органоиды являются основой правильного развития клетки. Они представляют собой постоянные, то есть никуда не исчезающие структуры, которые имеют определенное строение, от которого напрямую зависят выполняемые ими функции. Различают органоиды следующих типов: двумембранные и одномембранные. Строение и функции органоидов клетки заслуживают особого внимания для теоретического и по возможности практического изучения, так как эти структуры, несмотря на свои маленькие, не различимые без микроскопа размеры, обеспечивают поддержание жизнеспособности всех без исключения органов и организма в целом.

Двумембранные органоиды - это пластиды, клеточное ядро и митохондрии. Одномембранные — органеллы вакуолярной системы, а именно: эпс, лизосомы, комплекс (аппарат) Гольджи, различные вакуоли. Существуют также и немембранные органоиды – это клеточный центр и рибосомы. Общее свойство мембранных видов органелл - они образовались из биологических мембран. Растительная клетка отличается по строению от животной, чему не в последнюю очередь способствуют процессы фотосинтеза. Схему фотосинтетических процессов можно прочитать в соответствующей статье. Строение и функции органоидов клетки указывают на то, что для обеспечения их бесперебойной работы нужно, чтобы каждый из них в отдельности работал бес сбоев.

Клеточная стенка или матрикс состоит из целлюлозы и ее родственной структуры — гемицеллюлозы, а также пектинов. Функции стенки - защита от негативного влияния извне, опорная, транспортная (перенос из одной части структурной единицы в другую питательных веществ и воды), буферная.

Ядро образовано двойной мембраной с углублениями — порами, нуклеоплазмой, содержащей в своем составе хроматин, ядрышками, в которых хранится наследственная информация.

Вакуоль - это ни что иное, как слияние участков ЭПС, окруженной специфической мембраной, называемой тонопластом который регулирует процесс, называемый выделение и обратный ему — поступление необходимых веществ.

ЭПР представляет собой каналы, образованные мембранами, двух типов — гладкими и шероховатыми. Функции, которые выполняет эпр – синтез и транспортная.

Рибосомы – выполняют функцию синтезирования белка.

К основным органоидам относят: митохондрии, пластиды, сферосомы, цитосомы, лизосомы, пероксисомы, АГи транслосомы.

Таблица. Органоиды клетки и их функции

В этой таблице рассматриваются все имеющиеся органоиды клетки, как растительной, как и животной.

Органоид (Органелла) Строение Функции
Цитоплазма Внутренняя полужидкая субстанция, основа клеточной среды, образована мелкозернистой структурой. Содержит ядро и набор органоидов. Взаимодействие между ядром и органоидами. Транспорт веществ.
Ядро Шаровидной или овальной формы. Образовано ядерной оболочкой, состоящей из двух мембран, имеющих поры. Имеется полужидкая основа, называемая кариоплазма или клеточный сок.Хроматин или нити ДНК, образуют плотные структуры, называемые хромосомами.

Ядрышки – мельчайшие, округлые тельца ядра.

Регулирует все процессы биосинтеза, такие как обмена веществ и энергии, осуществляет передачу наследственной информации.Кариоплазма ограничивает ядро от цитоплазмы, кроме того, дает возможность осуществлять обмен между непосредственно ядром и цитоплазмой.

В ДНК заключена наследственная информация клетки, поэтому ядро – хранитель всей информации об организме.

В ядрышках синтезируются РНК и белки, из которых образуются в последствие рибосомы.

Клеточная мембрана Образована мембрана двойным слоем липидов, а также белком. У растений снаружи покрыта дополнительно слоем клетчатки. Защитная, обеспечивает форму клеток и клеточную связь, пропускает внутрь клетки необходимые вещества и выводит продукты обмена. Осуществляет процессы фагоцитоза и пиноцитоза.
ЭПС (гладкая и шероховатая) Образована эндоплазматическая сеть системой каналов в цитоплазме. В свою очередь, гладкая эпс образована, соответственно, гладкими мембранами, а шероховатая ЭПС – мембранами, покрытыми рибосомами. Осуществляет синтез белков и некоторых других органических веществ, а также является главной транспортной системой клетки.
Рибосомы Отростки шероховатой мембраны эпс шарообразной формы. Главная функция – синтез белков.
Лизосомы Пузырек, окруженный мембраной. Пищеварение в клетке
Митохондрии Покрыты наружной и внутренней мембранами. Внутренняя мембрана имеет многочисленные складки и выступы, называемые кристами Синтезирует молекулы АТФ. Обеспечивает клетку энергией.
Пластиды Тельца, окруженные двойной мембраной. Различают бесцветные (лейкопласты) зеленые (хлоропласты) и красные, оранжевые, желтые (хромопласты) Лейкопласты — накапливают крахмал.Хлоропласты — участие в процессе фотосинтеза.

Хромопласты — Накапливание каратиноидов.

Клеточный Центр Состоит из центриолей и микротрубочек Участвует в формировании цитоскелета. Участие в процессе деления клетки.
Органоиды движения Реснички, жгутики Осуществляют различные виды движения
Комплекс (аппарат) Гольджи Состоит из полостей, от которых отделяются пузырьки разных размеров Накапливает вещества, которые синтезируются собственно клеткой. Использование этих веществ или вывод во внешнюю среду.

Строение ядра — видео


Растение, как и всякий живой организм, состоит из клеток, причем каждая клетка порождается тоже клеткой. Клетка - это простейшая и обязательная единица живого, это его элемент, основа строения, развития и всей жизнедеятельности организма.

Существуют растения, построенные из одной-единственной клетки. К ним относятся одноклеточные водоросли и одноклеточные грибы. Обычно это микроскопические организмы, но есть и довольно крупные одноклеточные (длина одноклеточной морской водоросли ацетабулярии достигает 7 см). Большинство растений, с которыми мы сталкиваемся в повседневной жизни, - это многоклеточные организмы, построенные из большого числа клеток. Например, в одном листе древесного растения их около 20 000 000. Если дерево имеет 200 000 листьев (а это вполне реальная цифра), то число клеток во всех них составляет 4 000 000 000 000. Дерево в целом содержит еще раз в 15 больше клеток.

Растения, за исключением некоторых низших, состоят из органов, каждый из которых выполняет свою функцию в организме. Например, у цветковых растений органами являются корень, стебель, лист, цветок. Каждый орган обычно построен из нескольких тканей. Ткань - это собрание клеток, сходных по строению и функциям. Клетки каждой ткани имеют свою специальность. Выполняя работу по своей специальности, они вносят вклад в жизнь целого растения, которая состоит в сочетании и взаимодействии разных видов работы различных клеток, органов, тканей.

Основными, самыми общими компонентами, из которых построены клетки, являются ядро, цитоплазма с многочисленными органоидами различного строения и функций, оболочка, вакуоль. Оболочка покрывает клетку снаружи, под ней находится цитоплазма, в ней - ядро и одна или несколько вакуолей. Как строение, так и свойства клеток разных тканей в связи с их разной специализацией резко различаются. Перечисленные основные компоненты и органоиды развиты в них в различной степени, имеют неодинаковое строение, а иногда тот или иной компонент может вовсе отсутствовать.

Главнейшими группами тканей, из которых построены вегетативные (непосредственно не связанные с размножением) органы высшего растения, являются следующие: покровные, основные, механические, проводящие, выделительные, меристематические. В каждую группу обычно входит несколько тканей, имеющих сходную специализацию, но построенных каждая по-своему из определенного вида клеток. Ткани в органах не изолированы друг от друга, а составляют системы тканей, в которых элементы отдельных тканей чередуются. Так, древесина - это система из механической и проводящей, а иногда и основной ткани.

В растительной клетке следует различать клеточную оболочку и содержимое. Основные жизненные свойства присуши именно содержимому клетки - протопласту. Кроме того, для взрослой растительной клетки характерно наличие вакуоли - полости, заполненной клеточным соком. Протопласт состоит из ядра, цитоплазмы и включенных в нее крупных органелл, видимых в световой микроскоп: пластид, митохондрий. В свою очередь цитоплазма представляет собой сложную систему с многочисленными мембранными структурами, такими, как аппарат Гольджи, эндоплазматический ретикулум, лизосомы, и немембранными структурами-микротрубочки, рибосомы и др. Все указанные органеллы погружены в матрикс цитоплазмы - гиалоплазму, или основную плазму.

Каждая из органелл имеет свою структуру и ультраструктуру. Под ультраструктурой понимается расположение в пространстве отдельных молекул, составляющих данную органеллу. Даже с помощью электронного микроскопа далеко не всегда можно увидеть ультраструктуру более мелких органелл (рибосом). По мере развития науки открываются все новые структурные образования, находящиеся в цитоплазме, и в этой связи наши современные представления о ней ни в коей мере не являются окончательными. Размеры клеток и отдельных органелл приблизительно следующие: клетка 10 мкм, ядро 5-30 мкм, хлоропласт 2-6 мкм, митохондрии 0,5-5 мкм, рибосомы 25 нм. В создании надмолекулярных структур отдельных органоидов клетки большое значение имеют так называемые слабые химические связи.

Наиболее важную роль играют водородные, вандерваальсовы и ионные связи. Важнейшей особенностью является то, что энергия образования этих связей незначительна и лишь немного превышает кинетическую энергию теплового движения молекул. Именно поэтому слабые связи легко возникают и легко разрушаются. Средняя продолжительность жизни слабой связи составляет лишь долю секунды. Наряду со слабыми химическими связями большое значение имеют гидрофобные взаимодействия. Обусловлены они тем, что гидрофобные молекулы или части молекул, находящиеся в водной среде, располагаются так, чтобы не контактировать с водой. При этом молекулы воды, объединяясь друг с другом, как бы выталкивают неполярные группы, сближая их. Именно слабые связи определяют в большой степени конформацию (форму) таких макромолекул, как белки и нуклеиновые кислоты, лежат в основе взаимодействия молекул и, как следствие, в образовании и самосборке субклеточных структур, в том числе органелл клетки.

Для поддержания сложной структуры цитоплазмы необходима энергия. Согласно второму закону термодинамики всякая система стремится к уменьшению упорядоченности, к энтропии. Поэтому любое упорядоченное расположение молекул требует притока энергии извне. Выяснение физиологических функций отдельных органелл связано с разработкой метода их изоляции (выделения из клетки). Таков метод дифференциального центрифугирования, который основан на разделении отдельных компонентов протопласта. В зависимости от ускорения удается выделить все более и более мелкие фракции органелл. Совместное применение методов электронной мик-роскопии и дифференциального центрифугирования дало возможность наметить связи между структурой и функциями отдельных органелл.

Растительная клетка. Её строение, функции, химический состав. Органоиды клетки.

Название органоида

Строение

Функции

Мембрана

Состоит из клетчатки. Она очень упругая (это ее физическое св-во). Состоит из 3-х слоев: внутренний и внешний из которых состоят из молекул белка; средний - из двухслойной молекулы фосфолипидов. Внешняя оболочка – мягкая, образована из молекул гликокаликса.

Опорная функция

Плазмалемма

Очень тонкая (10 мм). Внешняя сторона образована из углеводов, внутренняя – из толстой белковой молекулы. Покрыта молекулами углеводо-гликоликса толщиной 3- 4 мм. Химическую основу мембраны составляют: белки - 60%, жиры - 40% и углеводы - 2-10%.

*Проницаемость;

*Транспортная ф-я;

*Защитная ф-я.

Цитоплазма

Полужидкое вещество, окружающее ядро-клетки. Основа - гиоплазма. Ее состав разнообразен. В ее составе содержатся гранулированные тела, белки, ферменты, нуклеиновые кислоты, углеводы, молекулы АТФ; содержит молекулы белка тубулина.

Может переходить из 1 состояния (жидкого) в другое - твердое и наоборот.

МЕМБРАННЫЕ ОРГАНОИДЫ

ЭПС (эндоплазматическая сеть)

Состоит из полостей и копальцев. Делится на 2 вида - гранулярную и гладкую. Гранулярная - продолговатые копальца и полости; имеются плотные гранулы. Поры ЭПС взаимосвязаны с порами ядерной мембраны.

*Уч-ет в синтезе молекул гликолипидов и их транспортировке;

*Уч-ет в биосинтезе белка, транспортировке синтезирующих веществ.

Комплекс Гольджи

Находится в нервных клетках. Его мембрана очень хорошо впитывает раствор осмия. Комплекс Гольджи входит в состав всех эукариотических клеток. Иногда встречается в виде сети, соединенной между собой системой полостей. Бывает овальной или сердцевидной.

*Уч-ет в формировании продуктов жизнедеятельности клетки;

*Распадается до диктиосомы (при делении);

*Выделительная функция.

Лизосома

Означает растворитель вещ-в. Встречается во всех клетках эукариот (больше в лейкоцитах). В составе содержатся ферменты гидролиза. Лизосома окружена липопротеидной мембраной, при ее разрушении ферменты лизосом воздействуют на внешнюю среду. В состав лизосом входит около 60 гидролизных ферментов.

*Ф-я всасывания;

*Ф-я выделения;

*Функция защитная.

Митохондрия

В клетке имеет форму зерна, гранулы и встречается в кол-ве от 1 до 100 тысяч. Кол-во зависит от активности клетки. Иногда мит-рия находится в непрерывном движении. Ее ср. длина 10 мкм, диаметр 0,2-1 мкм. Она относится к друмембранным органоидам и сост. из: а) наружной мембраны, б) внутренней мембраны, в) межмембранного пространства. В матриксе митохондрии встречаются кольцевидные ДНК и РНК, рибосомы, гранулы, тельца. Синтезируются белки и жиры. Мит-рия состоит на 65-70% из белка, 25-30% из липидов, нуклеиновых кислот и витаминов. Митохондрия - это система синтеза белка.

*Ф-ю мит-рии иногда выполняют хлоропласты;

*Транспортная ф-я;

*Синтез белка;

*Синтез АТФ.

Пластиды - мембранные органоиды

Это основной органоид растит. клетки.

1) хлоропласты - зеленые, по форме овальные, длина 5 мкм, ширина 2-4 мкм, толщина – 7 мкм. Внутри много широко мембранных тилакоидов и составляющих его массу белков стром. Имеются нуклеиновые кислоты - ДНК, РНК, рибосомы. Размножаются делением.

2) хромопласты - разного цвета. В них находятся различные пигменты. Их роль велика.

3) лейкопласты - бесцветные. Находятся в тканях половых клеток, цитоплазмах спор и материнских гамет, семенах, плодах, корнях. В них идет синтез и накопление крахмала.

*Выполняют процесс фотосинтеза

НЕМЕМБРАННЫЕ ОРГАНОИДЫ

Рибосома

Сост. из двух частей: большая и малая. Имеет яйцеобразную форму, ср. диаметр-15-35нм. Бывают 2-х видов: эукариотические и прокариотические. Общ. Размер эукариотических: 80s, малой - 20s, большой - 60s. Прокариотических: от 30s до 70s (колеблется). Рибосома сост. из РНК (на 50-60% из белков).

*Тут происходит биосинтез белка;

*Синтез молекулы белка;

*Транспортная ф-я.

Клеточный центр

Сост. из 2-х центриолей, кот имеют цилиндрическую форму, длина из 1 мкм. Центр делится пополам перед делением клетки и подтягивается от экватора к полюсам. Кл. центр удваивается путем деления.

*Уч-ет в мейозе и митозе

Клеточное ядро

Имеет сложное строение. Ядерная оболочка сост. из 2-х трехслойных мембран. Поры ядерной мембраны открываются подобно порам ЭПС. В период клетки мембрана ядра исчезает и вновь образуется в новых клетках. Мембранам св-нна полупроницаемость. Ядро сост. из хромосом, сока ядра, ядрышка, РНК и др. частей, сохраняющих наследственную инф-ию и св-ва живого организма.

*Защитная ф-я



Органеллами (органоидами) клетки называют постоянные части клетки, имеющие определённое строение и выполняющие специфические функции. Различают мембранные и немембранные органеллы. К мембранным органеллам относят цитоплазматическую сеть (эндоплазматический ретикулум), пластинчатый комплекс (аппарат Гольджи), митохондрии, лизосомы, пероксисомы. Немембранные органеллы представлены рибосомами (полирибосомами), клеточным центром и элементами цитоскелета: микротрубочками и фибриллярными структурами.

Рис. 8. Схема ультрамикроскопического строения клетки:

1 – гранулярная эндоплазматическая сеть, на мембранах которой расположены прикреплённые рибосомы; 2 – агранулярная эндоплазматическая сеть; 3 – комплекс Гольджи; 4 – митохондрия; 5 – формирующаяся фагосома; 6 – первичная лизосома (гранула накопления); 7 – фаголизосома; 8 – эндоцитозные пузырьки; 9 – вторичная лизосома; 10 – остаточное тельце; 11 – пероксисома; 12 – микротрубочки; 13 - микрофиламенты; 14 – центриоли; 15 – свободные рибосомы; 16 – транспортные пузырьки; 17 – экзоцитозный пузырёк; 18 – жировые включения (липидная капля); 19 - включения гликогена; 20 – кариолемма (ядерная оболочка); 21 – ядерные поры; 22 – ядрышко; 23 – гетерохроматин; 24 – эухроматин; 25 – базальное тельце реснички; 26 - ресничка; 27 – специальный межклеточный контакт (десмосома); 28 – щелевой межклеточный контакт

2.5.2.1. Мембранные органоиды (органеллы)

Эндоплазматическая сеть (эндоплазматический ретикулум, цитоплазматическая сеть) - совокупность сообщающихся между собой канальцев, вакуолей и «цистерн», стенка которых образована элементарными биологическими мембранами. Открыта К.Р. Портером в 1945 го­ду. Открытие и описание эндоплазматической сети (ЭПС) обязано внедрению в практику цитологических исследований электронного микроскопа. Мембраны, образующие ЭПС, отличаются от плазмолеммы клетки меньшей толщиной (5-7 нм) и большей концентрацией белков, в первую очередь обладающих ферментативной активностью. Различают две разновидности ЭПС (рис. 8): шероховатую (гранулярную) и гладкую (агранулярную). Шероховатая ЭПС представлена уплощенными цистернами, на поверхности которых расположены рибосомы и полисомы. Мембраны гранулярной ЭПС содержат белки, способствующие связыванию рибосом и уплощению цистерн. Особенно хорошо развита шероховатая ЭПС в клетках, специализирующихся на белковом синтезе. Гладкую ЭПС формируют переплетающиеся канальцы, трубочки и небольшие пузырьки. Каналы и цистерны ЭПС этих двух разновидностей не разграничены: мембраны одного типа переходят в мембраны другого типа, формируя в области перехода так называемую переходную (транзиторную) ЭПС.

Основными функциями гранулярной ЭПС являются:

1) синтез на прикреплённых рибосомах белков (секретируемых белков, белков клеточных мембран и специфических белков содержимого мембранных органоидов); 2) гидроксилирование, сульфатирование, фосфорилирование и гликозилирование белков; 3) транспорт веществ в пределах цитоплазмы; 4) накопление как синтезируемых, так и транспортируемых веществ; 5) регуляция биохимических реакций, связанная с упорядоченностью локализации в структурах ЭПС веществ, вступающих в реакции, а также их катализаторов - ферментов.

Гладкая ЭПС отличается отсутствием на мембранах белков (рибофоринов), связывающих субъединицы рибосом. Предполагается, что гладкая ЭПС образуется в результате формирования выростов шероховатой ЭПС, мембрана которых утрачивает рибосомы.

Функциями гладкой ЭПС являются: 1) синтез липидов, включая мембранные липиды; 2) синтез углеводов (гликогена и др.); 3) синтез холестерина; 4) обезвреживание токсических веществ эндогенного и экзогенного происхождения; 5) накопление ионов Са 2+ ; 6) восстановление кариолеммы в телофазе митоза; 7) транспорт веществ; 8) накопление веществ.

Как правило, гладкая ЭПС развита в клетках слабее, чем шероховатая ЭПС, однако в клетках, вырабатывающих стероиды, триглицериды и холестерин, а также в клетках печени, осуществляющих детоксикацию различных веществ, она развита значительно лучше.

Рис. 9. Комплекс Гольджи:

1 – стопка уплощённых цистерн; 2 – пузырьки; 3 – секреторные пузырьки (вакуоли)

Переходная (транзиторная) ЭПС - это участок перехода гранулярной ЭПС в агранулярную ЭПС, который располагается у формирующейся поверхности комплекса Гольджи. Трубочки и канальцы переходной ЭПС распадаются на фрагменты, из которых образуются пузырьки, транспортирующие материал из ЭПС в комплекс Гольджи.

Пластинчатый комплекс (комплекс Гольджи, аппарат Гольджи) - органоид клетки, участвующий в окончательном формировании продуктов её жизнедеятельности (секретов, коллагена, гликогена, липидов и других продуктов), а также в синтезе гликопротеидов. Органоид назван по имени описавшего его в 1898 году итальянского гистолога К. Гольджи. Образован тремя составляющими (рис. 9): 1) стопкой уплощённых цистерн (мешочков); 2) пузырьками; 3) секреторными пузырьками (вакуолями). Зона скопления этих элементов получила название диктиосомы. Таких зон в клетке может быть несколько (иногда несколько десятков и даже сотен). Комплекс Гольджи располагается около ядра клетки, часто вблизи центриолей, реже рассеян по всей цитоплазме. В секреторных клетках он располагается в апикальной части клетки, через которую осуществляется выделение секрета путём экзоцитоза. От 3-х до 30-ти цистерн в виде изогнутых дисков диаметром 0,5-5 мкм образуют стопку. Смежные цистерны разделены пространствами в 15-30 нм. Отдельные группы цистерн в пределах диктиосомы отличаются особым составом ферментов, определяющих характер биохимических реакций, в частности процессинга белка и др.

Второй составляющий элемент диктиосомы - пузырьки представляют собой сферические образования диаметром 40-80 нм, умеренно плотное содержимое которых окружено мембраной. Пузырьки формируются путём отщепления от цистерн.

Третий элемент диктиосомы - секреторные пузырьки (вакуоли) представляют собой относительно крупные (0,1-1,0 мкм) сферические мембранные образования, содержащие секрет умеренной плотности, претерпевающий конденсацию и уплотнение (вакуоли конденсации).

Комплекс Гольджи отчётливо поляризован по вертикали. В нём выделяют две поверхности (два полюса):

1) цис-поверхность, или незрелую поверхность, которая имеет выпуклую форму, обращена к эндоплазматической сети (ядру) и связана с отделяющимися от неё мелкими транспортными пузырьками;

2) транс-поверхность, или поверхность, обращённую к плазмолемме вогнутой формы (рис. 8), со стороны которой от цистерн комплекса Гольджи отделяются вакуоли (секреторные гранулы).

Основными функциями комплекса Гольджи являются: 1) синтез гликопротеинов и полисахаридов; 2) модификация первичного секрета, его конденсация и упаковка в мембранные пузырьки (формирование секреторных гранул); 3) процессинг молекул (фосфорилирование, сульфатирование, ацилирование и т.п.); 4) накопление секретируемых клеткой веществ; 5) образование лизосом; 6) сортировка синтезированных клеткой белков у транс-поверхности перед их окончательным транспортом (производится посредством рецепторных белков, распознающих сигнальные участки макромолекул и направляющих их в различные пузырьки); 7) транспорт веществ: из транспортных пузырьков вещества проникают в стопку цистерн комплекса Гольджи с цис-поверхности, а выходят из неё в виде вакуолей с транс-поверхности. Механизм транспорта объясняют две модели: а) модель перемещения пузырьков, отпочковывающихся от предшествующей цистерны и сливающихся с последующей цистерной последовательно в направлении от цис-поверхности к транс-поверхности; б) модель перемещения цистерн, основанная на представлении о непрерывном новообразовании цистерн за счёт слияния пузырьков на цис-поверхности и последующем распаде на вакуоли цистерн, смещающихся к транс-поверхности.

Указанные выше основные функции позволяют констатировать, что пластинчатый комплекс - важнейший органоид клетки эукариот, обеспечивающий организацию и интеграцию внутриклеточного метаболизма. В этом органоиде протекают заключительные этапы формирования, созревания, сортировки и упаковки всех секретируемых клеткой продуктов, ферментов лизосом, а также белков и гликопротеинов поверхностного аппарата клетки и др. веществ.

Органоиды внутриклеточного переваривания. Лизосомы - это мелкие ограниченные элементарной мембраной пузырьки, содержащие гидролитические ферменты. Мембрана лизосом толщиной около 6 нм осуществляет пассивную компартментализацию, временно отделяя гидролитические ферменты (более 30 разновидностей) от гиалоплазмы. В неповреждённом состоянии мембрана устойчива к действию гидролитических ферментов и препятствует их утечке в гиалоплазму. В стабилизации мембраны важная роль принадлежит кортикостероидным гормонам. Повреждение мембран лизосом ведёт к самоперевариванию клетки гидролитическими ферментами.

Мембрана лизосом содержит АТФ-зависимый протонный насос, обеспечивающий закисление среды внутри лизосом. Последняя способствует активизации ферментов лизосом - кислых гидролаз. Наряду с этим мембрана лизосом содержит рецепторы, обусловливающие связывание лизосом с транспортными пузырьками и фагосомами. Мембрана обеспечивает также диффузию веществ из лизосом в гиалоплазму. Связывание части молекул гидролаз с мембраной лизосом ведёт к их инактивации.

Выделяют несколько разновидностей лизосом: первичные лизосомы (гидролазные пузырьки), вторичные лизосомы (фаголизосомы, или пищеварительные вакуоли), эндосомы, фагосомы, аутофаголизосомы, остаточные тельца (рис. 8).

Эндосомами называют мембранные пузырьки, переносящие макромолекулы от поверхности клетки в лизосомы путём эндоцитоза. В процессе переноса содержимое эндосом может не изменяться или претерпевать частичное расщепление. В последнем случае в эндосомы проникают гидролазы или эндосомы непосредственно сливаются с гидролазными пузырьками, вследствие чего среда постепенно закисляется. Эндосомы разделяют на две группы: ранние (периферические) и поздние (перинуклеарные) эндосомы.

Ранние (периферические) эндосомы формируются на ранних этапах эндоцитоза после отделения пузырьков с захваченным содержимым от плазмолеммы. Они располагаются в периферических слоях цитоплазмы и характеризуются нейтральной или слабощелочной средой. В них происходит отщепление лигандов от рецепторов, сортировка лигандов и, возможно, возвращение рецепторов в специальных пузырьках в плазмолемму. Наряду с этим в ранних эндосомах может происходить расщепление ком-

Рис. 10 (А). Схема образования лизосом и их участия во внутриклеточном пищеварении. (Б) Электронная микрофотография среза вторичных лизосом (обозначены стрелками):

1 – образование из гранулярной эндоплазматической сети мелких пузырьков с ферментами; 2 – перенос ферментов в аппарат Гольджи; 3 – образование первичных лизосом; 4 – выделение и использование (5) гидролаз при внеклеточном ращеплении; 6 - фагосомы; 7 – слияние первичных лизосом с фагосомами; 8, 9 – образование вторичных лизосом (фаголизосом); 10 – экскреция остаточных телец; 11 – слияние первичных лизосом с разрушающимися структурами клетки; 12 – аутофаголизосома

плексов «рецептор-гормон», «антиген-антитело», ограниченное расщепление антигенов, инактивация отдельных молекул. В условиях закисления (рН=6,0) среды в ранних эндосомах может происходить частичное расщепление макромолекул. Постепенно, перемещаясь вглубь цитоплазмы, ранние эндосомы превращаются в поздние (перинуклеарные) эндосомы, располагающиеся в глубоких слоях цитоплазмы, окружающих ядро. Они достигают 0,6-0,8 мкм в диаметре и отличаются от ранних эндосом более кислым (рН=5,5) содержимым и более высоким уровнем ферментативного переваривания содержимого.

Фагосомы (гетерофагосомы) - мембранные пузырьки, которые содержат захваченный клеткой извне материал, подлежащий внутриклеточному перевариванию.

Первичные лизосомы (гидролазные пузырьки) - пузырьки диаметром 0,2-0,5 мкм, содержащие неактивные ферменты (рис.10). Их перемещение в цитоплазме контролируется микротрубочками. Гидролазные пузырьки осуществляют транспорт гидролитических ферментов из пластинчатого комплекса к органоидам эндоцитозного пути (фагосомам, эндосомам и т.п.).

Вторичные лизосомы (фаголизосомы, пищеварительные вакуоли) - пузырьки, в которых активно осуществляется внутриклеточное переваривание посредством гидролаз при рН≤5. Их диаметр достигает 0,5-2 мкм. Вторичные лизосомы (фаголизосомы и аутофаголизосомы) формируются путём слияния фагосомы с эндосомой или первичной лизосомой (фаголизосомы) либо путём слияния аутофагосомы (мембранного пузырька, содержащего собственные компоненты клетки) с первичной лизосомой (рис. 10) или поздней эндосомой (аутофаголизосомы). Аутофагия обеспечивает переваривание участков цитоплазмы, митохондрий, рибосом, фрагментов мембран и т.п. Убыль последних в клетке компенсируется их новообразованием, что ведёт к обновлению («омоложению») клеточных структур. Так, в нервных клетках человека, функционирующих многие десятилетия, большинство органоидов обновляется в течение 1 месяца.

Разновидность лизосом, содержащих непереваренные вещества (структуры), названа остаточными тельцами. Последние могут длительно находиться в цитоплазме или выделять своё содержимое путём экзоцитоза за пределы клетки (рис. 10). Распространённым видом остаточных телец в организме животных являются липофусциновые гранулы , представляющие собой мембранные пузырьки (0,3-3 мкм), содержащие труднорастворимый коричневый пигмент липофусцин.

Пероксисомы представляют собой мембранные пузырьки диаметром до 1,5 мкм, матрикс которых содержит около 15 ферментов (рис. 8). Среди последних наиболее важны каталаза, на которую приходится до 40% общего белка органоида, а также пероксидаза, оксидаза аминокислот и др. Пероксисомы образуются в эндоплазматическом ретикулуме и обновляются каждые 5-6 дней. Наряду с митохондриями, пероксисомы являются важным центром утилизации кислорода в клетке. В частности, под воздействием каталазы распадается перекись водорода (Н 2 О 2), образующаяся в ходе окисления аминокислот, углеводов и др. веществ клетки. Таким образом, пероксисомы защищают клетку от повреждающего эффекта перекиси водорода.

Органоиды энергетического обмена. Митохондрии описаны впервые Р. Келликером в 1850 году в мышцах насекомых под названием саркосом. Позднее они изучались и описывались Р. Альтманом в 1894 году как «биопласты», а в 1897 году К. Бенда назвал их митохондриями. Митохондрии представляют собой мембранные органоиды, обеспечивающие клетку (организм) энергией. Источником запасаемой в виде фосфатных связей АТФ энергии являются процессы окисления. Наряду с этим митохондрии участвуют в биосинтезе стероидов и нуклеиновых кислот, а так­же в окислении жирных кислот.

М

Рис. 11. Схема строения митохондрии:

1 – наружная мембрана; 2 – внутренняя мембрана; 3 – кристы; 4 – матрикс


итохондрии имеют эллиптическую, сферическую, палочковидную, нитевидную и др. формы, которые могут изменяться в течение определенного времени. Их размеры составляют 0,2-2 мкм в ширину и 2-10 мкм в длину. Количество митохондрий в различных клетках варьирует в широких пре­делах, достигая в наиболее активных 500-1000. В клетках печени (гепатоцитах) их число составляет около 800, а занимаемый ими объем равен примерно 20% объема цитоплазмы. В цитоплазме митохондрии могут располагаться диффузно, однакообычно они сосредоточены в участках максимального потребления энергии, например, вблизи ионных насосов, сократимых элементов (миофибрилл), органелл движения (аксонема спермия). Митохондрии состоят из наружной и внутренней мембран, разделенных межмембранным пространством, и содержат митохондриальный матрикс, в который обращены складки внутренней мембраны - кристы (рис. 11, 12).

Н

Рис. 12. Электронная фотография митохондрии (поперечный разрез)

аружная мембрана митохондрий сходна с плазмолеммой. Она отличается высокой проницаемостью, обеспечивая проникновение молекул с массой менее 10 килодальтон из цитозоля в межмембранное пространство митохондрий. Наружная мембрана содержит порин и другие транспортные белки, а также рецепторы, распознающие переносимые белки в зонах слипания наружной и внутренней мембран.

Межмембранное пространство митохондрий шириной 10-20 нм содержит небольшое количество ферментов. Его ограничивает изнутри внутренняя мембрана митохондрий, содержащая транспортные белки, ферменты дыхательной цепи и сукцинатдегидрогеназу, а также комплекс АТФ-синтетазы. Внутренняя мембрана характеризуется низкой проницаемостью для мелких ионов. Она формирует складки толщиной 20 нм, которые располагаются чаще всего перпендикулярно продольной оси митохондрий, а в некоторых случаях (мышечные и др. клетки) - продольно. С повышением активности митохондрий количество складок (их общая площадь) возрастает. На кристах находятся оксисомы - грибовидные образования, состоящие из округлой головки диаметром 9 нм и ножки толщиной 3 нм. В области головки происходит синтез АТФ. Процессы окисления и синтеза АТФ в митохондриях разобщены, из-за чего не вся энергия накапливается в АТФ, рассеиваясь частично в виде тепла. Такое разобщение наиболее выражено, например, в бурой жировой ткани, используемой для весеннего «разогрева» находившихся в состоянии «зимней спячки» животных.

Внутренняя камера митохондрии (область между внутренней мембраной и кристами) заполнена матриксом (рис. 11, 12), содержащим ферменты цикла Кребса, ферменты белкового синтеза, ферменты окисления жирных кислот, митохондриальную ДНК, рибосомы и митохондриальные гранулы.

Митохондриальная ДНК представляет собственный генетический аппарат митохондрий. Она имеет вид кольцевой двухцепочечной молекулы, в которой содержится около 37 генов. Митохондриальная ДНК отличается от ядерной ДНК низким содержанием некодирующих последовательностей и отсутствием связей с гистонами. Митохондриальная ДНК кодирует иРНК, тРНК и рРНК, однако обеспечивает синтез только 5-6% митохондриальных белков (ферментов системы транспорта ионов и некоторых ферментов синтеза АТФ). Синтез всех других белков, а также удвоение митохондрий контролируются ядерной ДНК. Большая часть рибосомальных белков митохондрий синтезируется в цитоплазме, а затем транспортируется в митохондрии. Наследование митохондриальной ДНК у многих видов эукариот, включая человека, происходит только по материнской линии: митохондриальная ДНК отца исчезает при гаметогенезе и оплодотворении.

Митохондрии имеют относительно короткий жизненный цикл (около 10 суток). Разрушение их происходит путём аутофагии, а новообразование - путём деления (перешнуровки) предшествующих митохондрий. Последнему предшествует репликация митохондриальной ДНК, которая происходит независимо от репликации ядерной ДНК в любые фазы клеточного цикла.

У прокариот митохондрии отсутствуют, и их функции выполняет клеточная мембрана. Согласно одной из гипотез, митохондрии произошли из аэробных бактерий в результате симбиогенеза. Существует предположение об участии митохондрий в передаче наследственной информации.