§4. Слуховые ощущения

СЛУХОВЫЕ ОЩУЩЕНИЯ

Особое значение слуха у человека связано с восприятием речи и музыки.

Слуховые ощущения являются отражением воздействующих на слуховой рецептор звуковых волн, которые порождаются звучащим телом и представляют собой переменное сгущение и разрежение воздуха.

Все слышимые звуки разделяются на шумы и музыкальные звуки. Первые отражают непериодические колебания неустойчивой частоты и амплитуды, вторые - периодические колебания. Между музыкальными звуками и шумами нет, однако, резкой грани. Акустическая составная часть шума часто носит ярко выраженный музыкальный характер и содержит разнообразные тоны, которые легко улавливаются опытным ухом. Свист ветра, визг пилы, различные шипящие шумы с включенными в них высокими тонами резко отличаются от шумов гула и журчания, характеризующихся низкими тонами. Отсутствием резкой границы между тонами и шумами объясняется то, что многие композиторы прекрасно умеют изображать музыкальными звуками различные шумы (журчание ручья, жужание прялки, шум моря, жужание шмеля и т.д.). в звуках человеческой речи тоже представлены как шумы, так и музыкальные звуки. Основными свойствами всякого звука является его громкость, высота и тембр.

При воздействии звука в слуховом аппарате происходит процесс адаптации, изменяющие его чувствительность. Так, например, постоянно работая в условиях громких звуков (газорезчик), человек к старости может частично или полностью потерять слух. Однако, в области слуховых ощущений адаптация невелика и обнаруживает значительные индивидуальные отклонения. Особенно сильно сказывается действие адаптации при внезапном изменении силы звука. Это так называемый эффект контраста.

Далеко не все звуки воспринимаются нашим ухом, что зависит от высоты звука (ультразвуки, инфразвуки остаются вне предела нашей слышимости), причем у отдельных людей чувствительность уха может давать различные индивидуальные отклонения, а также следует учитывать, что границы слуха у людей изменчивы в зависимости от возраста (у пожилых людей чувствительность к высоким тонам постепенно падает). Следует учитывать, что при повышении интенсивности высокого звука возникают ощущение щекотание в ухе (осязание звука), а затем и чувство боли.

Следует добавить, что тембр сложного звука играет немаловажную роль в восприятии гармонии и эмоциональной выразительности.

Следуя из вышесказанного, могу сказать, что слуховые ощущения играют роль не только восприятия разговорной прямой речи и звуков окружающей среды, но и роль различия эмоциональных окрасок голосов, и узнавание на слух голоса людей и/или собеседника в зависимости от тембра (высокий, низкий), высоты и громкости звука, при этом человек может и сам выразить свои чувства, например, показать свое эмоциональное напряжение или, наоборот, удовлетворение и т.д. При этом в зависимости от высоты, тембра и громкости звука человек может ощущать на себе эмоциональное напряжение, дискомфорт, который в некоторых случаях доходит до боли, а в случаях длительности или непрерывности неприятных звуков может развиться психическая неуравновешенность, т.е. появится раздражительность, плаксивость, взволнованность и т.п. И, наоборот, при воздействии мелодичных, спокойных звуков на человека может выражаться в его уравновешенности, умиротворенности и т.д., но еще существует такая музыка, которая может «зажигать» человека, способствовать его работоспособности и т.д.

Необходимо еще добавить, что люди глухие на одно ухо, лишь с большим трудом определяют направление звука и вынуждены для этой цели прибегать к вращению головы и к различными косвенным показателям.

ЗРИТЕЛЬНЫЕ ОЩУЩЕНИЯ.

Роль зрительных ощущений в познании мира особенно велика. Они доставляют человеку исключительно богатые и тонкие дифференцированные данные, притом огромного диапазона. Зрение дает нам наиболее совершенное, подлинное восприятие предметов. Зрение дает нам отражение всех многообразных свойств объективной действительности.

С помощью зрения мы можем ощущать цвет, при этом различать цветовой фон, светлоту и насыщенность красок. Верхним порогом цветоощущения является та яркость, которая «ослепляет» глаз.

В зрительных ощущениях также присутствует адаптация, или цветовое приспособление, которое выражается в понижении чувствительности глаза к определенному цветному раздражителю вследствие продолжительности его действия. Как возникновение ощущение, так и его исчезновение не происходит внезапно и с окончанием действия раздражителя. Поэтому после прекращения действия раздражителя в глазу остается «след», или последствие, раздражения, которое дает «последовательный образ». Примером может являться простой эксперимент: в течение 1 минуты необходимо смотреть, к примеру, на белый череп, нарисованный на белом листе бумаги, затем перевести взгляд на белую стену, где явно появится изображение черепа.

Звук является объектом слухового ощущения. Он оценивается человеком субъективно. Все субъективные характеристики слухового ощущения связаны с объективными характеристиками звуковой волны. Воспринимая звуки, человек различает их по высоте, тембру, громкости.

Высота тона обусловлена, прежде всего, частотой основного тона (чем больше частота, тем более высоким воспринимается звук). В меньшей степени высота зависит от интенсивности волны (звук большей интенсивности воспринимается более низким).

Тембр звука определяется его гармоническим спектром. Различные акустические спектры соответствуют разному тембру, даже в том случае, когда основной тон у них одинаков. Тембр - это качественная характеристика звука.

Субъективной физиологической характеристикой звука также является громкость Е , которая характеризует уровень слухового ощущения. В основе измерения громкости лежит психофизический закон Вебера-Фехнера . Согласно ему

при увеличении раздражения в геометрической прогрессии ощущение этого раздражения возрастает в арифметической прогрессии . Из этого закона следует, что громкость звука

где – интенсивность звука, – интенсивность звука на пороге слышимости, – некоторый коэффициент пропорциональности, зависящий от частоты и интенсивности звука. Громкость выражается в фонах (фон). Принято считать, что на частоте 1кГц шкалы громкости и уровня интенсивности совпадают. В этом случае = 1 и 1 фон = 1 дб. Громкость на других частотах измеряют сравниванием исследуемой громкости звука с громкостью звука частотой 1 кГц.

Для нахождения соответствия между громкостью и интенсивностью звука на разных частотах пользуются кривыми равной громкости. Их строят на основании средних данных, полученных для людей с нормальным слухом. Нижняя кривая соответствует интенсивности самых слабых слышимых звуков – порогу слышимости. Для всех частот этой кривой Е = 0, для частоты 1 кГц интенсивность звука . Верхняя кривая соответствует порогу болевого ощущения.

Метод измерения остроты звука называется аудиометрией . При аудиометрии на приборе (аудиометре) определяют порог слухового ощущения на разных частотах. Полученная кривая называется спектральной характеристикой уха на пороге слышимости или аудиограммой (рис.2).

Потеря слуха в результате нарушения проведения звука или частичного поражения звуковосприятия может быть компенсирована с помощью слуховых аппаратов-усилителей. В последние годы в этой области наблюдается большой прогресс, связанный с развитием аудиологии и быстрым внедрением достижений электроакустической аппаратуры на основе микроэлектроники. Созданы миниатюрные слуховые аппараты, работающие в широком частотном диапазоне.

Однако при некоторых тяжелых формах тугоухости и глухоты слуховые аппараты не помогают больным. Это имеет место, например, когда глухота связана с поражением рецепторного аппарата улитки. В этом случае улитка не генерирует электрические сигналы при воздействии механических колебаний.

Такие поражения могут быть вызванные неправильной дозировкой лекарственных препаратов, применяемых для лечения заболеваний, совсем не связанных с лор-болезнями. В настоящее время возможна частичная реабилитация слуха и у таких больных. Для этого необходимо имплантировать электроды в улитку и подавать на них электрические сигналы, соответствующие тем, которые возникают при воздействии механического стимула. Такое протезирование основной функции улитки осуществляется с помощью кохлеарных протезов.

Тимпанометрия - метод измерения податливости звукопроводящего аппарата слуховой системы под влиянием аппаратного изменения воздушного давления в слуховом проходе.

Данный метод позволяет оценить функциональное состояние барабанной перепонки, подвижность цепи слуховых косточек, давление в среднем ухе и функцию слуховой трубы. Исследование начинается с установки зонда с надетым на него ушным вкладышем в начале наружного слухового прохода, который герметично перекрывает слуховой проход. Через зонд в слуховом проходе создается избыточное (+) или недостаточное (–) давление, а затем подается звуковая волна определенной интенсивности. Дойдя до барабанной перепонки, волна частично отражается и возвращается к зонду.

Измерение интенсивности отраженной волны позволяет судить о звукопроводящих возможностях среднего уха. Чем больше интенсивность отраженной звуковой волны, тем меньше подвижность звукопроводящей системы. Мерой механической податливости среднего уха является параметр подвижности, измеряемый в условных единицах.

В процессе исследования давление в среднем ухе изменяют от +200 до –200 дПа. При каждом значении давления определяется параметр подвижности. Результатом исследования является тимпанограмма, отражающая зависимость параметра подвижности от величины избыточного давления в слуховом проходе.

При отсутствии патологии среднего уха максимум подвижности наблюдается при отсутствии избыточного давления

(Р = 0) рис.3.

Рис. 3. Тимпанограммы при различной степени подвижности

Повышенная подвижность свидетельствует о недостаточной упругости барабанной перепонки или о вывихе слуховых косточек. Пониженная подвижность указывает на избыточную жесткость среднего уха, связанную, например, с наличием жидкости.

При патологии среднего уха вид тимпанограммы изменяется, рис. 4.

Рис. 4. Основные типы тимпанограмм при патологиях среднего уха:

а - отсутствие патологии; б - экссудативный средний отит;

в - нарушение проходимости слуховой трубы; г - атрофические изменения барабанной перепонки; д - разрыв слуховых косточек

Слуховые ощущения возникают под воздействием раздражителя – звуковой волны – на орган слуха. Физический раздражитель, воспринимаемый человеком как звук, представляет собой изменение давления воздуха. Например, камертон после удара по нему начинает колебаться. Эти колебания вызывают волны сжатия (высокого давления) и разрежения (пониженного давления) воздуха, которые воспринимаются как звук. Орган слуха выполняет функцию преобразования таких изменений давления воздуха в изменения электрической активности нейронов.

По каналам наружного уха воздушное давление передается на среднее ухо. Изменение давления преобразуется в изменения механических колебаний барабанной перепонки, которая колеблется в унисон с колебаниями воздуха. Учитывая сказанное выше, можно выделить следующие стадии возникновения слуховых ощущений :

  • изменения давления воздуха приводят к колебаниям барабанной перепонки (наружное и среднее ухо);
  • звуки вызывают на базилярной мембране колебательные возбуждения различной локализации, которые затем кодируются;
  • активизируются соответствующие той или иной локализации нейроны (в слуховой коре различные нейроны отвечают за разные звуковые частоты). Так как звук распространяется медленнее, чем свет, будет наблюдаться (в зависимости от направления) ощутимая разница между звуками, воспринимаемыми левым и правым ухом.

Наиболее точно природу слуховых ощущений раскрывает резонансная теория слуха Г. Гельмгольца . Все звуки, воздействующие на слуховой анализатор, принято разделять на две группы: музыкальные звуки и шумы. Если говорить о человеческой речи, то она включает звуки обеих групп. Человек ощущает звук через 175 миллисекунд (мс) после того, как тот достигнет ушной раковины. Максимальная чувствительность к данному звуку возникает еще через 200-500 мс .

Кроме того, человеку необходимо сориентироваться по отношению к источнику звука, что занимает еще 200-300 мс . В необходимости такой ориентировки легко убедиться самому. Попросите вашего знакомого закрыть глаза и ударяйте какие-либо два предмета друг о друга на разном расстоянии от его головы, но всегда строго впереди или сзади, в плоскости, проходящей через ось головы.

Иными словами, всегда на одинаковом расстоянии от правого и левого уха. Ваш знакомый не сможет точно определить направление звука: он будет казаться ему прыгающим, как кузнечик. Если же звуки будут доноситься сбоку от головы, никакой ошибки не произойдет – человек легко укажет направление звука. Вот почему, прислушиваясь, мы непроизвольно поворачиваем голову так, чтобы источник звука оказался сбоку от нас.

Наш слуховой анализатор реагирует на такие параметры звука, как высота, сила или громкость и тембр. Высота звука определяется количеством колебаний звуковой волны в секунду (1 колебание в секунду называют герцем , Гц) . Ухо человека ощущает звуки в пределах от 16 до 20 000 Гц . К старости верхние показатели могут снизиться до 15 000 Гц . Границы наибольшей слуховой чувствительности человека – 20 000-30 000 Гц (это высота звука, соответствующая крику испуганной женщины).

Звуки с частотой колебаний ниже 16-20 Гц (инфразвуки ) не ощущаются человеком, но могут оказывать влияние на его психическое состояние. Так, низкочастотные звуки в 6 Гц вызывают головокружение, ощущение усталости и угнетенности. Некоторые инфразвуки за счет своего избирательного воздействия способны изменять функционирование отдельных аспектов психической деятельности, например повышать внушаемость или обучаемость человека.

Колебания звуковой волны с частотой свыше 20 000 Гц называются ультразвуковыми . Животные способны чувствовать подобные звуки с частотой до 60 000-100 000 Гц .

Сила слуховых ощущений называется громкостью. Единицами ее измерения служат децибелы (дБ) . За 1 дБ взята громкость звука тикающих часов на расстоянии 0,5 м от уха. С возрастом происходят изменения в звуковой чувствительности человека. Если в 30 лет для четкого восприятия речи необходима громкость в 40 дБ , то в 70 лет данный показатель должен составлять 65 дБ . В среднем оптимальный уровень громкости для человека составляет 40-50 дБ . Шум свыше 90 дБ считается вредным для нашего организма.

Тембр представляет собой специфическое качество, которое отличает звуки друг от друга. Иначе его еще называют «окраской» звука. Тембр звучания определяется степенью слияния звуков. В соответствии с этим принято выделять приятное звучание – консонанс и неприятное – диссонанс .

[В подготовке настоящего раздела о слуховых ощущениях существенную помощь нам оказала наша сотрудница В. Е. Сыркина, сочетающая свою психологическую специальность с музыкальной. Благодаря любезности Б. М. Теплова нам удалось также частично использовать в этом разделе его ещё не опубликованную работу.]

Особое значение слуха у человека связано с тем, что он служит для восприятия речи и музыки.

Слуховые ощущения являются отражением воздействующих на слуховой рецептор звуковых волн, которые порождаются звучащим телом и представляют собой переменное сгущение и разрежение воздуха.

Звуковые волны обладают, во-первых, различной амплитудой колебания. Под амплитудой колебания разумеют наибольшее отклонение звучащего тела от состояния равновесия или покоя. Чем больше амплитуда колебания, тем сильнее звук, и, наоборот, чем меньше амплитуда, тем звук слабее. Сила звука прямо пропорциональна квадрату амплитуды. Эта сила зависит также от расстояния уха от источника звука и от той среды, в которой распространяется звук. Для измерения силы звука существуют специальные приборы, дающие возможность измерять её в единицах энергии.

Звуковые волны различаются, во-вторых, по частоте или продолжительности периода колебаний. Длина волны обратно пропорциональна числу колебаний и прямо пропорциональна периоду колебаний источника звука. Волны различного числа колебаний в 1 сек. или в период колебания дают звуки, различные по высоте: волны с колебаниями большой частоты (и малого периода колебаний) отражаются в виде высоких звуков, волны с колебаниями малой частоты (и большого периода колебания) отражаются в виде низких звуков.

Звуковые волны, вызываемые звучащим телом, источником звука, различаются, в-третьих, формой колебаний, т. е. формой той периодической кривой, в которой абсциссы пропорциональны времени, а ординаты - удалениям колеблющейся точки от своего положения равновесия. Форма колебаний звуковой волны отражается в тембре звука - том специфическом качестве, которым звуки той же высоты и силы на различных инструментах (рояль, скрипка, флейта и т. д.) отличаются друг от друга.

Зависимость между формой колебания звуковой волны и тембром не однозначна. Если два тона имеют различный тембр, то можно определённо сказать, что они вызываются колебаниями различной формы, но не наоборот. Тоны могут иметь совершенно одинаковый тембр, и, однако, форма колебаний их при этом может быть различна. Другими словами, формы колебаний разнообразнее и многочисленнее, чем различаемые ухом тоны.

Слуховые ощущения могут вызываться как периодическими колебательными процессами, так и непериодическими с нерегулярно изменяющейся неустойчивой частотой и амплитудой колебаний. Первые отражаются в музыкальных звуках, вторые - в шумах.



Кривая музыкального звука может быть разложена чисто математическим путём по методу Ж. Б. Фурье на отдельные, наложенные друг на друга синусоиды. Любая звуковая кривая, будучи сложным колебанием, может быть представлена как результат большего или меньшего числа синусоидальных колебаний, имеющих число колебаний в секунду, возрастающее, как ряд целых чисел 1, 2, 3, 4. Наиболее низкий тон, соответствующий 1, называется основным. Он имеет тот же период, как и сложный звук. Остальные простые тоны, имеющие вдвое, втрое, вчетверо и т. д. более частые колебания, называются верхними гармоническими или частичными (парциальными), или обертонами.

Органом слуха является ухо. Оно состоит из трёх частей: 1) наружного уха, 2) среднего уха и 3) внутреннего уха. Главные части слухового аппарата - среднее ухо и внутреннее ухо - помещены в виде маленьких полостей в височной кости.

Строение уха.

1 - наружный слуховой проход; 2 - барабанная перепонка; 3 - полость среднего уха(барабанная полость); 4 - молоточек; 5 - наковальня; 6 - стремечко, упирающееся в овальное окошечко, 7 - полукружные каналы; 8 - преддверие; 9 - лестница преддверия; 10 - барабанная лестница; 11 - круглое окошечко; 12 - евстахиева труба; 13 - кость в разрезе

Наружное ухо состоит из ушной раковины и слухового прохода. Ушная раковина является своеобразной слуховой воронкой, но она не необходима для слушания; многие животные с хорошим слухом, как птицы или лягушки, её не имеют. Ушная раковина служит для собирания и отражения звуковых волн к слуховому проходу. Кроме того, она даёт возможность различать, приходит ли звук спереди или сзади. Если прибинтовать ушные раковины к голове, то эта способность теряется. Способность различать направление звука (бинауральный или стереакустический эффект, см. дальше) весьма мало зависит от ушной раковины, но объясняется своеобразным свойством слуха воспринимать пространственно малые разницы во времени.

Границей между наружным и средним ухом служит барабанная перепонка. Барабанная перепонка очень тонка, но достаточно прочна, чтобы выдерживать, не лопаясь, даже очень громкие звуки, например звуки пушечных выстрелов. Неправильная воронкообразная форма и неравномерное натяжение барабанной перепонки делают возможными соколебания её в ответ на всевозможные тоны.

Среднее ухо, или барабанная полость, представляет собой воздушную полость внутри височной кости. В барабанной полости имеется сложная система сочленённых косточек - молоточка, наковальни и стремечка, передающих колебания барабанной перепонки так называемому овальному окну внутреннего уха.

За перепонкой овального окна расположено внутреннее ухо, в котором находится лабиринт. Главными частями лабиринта являются преддверие, полукружные каналы и улитка. Преддверие и полукружные каналы являются органом равновесия; с точки зрения функции слуха наиболее важным органом является улитка. Улитка представляет собой спирально закрученную костную оболочку. Вдоль неё тянется перегородка, разделяющая ее как бы на два этажа.

В большей части поперечника перегородка эта костная; на меньшем протяжении это гибкая перепонка, состоящая из поперечных, весьма эластических, упругих волоконец, слабо между собой связанных, - так называемая основная мембрана. По мере приближения к вершине улитки основная мембрана расширяется и недалеко от вершины она примерно в 12 раз шире, чем у основания. В области, прилегающей к костной спиральной перегородке, основная мембрана значительно утолщается. Здесь лежат особого типа нервные клетки - упругие кортиевы дуги ,поддерживающие напряжение основной мембраны. С ними связаны волокна слухового нерва, которые оканчиваются так называемыми волосатыми клетками, расположенными пятью рядами вдоль длины основной мембраны. Этих клеток на основной мембране насчитывается около 23 500. Параллельно основной мембране, на очень близком от неё расстоянии, идёт вторая, текториальная, или покровная, мембрана. Жидкость улитки, передающая колебания, в своём движении приводит в соколебание основную мембрану; волосатые клетки прикасаются к плавающей над ними текториальной мембране и получают таким образом раздражение, которое передаётся по нервным волоконцам в мозг. Разделяясь в области среднего мозга, нервные волокна от обоих ушей идут как к правому, так и к левому полушарию.

Кортиев орган.

1 - перепонка Рейснера; 2 - полость перепончатой улитки; 3 - покровная перепонка; 4 - волоски слуховой клетки; 5 - наружные слуховые клетки; 6 - внутренняя слуховая клетка; 7 - кортиевые дуги; 8 - основная перепонка; 9 - нервные волокна

При воздействии звука в слуховых областях обоих полушарий создаются соседние участки возбуждения, из которых один возбуждается правым ухом, другой - левым. Нервные пути, таким образом, оказываются дублированными, и в случае поражения слухового центра одного из полушарий восприятие осуществляется в другом. Слуховые области расположены симметрично в обеих половинах мозга, в височных его долях и главным образом в первой височной извилине. При поражении этих частей мозга наступает более или менее сильное расстройство слуха. Может возникнуть даже полная глухота (кортикальная глухота). Если височная доля разрушена лишь частично, то результатом является так называемая душевная глухота: реакция на звуки остаётся, но понимание их значения теряется. Больной слышит произнесённое слово только как какой-то шум. Это отсутствие понимания речи, глухота на слова, лежит в основе сенсорной афазии, или так называемой афазии Вернике, которая наблюдается при заболевании первой височной извилины, особенно её задней области, где находится сенсорный центр речи.

Согласно исследованиям Лючиани и павловской школы, помимо центров, тесно связанных с определённой функцией, и в других областях коры, даже в самых отдалённых, рассеяны клетки, связанные с той же функцией. По отношению к слуховым ощущениям установлено, что при удалении центра слуха навсегда теряются условные рефлексы на сложнокомплексные звуковые раздражители (аккорд, кличка собаки и т. п.). Однако простые звуковые раздражители продолжают действовать. Это происходит за счёт сохранившихся звуковых клеток, лежащих рассеянно в теменной, затылочной и других областях коры.

Все слышимые звуки разделяются на шумы и музыкальные звуки . Первые отражают непериодические колебания неустойчивой частоты и амплитуды, вторые - периодические колебания. Между музыкальными звуками и шумами нет, однако, резкой грани. Акустическая составная часть шума часто носит ярко выраженный музыкальный характер и содержит разнообразные тоны, которые легко улавливаются опытным ухом. Свист ветра, визг пилы, различные шипящие шумы с включёнными в них высокими тонами резко отличаются от шумов гула и журчания, характеризующихся низкими тонами. Отсутствием резкой границы между тонами и шумами объясняется то, что многие композиторы прекрасно умеют изображать музыкальными звуками различные шумы (журчанье ручья, жужжание прялки в романсах Ф. Шуберта, шум моря, лязг оружия у Н. А. Римского-Корсакова и т. д.).

В звуках человеческой речи также представлены как шумы, так и музыкальные звуки.

Основными свойствами всякого звука являются: 1) его громкость , 2) высота и 3) тембр .

1. Громкость . Громкость зависит от силы, или амплитуды, колебаний звуковой волны. Сила звука и громкость - понятия неравнозначные. Сила звука объективно характеризует физический процесс независимо от того, воспринимается он слушателем или нет; громкость - качество воспринимаемого звука. Если расположить громкости одного и того же звука в виде ряда, возрастающего в том же направлении, что и сила звука, и руководствоваться воспринимаемыми ухом ступенями прироста громкости (при непрерывном увеличении силы звука), то окажется, что громкость вырастает значительно медленнее силы звука.

Согласно закону Вебера-Фехнера, громкость некоторого звука будет пропорциональна логарифму отношения его силы J к силе того же самого звука на пороге слышимости J 0 :

В этом равенстве K - коэффициент пропорциональности, a L выражает величину, характеризующую громкость звука, сила которого равна J ; её обычно называют уровнем звука.

Если коэффициент пропорциональности, являющийся величиной произвольной, принять равным единице, то уровень звука выразится в единицах, получивших название белов (Б):

Практически оказалось более удобным пользоваться единицами, в 10 раз меньшими; эти единицы получили название децибелов (дБ).Коэффициент K при этом, очевидно, равняется 10. Таким образом:

Минимальный прирост громкости, воспринимаемый человеческим ухом, равен примерно 1 дБ . Приводимая таблица может дать более конкретное представление о децибеле.

Звук Уровень силы в децибелах Сила звука в эрг.
Едва слышный звук 1∙10 -1
Тихий шопот на расстоянии 1,5 м 1∙10 -5
Тиканье часов 1∙10 -4
Шаги по мягкому ковру на расстоянии 3-4 м 1∙10 -3
Тихий разговор 1∙10 -2
Дребезжание на расстоянии около 1 м 1∙10 -1
Речь средней громкости
Шум оживлённой улицы 1∙10 1
Крик 1∙10 2
Шум в печатном цехе в типографии 1∙10 3
Фортиссимо большого оркестра 1∙10 4
Шум аэропланного мотора на расстоянии 3 м 1∙10 5
Ощущение боли 1∙10 6

(Источник: Путилов, Курс физики, 1937, стр. 549-550.)

Известно, что закон Вебера-Фехнера теряет силу при слабых раздражениях; поэтому уровень громкости очень слабых звуков не даёт количественного представления об их субъективной громкости.

Согласно новейшим работам, при определении разностного порога следует учитывать изменение высоты звуков. Для низких тонов громкость растёт значительно быстрее, чем для высоких.

Количественное измерение громкости, непосредственно ощущаемой нашим слухом, не столь точно, как оценка на слух высоты тонов. Однако в музыке давно применяются динамические обозначения, служащие для практического определения величины громкости. Таковы обозначения: ppp (пиано-пианиссимо), pp (пианиссимо), p (пиано), mp (меццо-пиано), mf (меццо-форте), f (форте), ff (фортиссимо), fff (форте-фортиссимо). Последовательные обозначения этой шкалы означают примерно удвоение громкости.

Человек может без всякой предварительной тренировки оценивать изменения громкости в некоторое (небольшое) число раз (в 2, 3, 4 раза). При этом удвоение громкости получается примерно как раз при прибавке около 20 дБ . Дальнейшая оценка увеличения громкости (более чем в 4 раза) уже не удаётся. Исследования, посвященные этому вопросу, дали результаты, резко расходящиеся с законом Вебера-Фехнера. [Расхождение закона Вебера-Фехнера с опытными данными объясняется, по-видимому, тем, что интегрирование закона Э. Вебера, произведённое Г. Фехнером, является не вполне законной математической операцией. Фехнер принял разностный порог за величину бесконечно малую, между тем как в действительности это величина конечная, да к тому же быстро растущая при слабых звуках.] Они показали также наличие значительных индивидуальных отличий при оценке удвоения громкостей.

При воздействии звука в слуховом аппарате происходят процессы адаптации, изменяющие его чувствительность. Однако в области слуховых ощущений адаптация очень невелика и обнаруживает значительные индивидуальные отклонения. Особенно сильно сказывается действие адаптации при внезапном изменении силы звука. Это так называемый эффект контраста.

Измерение громкости производится в децибелах. С. Н. Ржевкин указывает, однако, что шкала децибелов не является удовлетворительной для количественной оценки натуральной громкости. Так, например, шум в поезде метро на полном ходу оценивается в 95 дБ , а тикание часов на расстоянии 0,5 м - в 30 дБ . Таким образом, по шкале децибелов отношение равно всего 3, в то время как для непосредственного ощущения первый шум почти неизмеримо больше второго. В настоящее время с различных сторон подходят к созданию натуральной шкалы громкости, которая будет несомненно более пригодной для практических целей.

2. Высота . Высота звука отражает частоту колебаний звуковой волны. Далеко не все звуки воспринимаются нашим ухом. Как ультразвуки (звуки с большой частотой), так и инфразвуки (звуки с очень медленными колебаниями) остаются вне пределов нашей слышимости. Нижняя граница слуха у человека составляет примерно 15-19 колебаний в секунду (герц - Гц ); верхняя - приблизительно 20 000 Гц , причём у отдельных людей чувствительность уха может давать различные индивидуальные отклонения. Обе границы изменчивы, верхняя в особенности в зависимости от возраста; у пожилых людей чувствительность к высоким тонам регулярно падает. У животных верхняя граница слуха значительно выше, чем у человека; у собаки она доходит до 38 000 Гц .

При воздействии частот выше 15 000 Гц ухо становится гораздо менее чувствительным; теряется способность различать высоту тона. При 19 000 Гц предельно слышимыми оказываются лишь звуки, в миллион раз более интенсивные, чем при 14 000 Гц .При повышении интенсивности высоких звуков возникает ощущение неприятного щекотания в ухе (осязание звука), а затем чувство боли. Область слухового восприятия охватывает свыше 10 октав и ограничена сверху порогом осязания, снизу порогом слышимости. Внутри этой области лежат все воспринимаемые ухом звуки различной силы и высоты. Наименьшая сила требуется для восприятия звуков от 1 000 до 3 000 Гц .В этой области ухо является наиболее чувствительным. На повышенную чувствительность уха в области 2 000-3 000 Гц указывал ещё Г. Л. Ф. Гельмгольц; он объяснял это обстоятельство собственным тоном барабанной перепонки.

Величина порога различения, или разностного порога, высоты (по данным Т. Пэра, В. Штрауба, Б. М. Теплова) в средних октавах у большинства людей находится в пределах от 6 до 40 центов (цент - сотая доля темперированного полутона). У высокоодарённых в музыкальном отношении детей, обследованных Л. В. Благонадёжиной, пороги оказались равны 6-21 центам.

Приводим таблицу порогов различения высоты у учащихся «особой детской группы» Московской государственной консерватории (по Л. В. Благонадёжиной).

Существует собственно два порога различения высоты: 1) порог простого различения и 2) порог направления (В. Прейер и др.). Иногда при малых различениях высоты испытуемый замечает различия в высоте, не будучи, однако, в состоянии сказать, какой из двух звуков выше.

По данным целого ряда исследователей (Джильберта, Гентшеля, Мейснера, Майнуоринга и др.), чувствительность к различению высоты вырастает с возрастом (у детей от 6 до 14 и 17 лет). Притом это возрастание чувствительности (и, значит, снижение порогов) находится в значительной зависимости от занятия музыкой; у детей, занимающихся музыкой, оно увеличивается больше, чем у тех, которые музыкой не занимаются (Мейснер). Упражнение заметно повышает чувствительность к различению высоты. Об этом свидетельствуют данные ряда авторов (начиная со К. Штумпфа). Особенно показательны в этом отношении опыты Б. М. Теплова. В результате специально проведённых очень простых упражнений, на которые в общем затрачивают лишь несколько часов, Теплов получил резкое снижение порогов. У одного его испытуемого при первом испытании порог равнялся 32 центам, при втором 28, при третьем 22, при четвёртом 16 центам (всего на упражнение с этим испытуемым было потрачено около 4 часов). У другого испытуемого порог снизился с 20 до 12, у двух других с 14 до 10, у одного испытуемого с исключительно большим порогом в 226 центов он в результате 7 сеансов, на которые было потрачено 8 часов, снизился до 94 центов. Таким образом, чувствительность к различению высоты является функцией, весьма поддающейся упражнению.

Отчётливое восприятие высоты требует некоторого минимума колебаний. Этот минимум при различных частотах различен. Данные различных авторов по этому вопросу не вполне однородны. Абрагам указывает как минимум два полных колебания. Позднейшие авторы указывают большее число колебаний - 4, 5, 30 и более, до 300, - в зависимости от частоты.

Высота звука, как она обычно воспринимается в шумах и звуках речи, включает два различных компонента - собственно высоту и тембровую характеристику.

В звуках сложного состава изменение высоты связано с изменением некоторых тембровых свойств. Объясняется это тем, что при увеличении частоты колебаний неизбежно уменьшается число частотных тонов, доступных нашему слуховому аппарату. В шумовом и речевом слышании эти два компонента высоты не дифференцируются. Вычленение высоты в собственном смысле слова из её тембровых компонентов является характерным признаком музыкального слышания (Б. М. Теплов). Оно совершается в процессе исторического развития музыки, как определённого вида человеческой деятельности.

Один вариант двухкомпонентной теории высоты развил Ф. Брентано и вслед за ним Г. Ревеш, исходя из принципа октавного сходства звуков. Ревеш различает качество и светлость звука. Под качеством звука он понимает такую особенность высоты звука, благодаря которой мы различаем звуки в пределах октавы. Под светлостью - такую особенность его высоты, которая отличает звуки одной октавы от звуков другой. Так, например, все ноты «до» качественно тожественны, но по светлости отличны. Ещё К. Штумпф подверг эту концепцию жёсткой критике. Конечно, октавное сходство существует (так же, как и сходство квинтовое), но оно не определяет никакого компонента высоты.

М. Мак-Маер, К. Штумпф и особенно В. Келер дали другую трактовку двухкомпонентной теории высоты, различив в ней собственно высоту и тембровую характеристику высоты (светлость). Однако эти исследователи (так же как и Е. А. Мальцева), проводя различение двух компонентов высоты, оставались в чисто феноменальном плане: к одной и той же объективной характеристике звуковой волны они соотносили два различных и отчасти даже разнородных свойства ощущения. Б. М. Теплов указал на объективную основу этого явления, заключающуюся в том, что с увеличением высоты изменяется число доступных уху частичных тонов. Поэтому различие тембровой окраски звуков различной высоты имеется в действительности лишь в сложных звуках; в простых тонах она представляет собой результат переноса. [Б. М. Теплов, Ощущение музыкального звука. «Учёные записки Госуд. научно-иссл. института психологии», т. I, M. 1940, стр. 115-150.]

В силу этой взаимосвязи собственно высоты и тембровой окраски не только различные инструменты отличаются по своему тембру друг от друга, но и различные по высоте звуки на том же самом инструменте отличаются друг от друга не только высотой, но и тембровой окраской. В этом сказывается взаимосвязь различных сторон звука - его звуковысотных и тембровых свойств.

3. Тембр . Под тембром понимают особый характер или окраску звука, зависящую от взаимоотношения его частичных тонов. Тембр отражает акустический состав сложного звука, т. е. число, порядок и относительную силу, входящих в его состав частичных тонов (гармонических и негармонических).

По Гельмгольцу, тембр зависит от того, какие верхние гармонические тоны примешаны к основному, и от относительной силы каждого из них.

В наших слуховых ощущениях тембр сложного звука играет очень значительную роль. Частичные тоны (обертоны), или, по терминологии Н. А. Гарбузова, верхние натуральные призвуки, имеют большое значение также и в восприятии гармонии.

Тембр, как и гармония, отражает звук, который в акустическом своём составе является созвучием. Поскольку это созвучие воспринимается как единый звук без выделения в нём слухом акустически в него входящих частичных тонов, звуковой состав отражается в виде тембра звука. Поскольку же слух выделяет частичные тоны сложного звука, возникает восприятие гармонии. Реально в восприятии музыки имеет обычно место и одно и другое. Борьба и единство этих двух взаимопротиворечивых тенденций - анализировать звук как созвучие и воспринимать созвучие как единый звук специфической тембровой окраски - составляет существенную сторону всякого реального восприятия музыки.

Тембровая окраска приобретает особенное богатство благодаря так называемому вибрато (К. Сишор), придающему звуку человеческого голоса, скрипки и т. д. большую эмоциональную выразительность. Вибрато отражает периодические изменения (пульсации) высоты и интенсивности звука.

Вибрато играет значительную роль в музыке и пении; оно представлено и в речи, особенно эмоциональной. Поскольку вибрато имеется у всех народов и у детей, особенно музыкальных, встречаясь у них независимо от обучения и упражнения, оно, очевидно, является физиологически обусловленным проявлением эмоционального напряжения, способом выражения чувства.

Вибрато в человеческом голосе как выражение эмоциональности существует, вероятно, с тех пор, как существует звуковая речь и люди пользуются звуками для выражения своих чувств. [Вибрато специально изучалось в последнее время К. Сишором, в течение ряда лет применявшим в этих целях фотоэлектрические снимки. См. C. E. Seaschore, Psychology of the Vibrato in music and speech, «Acta psychologica», vol. 1, № 4. Hague 1935. По данным К. Сишора, вибрато, будучи вообще выражением чувства в голосе, не дифференцировано для различных чувств.]Вокальное вибрато возникает в результате периодичности сокращения парных мышц, наблюдающейся при нервной разрядке в деятельности различных мышц, не только вокальных. Напряжение и разрядка, выражающиеся в форме пульсирования, однородны с дрожанием, вызываемым эмоциональным напряжением.

Существует хорошее и дурное вибрато. Дурное вибрато такое, в котором имеется излишек напряжения или нарушение периодичности. Хорошее вибрато является периодической пульсацией, включающей определённую высоту, интенсивность и тембр и порождающей впечатление приятной гибкости, полноты, мягкости и богатства тона.

То обстоятельство, что вибрато, будучи обусловлено изменениями высоты и интенсивности звука, воспринимается как тембровая окраска, снова обнаруживает внутреннюю взаимосвязь различных сторон звука. При анализе высоты звука уже обнаружилось, что высота в её традиционном понимании, т. е. та сторона звукового ощущения, которая определяется частотой колебаний, включает не только высоту в собственном смысле слова, но и тембровый компонент светлоты. Теперь обнаруживается, что в свою очередь в тембровой окраске - в вибрато - отражается высота, а также интенсивность звука.

Различные музыкальные инструменты отличаются друг от друга тембровой характеристикой. Н. А. Римский-Корсаков так характеризует тембр различных деревянных духовых инструментов в низком и высоком регистрах.

СЛУХОВЫЕ ОЩУЩЕНИЯ СЛЕПЫХ И СЛАБОВИДЯЩИХ


План

Введение

1. Свойства слуховых ощущений и их роль в жизни слепых

2. От чего зависят слуховые ощущения

3. Специальная тренировка слуховых ощущений

Заключение


Введение

Уже на заре возникновения науки о психике слепых было широко распространено мнение, согласно которому слуховой анализатор является ведущим во всех видах деятельности слепых. На этом основании слуху слепых приписывали особую изощренность, автоматически возникающую и компенсирующую утраченное зрение.

Несмотря на различные объяснения причин повышения слуховой чувствительности (перераспределение энергетического фонда, упражнения, интенсивность внимании), большая часть исследователей делала вывод, что именно слуху принадлежит ведущая роль в процессах познания и ориентации в окружающем мире. Такой точки зрения придерживались А.А. Крогиус, В.И. Руднев, Г.И. Челпанов и др. Так, А.А. Крогиус с явным одобрением цитировал Р. Дюфо, который писал: «Обычно, если говорят о слепых, то отмечают, прежде всего, результаты, полученные ими с помощью осязания... Только после целого ряда внимательных наблюдений оценил я важность для слепых слуха и понял, что в громадном большинстве жизненных обстоятельств слух является для них тем же, чем для нас зрение».

1. Свойства слуховых ощущений и их роль в жизни слепых

Слуховые ощущения возникают в мозгу человека в результате воздействия звуковой волны на слуховой рецептор.

Слуховые ощущения человека дистантны, т.е. принимают информацию на расстоянии. Возможность дистантного восприятия звуков имеет особую ценность, так как позволяет использовать звуки как сигналы взаимодействия объектов внешнего мира. По мере того как звуки приобретают значение сигнала и связываются в представлении слепого с предметами и их действиями, ориентировка в социальной жизни становится более точной и определенной.

При помощи слуха человек отражает такие качества звука, как громкость, высота, тембр, устанавливает длительность звучания, локализует источник звука в пространстве.

Слуховые ощущения человека избирательны. Из большого числа звуков человек может сосредоточить внимание на нужном звуке, остальные звуки он как бы при этом не слышит. Все эти свойства слуха для незрячего человека очень важны для ориентировки и передвижения в пространстве.

Слуховые ощущения характеризуются порогами слуховой чувствительности. Наиболее важными из них являются пороги абсолютной слуховой чувствительности и различение звуков по высоте и тембру.

Абсолютный порог слуховой чувствительности определяется наименьшей мощностью колебаний, ощущаемых в виде звуков. Пороги слуховой чувствительности у разных людей различны - есть люди, нормально слышащие, тугоухие и глухие. Чем ниже порог абсолютной слуховой чувствительности, тем более отдаленные и

слабые звуки ощущает ухо и точнее определяет местоположение источника звука.

Другим важным порогом слуховой чувствительности является порог различения звуков по высоте (частоте) колебаний. Нормальное ухо различает разницу в частоте колебаний двух источников звука в 10 процентов, в музыке - звуки с разницей в полтона.

Очень важным для незрячих людей является свойство слуха различать звуки по тембру. Порог различения звуков по тембру можно считать нормальным, если человек может определить каждый из музыкальных инструментов, издающих звук одинаковой высоты и силы. Чем ниже у незрячего порог различения по тембру, тем легче ему различать людей по голосам, тем лучше и быстрее он определяет предметы по их звучанию!

Слуховые ощущения носят предметный характер, поскольку звуки ассоциируются у человека с определенными предметами, издающими их. На основе предметности слуховых восприятий слепые могут узнавать предметы, формировать предметные и пространственные представления. Однако предмстность слуховых ощущений формируется приемущественно только после осязательного обследования источника звука. Если предметы не издают звуков, то незрячий может определить их, постукивая по ним тростью или другим предметом.

С помощью слуха незрячие могут определять и использовать в качестве ориентиров различные виды транспорта, могут определять направление их движения, примерную скорость движения, а также явления природы: грозу, дождь, метель, ветер и др.

Многие незрячие легко определяют по шелесту листьев породы деревьев, различают виды птиц, животных, узнают, по голосам своих родственников, друзей. При ударе по предметам незрячий может определить, из какого материала они сделаны - дерева, металла, стекла и пр.

Важнейшее значение для пространственной ориентировки слепых имеют социальные функции слуха. Слух выступает как средство формирования человеческой речи. С помощью речи слепые получают огромную информацию об окружающем мире, которая не поступает по зрительному каналу. Так, например, передвигаясь по незнакомой местности, незрячий может уточнить у прохожих свое местоположение. Речь является важнейшим средством компенсации функций утраченного зрения. Реальный мир, который окружает незрячего человека, воспринимается им с помощью различных органов чувств и запечатлевается в его сознании в форме словесных выражений. Слово может вызвать такой же эффект, как и действие реального раздражителя, обозначаемое этим словом. Это свойство речи позволяет слепым сократить время на изучение объекта или участка пространства, заменив осязательное обследование словесной информацией.

2. От чего зависят слуховые ощущения

Слуховые ощущения человека зависят от атмосферных условий.

При повышенной влажности воздуха лучше ощущаются звуки низкий частоты. Возрастает слышимость при более низкой температуре и при повышении атмосферного давления. Такие явления, как туман, дождь, снегопад действуют в сторону понижения слуховых ощущений. Слуховые ощущения снижаются при сильных шумах и звуках. При сильном шуме незрячие не могут пользоваться слуховыми ориентирами.

Слуховые ощущения могут значительно снижаться при утомлении слуха, зависят от направленности внимания, от эмоционального состояния человека и др.

Это все необходимо учитывать незрячему при самостоятельном передвижении, особенно в незнакомых местах, когда больше используются слуховые ориентиры, чем осязательные.

3. Специальные тренировки слуховых ощущений

Слуховые ощущения поддаются тренировке. В результате систематических тренировок заметно снижаются пороги различения звуков по высоте и тембру, повышается скорость и точность локализации звуков. Слуховые ощущения можно тренировать не только на занятиях по пространственной ориентировке, но и в свободное время. Для знакомства со звуками природы можно использовать фонограммы голосов птиц, животных. Необходимо добиваться, чтобы каждый незрячий ученик научился быстро и точно определять по звукам различные материалы, предметы, научился пользоваться звуковыми ориентирами. Особое внимание нужно обратить на тренировки по локадизадии источников звука.

Многие незрячие испытывают страх перед движущимся транспортом. Отсюда возникает неуверенное передвижение по тротуарам шумных улиц, боязнь переходить улицы. Это происходит, как правило, из-за того, что незрячие не умеют определять направление движения транспорта и скорость его передвижения. После специальных тренировок звуки движущегося транспорта могут стать хорошими слуховыми ориентирами при передвижении по городу.

У некоторых незрячих, кроме утраченного зрения, бывают и дефекты слуха. Поэтому при обучении незрячих ориентировке и мобильности необходимо установить остроту слуха каждого уха, способность локализации звука.

Если у незрячего имеется значительная разница в порогах абсолютной слуховой чувствительности левого и правого уха, то при определении местоположения источников звука они воспринимают его смещенным в сторону хорошо слышащего.уха. Инструктор должен научить незрячего делать необходимые поправки при определении источника звука.

У незрячих с плохим слухом, как правило, нет ощущений препятствий на расстоянии. Поэтому при обучении пространственной ориентировке надо учить их больше пользоваться осязательными и обонятельными ориентирами, тренировать вестибулярный аппарат. Незрячие, обладающие слухом на одно ухо, не могут определить местоположение звука. Они слышат звук, но не могут, как правило, сказать, откуда он исходит. Звуки для таких людей перестают быть ориентирами направления. Но при некоторой тренировке и в такой ситуации можно научить незрячего определять местоположение источника звука.

Если ушная раковина направлена прямо на источник звука, звук ощущается с наибольшей громкостью. При отклонении громкость звука уменьшается. Это свойство можно использовать для локализации звуков. Зафиксировав наибольшую громкость звука при повороте головы, мы тем самым установим направление к источнику звука. Используя этот прием, можно определить и направление перемещения источника звука.

Разумеется, этот прием не дает достаточно точного определения местоположения источника звука, но позволяет выбрать, например, безопасный момент при переходе через улицу. Практика показывает, что люди, обладающие слухом только на одно ухо, вполне овладевают навыками самостоятельного передвижения в большом пространстве.


Заключение

Слух имеет огромное значение для человека. При полной или частичной утрате зрительных функций, при сокращении или невозможности воспринимать мир визуально, роль слуха значительно возрастает.

При помощи слуха слепые люди ориентируются в пространстве, различают громкость, высоту, тембр, прерывистость и непрерывность звуков, определяют местоположение источника звука, определяют направление и скорость перемещения источника звука, фиксируют не только отдельные звуки, но и их сочетание (т. е. воспринимают окружающую обстановку в виде звуковых картин), узнают предметы (из какого материала они сделаны), узнают людей (их настроение) и т.д.