Cum să găsiți cele mai mari și cele mai mici valori ale unei funcții într-o regiune închisă mărginită.

Cum să găsiți cele mai mari și cele mai mici valori ale unei funcții pe un segment?

Pentru aceasta urmam un algoritm binecunoscut:

1 . Găsirea funcțiilor ODZ.

2 . Găsirea derivatei funcției

3 . Echivalarea derivatei cu zero

4 . Găsim intervalele peste care derivata își păstrează semnul, iar din ele determinăm intervalele de creștere și scădere a funcției:

Dacă pe intervalul I derivata funcției este 0" title="f^(prim)(x)>0">, то функция !} crește în acest interval.

Dacă pe intervalul I derivata funcției , atunci funcția scade în acest interval.

5 . Găsim punctele maxime și minime ale funcției.

ÎN în punctul maxim al funcției, derivata își schimbă semnul de la „+” la „-”.

ÎN punctul minim al funcțieiderivata își schimbă semnul din „-” în „+”.

6 . Găsim valoarea funcției la capetele segmentului,

  • apoi comparăm valoarea funcției la capetele segmentului și la punctele maxime și alegeți cea mai mare dintre ele dacă trebuie să găsiți cea mai mare valoare a funcției
  • sau comparați valoarea funcției la capetele segmentului și la punctele minime și alegeți cel mai mic dintre ele dacă trebuie să găsiți cea mai mică valoare a funcției

Totuși, în funcție de modul în care funcția se comportă pe segment, acest algoritm poate fi redus semnificativ.

Luați în considerare funcția . Graficul acestei funcții arată astfel:

Să ne uităm la câteva exemple de rezolvare a problemelor din Open Task Bank pentru

1 . Sarcina B15 (nr. 26695)

Pe segment.

1. Funcția este definită pentru toate valorile reale ale lui x

Evident, această ecuație nu are soluții, iar derivata este pozitivă pentru toate valorile lui x. În consecință, funcția crește și ia cea mai mare valoare la capătul drept al intervalului, adică la x=0.

Raspuns: 5.

2 . Sarcina B15 (nr. 26702)

Găsiți cea mai mare valoare a funcției pe segment.

1. Funcții ODZ title="x(pi)/2+(pi)k, k(in)(bbZ)">!}

Derivata este egală cu zero la , cu toate acestea, în aceste puncte nu își schimbă semnul:

Prin urmare, title="3/(cos^2(x))>=3">, значит, title="3/(cos^2(x))-3>=0">, то есть производная при всех допустимых значених х неотрицательна, следовательно, функция !} crește și ia cea mai mare valoare la capătul drept al intervalului, la .

Pentru a face evident de ce derivata nu își schimbă semnul, transformăm expresia pentru derivată după cum urmează:

Title="y^(prim)=3/(cos^2(x))-3=(3-3cos^2(x))/(cos^2(x))=(3sin^2 (x))/(cos^2(x))=3tg^2(x)>=0">!}

Raspuns: 5.

3. Sarcina B15 (nr. 26708)

Găsiți cea mai mică valoare a funcției de pe segment.

1. Funcții ODZ: title="x(pi)/2+(pi)k, k(in)(bbZ)">!}

Să plasăm rădăcinile acestei ecuații pe cercul trigonometric.

Intervalul conține două numere: și

Să punem semne. Pentru a face acest lucru, determinăm semnul derivatei în punctul x=0: . La trecerea prin puncte și, derivata își schimbă semnul.

Să descriem schimbarea semnelor derivatei unei funcții pe linia de coordonate:

Evident, punctul este un punct minim (la care derivata își schimbă semnul de la „-” la „+”), iar pentru a găsi cea mai mică valoare a funcției pe segment, trebuie să comparați valorile funcției la punctul minim și la capătul din stânga segmentului, .

În practică, este destul de comun să se folosească derivata pentru a calcula valoarea cea mai mare și cea mai mică a unei funcții. Efectuăm această acțiune atunci când ne dăm seama cum să minimizăm costurile, să creștem profiturile, să calculăm sarcina optimă a producției etc., adică în cazurile în care trebuie să determinăm valoarea optimă a unui parametru. Pentru a rezolva corect astfel de probleme, trebuie să înțelegeți bine care sunt cele mai mari și cele mai mici valori ale unei funcții.

Yandex.RTB R-A-339285-1

De obicei definim aceste valori într-un anumit interval x, care, la rândul său, poate corespunde întregului domeniu al funcției sau unei părți a acesteia. Poate fi ca un segment [a; b ] , și interval deschis (a ; b), (a ; b ], [ a ; b), interval infinit (a ; b), (a ; b ], [ a ; b) sau interval infinit - ∞ ; a , (- ∞ ; a ] , [ a ; + ∞) , (- ∞ ; + ∞) .

În acest material vă vom spune cum să calculați cele mai mari și cele mai mici valori ale unei funcții definite în mod explicit cu o variabilă y=f(x) y = f (x) .

Definiții de bază

Să începem, ca întotdeauna, cu formularea definițiilor de bază.

Definiția 1

Cea mai mare valoare a funcției y = f (x) pe un anumit interval x este valoarea m a x y = f (x 0) x ∈ X, care pentru orice valoare x x ∈ X, x ≠ x 0 face inegalitatea f (x) ≤ f (x) valabil 0) .

Definiția 2

Cea mai mică valoare a funcției y = f (x) pe un anumit interval x este valoarea m i n x ∈ X y = f (x 0) , care pentru orice valoare x ∈ X, x ≠ x 0 face ca inegalitatea f(X f (x) ≥ f (x 0).

Aceste definiții sunt destul de evidente. Și mai simplu, putem spune așa: cea mai mare valoare a unei funcții este cea mai mare valoare pe un interval cunoscut la abscisă x 0, iar cea mai mică este cea mai mică valoare acceptată pe același interval la x 0.

Definiția 3

Punctele staționare sunt acele valori ale argumentului unei funcții la care derivata sa devine 0.

De ce trebuie să știm ce sunt punctele staționare? Pentru a răspunde la această întrebare, trebuie să ne amintim teorema lui Fermat. Din aceasta rezultă că un punct staționar este punctul în care se află extremul funcției diferențiabile (adică, minimul sau maximul local). În consecință, funcția va lua cea mai mică sau cea mai mare valoare pe un anumit interval exact în unul dintre punctele staționare.

O funcție poate lua, de asemenea, cea mai mare sau cea mai mică valoare în acele puncte în care funcția în sine este definită și derivata sa prima nu există.

Prima întrebare care apare atunci când studiem acest subiect: în toate cazurile putem determina valoarea cea mai mare sau cea mai mică a unei funcții pe un interval dat? Nu, nu putem face acest lucru atunci când limitele unui interval dat coincid cu limitele zonei de definiție sau dacă avem de-a face cu un interval infinit. De asemenea, se întâmplă ca o funcție dintr-un segment dat sau la infinit să ia valori infinit de mici sau infinit de mari. În aceste cazuri, nu este posibil să se determine valoarea cea mai mare și/sau cea mai mică.

Aceste puncte vor deveni mai clare după ce vor fi reprezentate pe grafice:

Prima figură ne arată o funcție care ia cele mai mari și cele mai mici valori (m a x y și m i n y) în punctele staționare situate pe segmentul [ - 6 ; 6].

Să examinăm în detaliu cazul indicat în al doilea grafic. Să schimbăm valoarea segmentului în [ 1 ; 6 ] și constatăm că valoarea maximă a funcției va fi atinsă în punctul cu abscisa la limita dreaptă a intervalului, iar cea minimă - în punctul staționar.

În figura a treia, abscisele punctelor reprezintă punctele de limită ale segmentului [ - 3 ; 2]. Ele corespund celei mai mari și mai mici valori a unei anumite funcții.

Acum să ne uităm la a patra imagine. În ea, funcția ia m a x y (cea mai mare valoare) și m i n y (cea mai mică valoare) în punctele staționare din intervalul deschis (- 6; 6).

Dacă luăm intervalul [ 1 ; 6), atunci putem spune că cea mai mică valoare a funcției de pe ea va fi atinsă într-un punct staționar. Cea mai mare valoare ne va fi necunoscută. Funcția ar putea lua valoarea maximă la x egală cu 6 dacă x = 6 aparține intervalului. Acesta este exact cazul prezentat în graficul 5.

În graficul 6, această funcție capătă cea mai mică valoare la limita dreaptă a intervalului (- 3; 2 ] și nu putem trage concluzii definitive despre cea mai mare valoare.

În figura 7 vedem că funcția va avea m a x y într-un punct staționar având o abscisă egală cu 1. Funcția își va atinge valoarea minimă la limita intervalului din partea dreaptă. La minus infinit, valorile funcției se vor apropia asimptotic de y = 3.

Dacă luăm intervalul x ∈ 2 ; + ∞ , atunci vom vedea că funcția dată nu va lua nici cea mai mică, nici cea mai mare valoare pe ea. Dacă x tinde spre 2, atunci valorile funcției vor tinde spre minus infinit, deoarece linia dreaptă x = 2 este o asimptotă verticală. Dacă abscisa tinde spre plus infinit, atunci valorile funcției se vor apropia asimptotic de y = 3. Acesta este exact cazul prezentat în figura 8.

În acest paragraf vom prezenta succesiunea de acțiuni care trebuie efectuate pentru a găsi cea mai mare sau cea mai mică valoare a unei funcții pe un anumit segment.

  1. Mai întâi, să găsim domeniul de definire al funcției. Să verificăm dacă segmentul specificat în condiție este inclus în el.
  2. Acum să calculăm punctele conținute în acest segment la care derivata întâi nu există. Cel mai adesea ele pot fi găsite în funcțiile al căror argument este scris sub semnul modulului sau în funcțiile de putere al căror exponent este un număr fracțional rațional.
  3. În continuare, vom afla ce puncte staționare vor cădea în segmentul dat. Pentru a face acest lucru, trebuie să calculați derivata funcției, apoi să o echivalați cu 0 și să rezolvați ecuația rezultată, apoi să selectați rădăcinile adecvate. Dacă nu obținem un singur punct staționar sau nu se încadrează în segmentul dat, atunci trecem la pasul următor.
  4. Determinăm ce valori va lua funcția în anumite puncte staționare (dacă există) sau în acele puncte în care derivata întâi nu există (dacă există), sau calculăm valorile pentru x = a și x = b.
  5. 5. Avem un număr de valori ale funcției, din care acum trebuie să le selectăm pe cea mai mare și pe cea mai mică. Acestea vor fi cele mai mari și cele mai mici valori ale funcției pe care trebuie să le găsim.

Să vedem cum să aplicăm corect acest algoritm atunci când rezolvăm probleme.

Exemplul 1

Condiție: este dată funcția y = x 3 + 4 x 2. Determinați valorile sale cele mai mari și cele mai mici pe segmente [ 1 ; 4 ] şi [ - 4 ; - 1 ] .

Soluţie:

Să începem prin a găsi domeniul de definiție al unei funcții date. În acest caz, va fi mulțimea tuturor numerelor reale, cu excepția lui 0. Cu alte cuvinte, D (y) : x ∈ (- ∞ ; 0) ∪ 0 ; + ∞ . Ambele segmente specificate în condiție vor fi în interiorul zonei de definire.

Acum calculăm derivata funcției conform regulii de diferențiere a fracțiilor:

y " = x 3 + 4 x 2 " = x 3 + 4 " x 2 - x 3 + 4 x 2 " x 4 = = 3 x 2 x 2 - (x 3 - 4) 2 x x 4 = x 3 - 8 x 3

Am învățat că derivata unei funcții va exista în toate punctele segmentelor [ 1 ; 4 ] şi [ - 4 ; - 1 ] .

Acum trebuie să determinăm punctele staționare ale funcției. Să facem asta folosind ecuația x 3 - 8 x 3 = 0. Are o singură rădăcină reală, care este 2. Va fi un punct staționar al funcției și va cădea în primul segment [1; 4 ] .

Să calculăm valorile funcției la capetele primului segment și în acest punct, adică. pentru x = 1, x = 2 și x = 4:

y (1) = 1 3 + 4 1 2 = 5 y (2) = 2 3 + 4 2 2 = 3 y (4) = 4 3 + 4 4 2 = 4 1 4

Am constatat că cea mai mare valoare a funcției m a x y x ∈ [ 1 ; 4 ] = y (2) = 3 se va realiza la x = 1, iar cel mai mic m i n y x ∈ [ 1 ; 4 ] = y (2) = 3 – la x = 2.

Al doilea segment nu include un singur punct staționar, așa că trebuie să calculăm valorile funcției numai la sfârșitul segmentului dat:

y (- 1) = (- 1) 3 + 4 (- 1) 2 = 3

Aceasta înseamnă m a x y x ∈ [ - 4 ; - 1 ] = y (- 1) = 3 , m i n y x ∈ [ - 4 ; - 1 ] = y (- 4) = - 3 3 4 .

Răspuns: Pentru segmentul [ 1 ; 4 ] - m a x y x ∈ [ 1 ; 4 ] = y (2) = 3 , m i n y x ∈ [ 1 ; 4 ] = y (2) = 3 , pentru segmentul [ - 4 ; - 1 ] - m a x y x ∈ [ - 4 ; - 1 ] = y (- 1) = 3 , m i n y x ∈ [ - 4 ; - 1 ] = y (- 4) = - 3 3 4 .

Vezi poza:


Înainte de a studia această metodă, vă sfătuim să revizuiți cum să calculați corect limita unilaterală și limita la infinit, precum și să învățați metodele de bază pentru a le găsi. Pentru a găsi cea mai mare și/sau cea mai mică valoare a unei funcții pe un interval deschis sau infinit, parcurgeți următorii pași secvențial.

  1. În primul rând, trebuie să verificați dacă intervalul dat va fi un subset al domeniului funcției date.
  2. Să determinăm toate punctele care sunt cuprinse în intervalul necesar și la care derivata întâi nu există. Ele apar de obicei pentru funcțiile în care argumentul este inclus în semnul modulului și pentru funcțiile de putere cu un exponent rațional fracțional. Dacă aceste puncte lipsesc, atunci puteți trece la pasul următor.
  3. Acum să determinăm care puncte staționare se vor încadra în intervalul dat. Mai întâi, echivalăm derivata cu 0, rezolvăm ecuația și selectăm rădăcinile potrivite. Dacă nu avem un singur punct staționar sau nu se încadrează în intervalul specificat, atunci trecem imediat la acțiuni ulterioare. Ele sunt determinate de tipul de interval.
  • Dacă intervalul este de forma [ a ; b) , atunci trebuie să calculăm valoarea funcției în punctul x = a și limita unilaterală lim x → b - 0 f (x) .
  • Dacă intervalul are forma (a; b ], atunci trebuie să calculăm valoarea funcției în punctul x = b și limita unilaterală lim x → a + 0 f (x).
  • Dacă intervalul are forma (a; b), atunci trebuie să calculăm limitele unilaterale lim x → b - 0 f (x), lim x → a + 0 f (x).
  • Dacă intervalul este de forma [ a ; + ∞), atunci trebuie să calculăm valoarea în punctul x = a și limita la plus infinit lim x → + ∞ f (x) .
  • Dacă intervalul arată ca (- ∞ ; b ] , se calculează valoarea în punctul x = b și limita la minus infinit lim x → - ∞ f (x) .
  • Dacă - ∞ ; b , atunci considerăm limita unilaterală lim x → b - 0 f (x) și limita la minus infinit lim x → - ∞ f (x)
  • Dacă - ∞; + ∞ , atunci considerăm limitele pe minus și plus infinit lim x → + ∞ f (x) , lim x → - ∞ f (x) .
  1. La sfârșit, trebuie să trageți o concluzie pe baza valorilor și limitelor funcției obținute. Există multe opțiuni disponibile aici. Deci, dacă limita unilaterală este egală cu minus infinit sau plus infinit, atunci este imediat clar că nu se poate spune nimic despre cele mai mici și mai mari valori ale funcției. Mai jos vom analiza un exemplu tipic. Descrierile detaliate vă vor ajuta să înțelegeți ce este. Dacă este necesar, puteți reveni la figurile 4 - 8 din prima parte a materialului.
Exemplul 2

Condiție: funcție dată y = 3 e 1 x 2 + x - 6 - 4 . Calculați valoarea sa cea mai mare și cea mai mică în intervalele - ∞ ; - 4, - ∞; - 3 , (- 3 ; 1 ] , (- 3 ; 2 ) , [ 1 ; 2 ) , 2 ; + ∞ , [ 4 ; + ∞).

Soluţie

În primul rând, găsim domeniul de definire al funcției. Numitorul fracției conține un trinom pătratic, care nu trebuie să se transforme la 0:

x 2 + x - 6 = 0 D = 1 2 - 4 1 (- 6) = 25 x 1 = - 1 - 5 2 = - 3 x 2 = - 1 + 5 2 = 2 ⇒ D (y) : x ∈ (- ∞ ; - 3) ∪ (- 3 ; 2) ∪ (2 ; + ∞)

Am obținut domeniul de definire al funcției căreia îi aparțin toate intervalele specificate în condiție.

Acum să diferențiem funcția și să obținem:

y" = 3 e 1 x 2 + x - 6 - 4 " = 3 e 1 x 2 + x - 6 " = 3 e 1 x 2 + x - 6 1 x 2 + x - 6 " = = 3 · e 1 x 2 + x - 6 · 1 " · x 2 + x - 6 - 1 · x 2 + x - 6 " (x 2 + x - 6) 2 = - 3 · (2 ​​​​x + 1) · e 1 x 2 + x - 6 x 2 + x - 6 2

În consecință, derivatele unei funcții există în întregul său domeniu de definire.

Să trecem la găsirea punctelor staționare. Derivata functiei devine 0 la x = - 1 2 . Acesta este un punct staționar care se află în intervalele (- 3 ; 1 ] și (- 3 ; 2) .

Să calculăm valoarea funcției la x = - 4 pentru intervalul (- ∞ ; - 4 ], precum și limita la minus infinit:

y (- 4) = 3 e 1 (- 4) 2 + (- 4) - 6 - 4 = 3 e 1 6 - 4 ≈ - 0 . 456 lim x → - ∞ 3 e 1 x 2 + x - 6 = 3 e 0 - 4 = - 1

Deoarece 3 e 1 6 - 4 > - 1, înseamnă că m a x y x ∈ (- ∞ ; - 4 ] = y (- 4) = 3 e 1 6 - 4. Acest lucru nu ne permite să determinăm în mod unic cea mai mică valoare a Putem doar concluziona că există o constrângere sub - 1, deoarece funcția se apropie asimptotic de această valoare la minus infinit.

Particularitatea celui de-al doilea interval este că nu există un singur punct staționar și nici o singură limită strictă în el. În consecință, nu vom putea calcula nici cea mai mare, nici cea mai mică valoare a funcției. După ce am definit limita la minus infinit și deoarece argumentul tinde spre - 3 în partea stângă, obținem doar un interval de valori:

lim x → - 3 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 - 0 3 e 1 (x + 3) (x - 3) - 4 = 3 e 1 (- 3 - 0 + 3) (- 3 - 0 - 2) - 4 = = 3 e 1 (+ 0) - 4 = 3 e + ∞ - 4 = + ∞ lim x → - ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Aceasta înseamnă că valorile funcției vor fi localizate în intervalul - 1; +∞

Pentru a găsi cea mai mare valoare a funcției în al treilea interval, determinăm valoarea acesteia în punctul staționar x = - 1 2 dacă x = 1. De asemenea, va trebui să cunoaștem limita unilaterală pentru cazul în care argumentul tinde spre - 3 pe partea dreaptă:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e 4 25 - 4 ≈ - 1 . 444 y (1) = 3 e 1 1 2 + 1 - 6 - 4 ≈ - 1 . 644 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 - 3 + 0 + 3 (- 3 + 0 - 2) - 4 = = 3 e 1 (- 0) - 4 = 3 e - ∞ - 4 = 3 0 - 4 = - 4

S-a dovedit că funcția va lua cea mai mare valoare într-un punct staționar m a x y x ∈ (3; 1 ] = y - 1 2 = 3 e - 4 25 - 4. În ceea ce privește cea mai mică valoare, nu o putem determina. Tot ce știm , este prezenţa unei limite inferioare la - 4 .

Pentru intervalul (- 3 ; 2), luați rezultatele calculului anterior și calculați din nou cu ce este egală limita unilaterală când tindeți spre 2 pe partea stângă:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e - 4 25 - 4 ≈ - 1 . 444 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = - 4 lim x → 2 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 (2 - 0 + 3) (2 - 0 - 2) - 4 = = 3 e 1 - 0 - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

Aceasta înseamnă că m a x y x ∈ (- 3 ; 2) = y - 1 2 = 3 e - 4 25 - 4, iar cea mai mică valoare nu poate fi determinată, iar valorile funcției sunt limitate de jos de numărul - 4 .

Pe baza a ceea ce am obținut în cele două calcule anterioare, putem spune că pe intervalul [ 1 ; 2) funcția va lua cea mai mare valoare la x = 1, dar este imposibil să găsiți cea mai mică.

Pe intervalul (2 ; + ∞) funcția nu va atinge nici cea mai mare, nici cea mai mică valoare, adică. va lua valori din intervalul - 1; + ∞ .

lim x → 2 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 (2 + 0 + 3 ) (2 + 0 - 2) - 4 = = 3 e 1 (+ 0) - 4 = 3 e + ∞ - 4 = + ∞ lim x → + ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

După ce am calculat cu ce valoarea funcției va fi egală la x = 4, aflăm că m a x y x ∈ [ 4 ; + ∞) = y (4) = 3 e 1 14 - 4 , iar funcția dată la plus infinit se va apropia asimptotic de dreapta y = - 1 .

Să comparăm ceea ce am obținut în fiecare calcul cu graficul funcției date. În figură, asimptotele sunt afișate prin linii punctate.

Asta este tot ce am vrut să vă spunem despre găsirea valorilor mai mari și cele mai mici ale unei funcții. Secvențele de acțiuni pe care le-am oferit vă vor ajuta să faceți calculele necesare cât mai rapid și simplu posibil. Dar amintiți-vă că este adesea util să aflați mai întâi la ce intervale funcția va scădea și la care va crește, după care puteți trage concluzii suplimentare. Astfel, puteți determina cu mai multă acuratețe cele mai mari și mai mici valori ale funcției și puteți justifica rezultatele obținute.

Dacă observați o eroare în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter

Și pentru a o rezolva veți avea nevoie de cunoștințe minime ale subiectului. Se termină încă un an școlar, toată lumea vrea să plece în vacanță, iar pentru a apropia acest moment, voi ajunge imediat la subiect:

Să începem cu zona. Zona la care se face referire în condiție este limitat închis set de puncte dintr-un plan. De exemplu, mulțimea de puncte mărginite de un triunghi, inclusiv TOTUL triunghi (dacă de la frontiere„scoate” cel puțin un punct, apoi regiunea nu va mai fi închisă). În practică, există și zone de forme dreptunghiulare, rotunde și ceva mai complexe. Trebuie remarcat faptul că în teoria analizei matematice sunt date definiții stricte limitări, izolare, limite etc., dar cred că toată lumea este conștientă de aceste concepte la nivel intuitiv, iar acum nu mai este nevoie de nimic.

O regiune plată este desemnată în mod standard cu litera , și, de regulă, este specificată analitic - prin mai multe ecuații (nu neapărat liniar); mai rar inegalități. Verbiaj tipic: „zonă închisă delimitată de linii”.

O parte integrantă a sarcinii luate în considerare este construcția unei zone în desen. Cum să o facă? Trebuie să desenați toate liniile enumerate (în acest caz 3 Drept) și analizați ce s-a întâmplat. Zona căutată este de obicei ușor umbrită, iar marginea sa este marcată cu o linie groasă:


Aceeași zonă poate fi, de asemenea, setată inegalități liniare: , care din anumite motive sunt adesea scrise ca o listă enumerată mai degrabă decât sistem.
Deoarece granița aparține regiunii, atunci toate inegalitățile, desigur, lax.

Și acum esența sarcinii. Imaginează-ți că axa iese direct spre tine de la origine. Luați în considerare o funcție care continuu în fiecare punct de zonă. Graficul acestei funcții reprezintă unele suprafaţă, iar mica fericire este că pentru a rezolva problema de astăzi nu trebuie să știm cum arată această suprafață. Poate fi situat mai sus, mai jos, să intersecteze planul - toate acestea nu contează. Și următorul lucru este important: conform teoremele lui Weierstrass, continuu V limitat închis zona în care funcția atinge cea mai mare valoare (cel mai inalt")și cel mai puțin (cel mai mic") valorile care trebuie găsite. Astfel de valori sunt atinse sau V punctele staţionare, aparținând regiuniiD , sauîn punctele care se află la limita acestei zone. Acest lucru duce la un algoritm de soluție simplu și transparent:

Exemplul 1

Într-o zonă închisă limitată

Soluţie: În primul rând, trebuie să descrii zona din desen. Din păcate, din punct de vedere tehnic îmi este dificil să fac un model interactiv al problemei și, prin urmare, voi prezenta imediat ilustrația finală, care arată toate punctele „suspecte” găsite în timpul cercetării. Ele sunt de obicei enumerate unul după altul pe măsură ce sunt descoperite:

Pe baza preambulului, decizia poate fi împărțită convenabil în două puncte:

I) Găsiți puncte staționare. Aceasta este o acțiune standard pe care am efectuat-o în mod repetat în clasă. despre extrema mai multor variabile:

Punct staționar găsit aparține zone: (marcați-l pe desen), ceea ce înseamnă că ar trebui să calculăm valoarea funcției la un punct dat:

- ca in articol Cele mai mari și cele mai mici valori ale unei funcții pe un segment, voi evidenția rezultatele importante cu caractere aldine. Este convenabil să le urmăriți într-un caiet cu un creion.

Fiți atenți la a doua noastră fericire - nu are rost să verificați condiție suficientă pentru un extremum. De ce? Chiar dacă la un moment dat funcția ajunge, de exemplu, minim local, atunci aceasta NU ÎNSEMNĂ că valoarea rezultată va fi minimîn întreaga regiune (vezi începutul lecției despre extreme necondiționate) .

Ce să faci dacă punctul staționar NU aparține zonei? Aproape nimic! Trebuie menționat că și treceți la următorul punct.

II) Explorăm granița regiunii.

Deoarece granița constă din laturile unui triunghi, este convenabil să împărțiți studiul în 3 subsecțiuni. Dar este mai bine să nu o faci oricum. Din punctul meu de vedere, este mai avantajos să luăm în considerare segmentele paralele cu axele de coordonate și, în primul rând, pe cele situate pe axele în sine. Pentru a înțelege întreaga secvență și logica acțiunilor, încercați să studiați finalul „într-o singură respirație”:

1) Să ne ocupăm de partea inferioară a triunghiului. Pentru a face acest lucru, înlocuiți direct în funcție:

Ca alternativă, puteți proceda astfel:

Geometric, aceasta înseamnă că planul de coordonate (care este dat și de ecuație)„ciopulează” din suprafete o parabolă „spațială”, al cărei vârf intră imediat sub bănuială. Să aflăm unde se află ea:

– valoarea rezultată „a căzut” în zonă și s-ar putea dovedi că la punctul respectiv (marcat pe desen) funcția atinge cea mai mare sau cea mai mică valoare din întreaga regiune. Într-un fel sau altul, hai să facem calculele:

Ceilalți „candidați” sunt, desigur, capetele segmentului. Să calculăm valorile funcției în puncte (marcat pe desen):

Aici, apropo, puteți efectua o mini-verificare orală utilizând o versiune „descărcată”:

2) Pentru a studia partea dreaptă a triunghiului, înlocuiți-o în funcție și „puneți lucrurile în ordine”:

Aici vom efectua imediat o verificare brută, „sunând” capătul deja procesat al segmentului:
, Grozav.

Situația geometrică este legată de punctul anterior:

– valoarea rezultată „a intrat, de asemenea, în sfera intereselor noastre”, ceea ce înseamnă că trebuie să calculăm cu ce funcția în punctul apărut este egală cu:

Să examinăm al doilea capăt al segmentului:

Folosind funcția , să efectuăm o verificare de control:

3) Probabil că toată lumea poate ghici cum să exploreze partea rămasă. O substituim în funcție și efectuăm simplificări:

Capetele segmentului au fost deja cercetate, dar în proiect mai verificăm dacă am găsit corect funcția :
– a coincis cu rezultatul de la primul paragraf;
– a coincis cu rezultatul al doilea paragraf.

Rămâne să aflăm dacă există ceva interesant în interiorul segmentului:

- Există! Înlocuind linia dreaptă în ecuație, obținem ordonata acestui „interesant”:

Marcam un punct pe desen și găsim valoarea corespunzătoare a funcției:

Să verificăm calculele folosind versiunea „buget”. :
, Ordin.

Și pasul final: Privim cu ATENȚIE toate numerele „îndrăznețe”, recomand ca începătorilor să facă chiar și o singură listă:

din care selectăm cele mai mari și cele mai mici valori. Răspuns Să scriem în stilul problemei de a găsi cele mai mari și cele mai mici valori ale unei funcții pe un segment:

Pentru orice eventualitate, voi comenta încă o dată semnificația geometrică a rezultatului:
– aici se află cel mai înalt punct al suprafeței din regiune;
– aici este punctul cel mai de jos al suprafeței din zonă.

În sarcina analizată, am identificat 7 puncte „suspecte”, dar numărul acestora variază de la sarcină la sarcină. Pentru o regiune triunghiulară, „setul de cercetare” minim este format din trei puncte. Acest lucru se întâmplă atunci când funcția, de exemplu, specifică avion– este complet clar că nu există puncte staționare, iar funcția își poate atinge valorile maxime/mai mici doar la vârfurile triunghiului. Dar există doar unul sau două exemple similare - de obicei trebuie să te ocupi de unele suprafata de ordinul 2.

Dacă rezolvi puțin astfel de sarcini, atunci triunghiurile îți pot face capul să se învârtească și de aceea am pregătit exemple neobișnuite ca să-l faci pătrat :))

Exemplul 2

Găsiți cele mai mari și cele mai mici valori ale unei funcții într-o zonă închisă delimitată de linii

Exemplul 3

Găsiți cele mai mari și cele mai mici valori ale unei funcții într-o regiune închisă limitată.

Acordați o atenție deosebită ordinii raționale și tehnicii de studiu a graniței regiunii, precum și lanțului de verificări intermediare, care vor evita aproape complet erorile de calcul. În general, puteți rezolva cum doriți, dar în unele probleme, de exemplu, în Exemplul 2, există toate șansele de a vă face viața mult mai dificilă. Un eșantion aproximativ al sarcinilor finale la sfârșitul lecției.

Să sistematizăm algoritmul de soluție, altfel, cu diligența mea de păianjen, s-a pierdut cumva în firul lung de comentarii al primului exemplu:

– La primul pas, construim o zonă, este indicat să o umbrim și să evidențiem chenarul cu o linie îndrăzneață. În timpul rezolvării, vor apărea puncte care trebuie marcate pe desen.

– Găsiți puncte staționare și calculați valorile funcției numai în acelea dintre ele care aparțin regiunii. Evidențiem valorile rezultate în text (de exemplu, încercuiți-le cu un creion). Dacă un punct staționar NU aparține regiunii, atunci notăm acest fapt cu o pictogramă sau verbal. Dacă nu există deloc puncte staționare, atunci tragem o concluzie scrisă că acestea sunt absente. În orice caz, acest punct nu poate fi omis!

– Explorăm granița regiunii. În primul rând, este benefic să înțelegeți liniile drepte care sunt paralele cu axele de coordonate (dacă există). De asemenea, evidențiem valorile funcției calculate în puncte „suspecte”. S-au spus multe mai sus despre tehnica soluției și altceva se va spune mai jos - citiți, recitiți, aprofundați în ea!

- Din numerele selectate, selectați cele mai mari și cele mai mici valori și dați răspunsul. Uneori se întâmplă ca o funcție să atingă astfel de valori în mai multe puncte deodată - în acest caz, toate aceste puncte ar trebui să fie reflectate în răspuns. Să, de exemplu, și s-a dovedit că aceasta este cea mai mică valoare. Apoi scriem asta

Exemplele finale acoperă alte idei utile care vor fi utile în practică:

Exemplul 4

Găsiți cele mai mari și cele mai mici valori ale unei funcții într-o regiune închisă .

Am reținut formularea autorului, în care aria este dată sub forma unei duble inegalități. Această condiție poate fi scrisă printr-un sistem echivalent sau într-o formă mai tradițională pentru această problemă:

Vă reamintesc că cu neliniară am întâlnit inegalități și dacă nu înțelegeți semnificația geometrică a notației, atunci vă rugăm să nu întârziați și să clarificați situația chiar acum;-)

Soluţie, ca întotdeauna, începe cu construirea unei zone care reprezintă un fel de „talpă”:

Hmm, uneori trebuie să mesteci nu numai granitul științei...

I) Găsiți puncte staționare:

Sistemul este visul unui idiot :)

Un punct staționar aparține regiunii, și anume, se află la limita sa.

Și așa, este în regulă... lecția a mers bine - asta înseamnă să bei ceaiul potrivit =)

II) Explorăm granița regiunii. Fără alte prelungiri, să începem cu axa x:

1) Dacă , atunci

Să aflăm unde este vârful parabolei:
– apreciază astfel de momente – ai „lovit” chiar în punctul din care totul este deja clar. Dar încă nu uităm să verificăm:

Să calculăm valorile funcției la capetele segmentului:

2) Să ne ocupăm de partea inferioară a „tălpii” „într-o singură ședință” - fără complexe, o înlocuim în funcție și ne va interesa doar segmentul:

Control:

Acest lucru aduce deja ceva entuziasm condusului monoton de-a lungul pistei moletate. Să găsim punctele critice:

Să decidem ecuație pătratică, mai ții minte ceva despre asta? ...Totuși, amintiți-vă, desigur, altfel nu ați citi aceste rânduri =) Dacă în cele două exemple anterioare calculele în fracții zecimale erau convenabile (ceea ce, apropo, este rar), atunci aici fracțiile obișnuite obișnuite ne asteapta. Găsim rădăcinile „X” și folosim ecuația pentru a determina coordonatele „joc” corespunzătoare punctelor „candidate”:


Să calculăm valorile funcției în punctele găsite:

Verificați singur funcția.

Acum studiem cu atenție trofeele câștigate și notăm Răspuns:

Aceștia sunt „candidați”, aceștia sunt „candidați”!

Pentru a o rezolva singur:

Exemplul 5

Găsiți cele mai mici și cele mai mari valori ale unei funcții într-o zonă închisă

O intrare cu acolade arată astfel: „un set de puncte astfel încât”.

Uneori, în astfel de exemple ei folosesc Metoda multiplicatorului Lagrange, dar este puțin probabil să existe o nevoie reală de a-l folosi. Deci, de exemplu, dacă este dată o funcție cu aceeași zonă „de”, atunci după substituție în ea – cu derivata fără dificultăți; În plus, totul este întocmit pe „o singură linie” (cu semne) fără a fi nevoie să se ia în considerare separat semicercurile superioare și inferioare. Dar, desigur, există și cazuri mai complexe, în care fără funcția Lagrange (unde, de exemplu, este aceeași ecuație a unui cerc) Este greu să te descurci – la fel cum este greu să te descurci fără o odihnă bună!

Distractie placuta tuturor si ne vedem in curand sezonul viitor!

Solutii si raspunsuri:

Exemplul 2: Soluţie: Să reprezentăm zona din desen:

Fie definită și continuă funcția $z=f(x,y)$ într-un domeniu închis mărginit $D$. Fie ca funcția dată din această regiune să aibă derivate parțiale finite de ordinul întâi (cu excepția, poate, a unui număr finit de puncte). Pentru a găsi cele mai mari și cele mai mici valori ale unei funcții a două variabile într-o regiune închisă dată, sunt necesari trei pași ai unui algoritm simplu.

Algoritm pentru găsirea celor mai mari și mai mici valori ale funcției $z=f(x,y)$ într-un domeniu închis $D$.

  1. Aflați punctele critice ale funcției $z=f(x,y)$ aparținând domeniului $D$. Calculați valorile funcției în punctele critice.
  2. Investigați comportamentul funcției $z=f(x,y)$ la limita regiunii $D$, găsind punctele valorilor maxime și minime posibile. Calculați valorile funcției la punctele obținute.
  3. Din valorile funcției obținute în cele două paragrafe precedente, selectați cel mai mare și cel mai mic.

Care sunt punctele critice? arată ascunde

Sub puncte critice implică puncte la care ambele derivate parțiale de ordinul întâi sunt egale cu zero (adică $\frac(\partial z)(\partial x)=0$ și $\frac(\partial z)(\partial y)=0 $) sau cel puțin o derivată parțială nu există.

Adesea sunt numite punctele în care derivatele parțiale de ordinul întâi sunt egale cu zero punctele staţionare. Astfel, punctele staționare sunt un subset de puncte critice.

Exemplul nr. 1

Găsiți cele mai mari și cele mai mici valori ale funcției $z=x^2+2xy-y^2-4x$ într-o regiune închisă delimitată de liniile $x=3$, $y=0$ și $y=x +1$.

Vom urma cele de mai sus, dar mai întâi ne vom ocupa de desenarea unei zone date, pe care o vom nota cu litera $D$. Ni se dau ecuațiile a trei drepte care limitează această zonă. Dreapta $x=3$ trece prin punctul $(3;0)$ paralel cu axa ordonatelor (axa Oy). Linia dreaptă $y=0$ este ecuația axei absciselor (axa Ox). Ei bine, pentru a construi dreapta $y=x+1$, vom găsi două puncte prin care vom trasa această dreaptă. Puteți, desigur, să înlocuiți câteva valori arbitrare în loc de $x$. De exemplu, înlocuind $x=10$, obținem: $y=x+1=10+1=11$. Am găsit punctul $(10;11)$ situat pe dreapta $y=x+1$. Totuși, este mai bine să găsiți acele puncte în care dreapta $y=x+1$ intersectează liniile $x=3$ și $y=0$. De ce este mai bine? Pentru că vom ucide câteva păsări dintr-o singură piatră: vom obține două puncte pentru a construi linia dreaptă $y=x+1$ și, în același timp, vom afla în ce puncte intersectează această dreaptă alte linii care limitează aria dată. Linia $y=x+1$ intersectează linia $x=3$ în punctul $(3;4)$, iar linia $y=0$ se intersectează în punctul $(-1;0)$. Pentru a nu aglomera mersul soluției cu explicații auxiliare, voi pune problema obținerii acestor două puncte într-o notă.

Cum au fost obținute punctele $(3;4)$ și $(-1;0)$? arată ascunde

Să începem de la punctul de intersecție al dreptelor $y=x+1$ și $x=3$. Coordonatele punctului dorit aparțin atât primei, cât și celei de a doua drepte, prin urmare, pentru a găsi coordonatele necunoscute, trebuie să rezolvați sistemul de ecuații:

$$ \left \( \begin(aligned) & y=x+1;\\ & x=3. \end(aligned) \right. $$

Solutia unui astfel de sistem este banala: substituind $x=3$ in prima ecuatie vom avea: $y=3+1=4$. Punctul $(3;4)$ este punctul de intersecție dorit al dreptelor $y=x+1$ și $x=3$.

Acum să găsim punctul de intersecție al dreptelor $y=x+1$ și $y=0$. Să compunem și să rezolvăm din nou sistemul de ecuații:

$$ \left \( \begin(aligned) & y=x+1;\\ & y=0. \end(aligned) \right. $$

Înlocuind $y=0$ în prima ecuație, obținem: $0=x+1$, $x=-1$. Punctul $(-1;0)$ este punctul de intersecție dorit al dreptelor $y=x+1$ și $y=0$ (axa x).

Totul este gata pentru a construi un desen care va arăta astfel:

Întrebarea notei pare evidentă, pentru că totul este vizibil în poză. Cu toate acestea, merită să ne amintim că un desen nu poate servi drept dovadă. Desenul are doar scop ilustrativ.

Zona noastră a fost definită folosind ecuații în linie dreaptă care o legau. Evident, aceste linii definesc un triunghi, nu? Sau nu este complet evident? Sau poate ni se oferă o zonă diferită, delimitată de aceleași linii:

Desigur, condiția spune că zona este închisă, așa că poza afișată este incorectă. Dar pentru a evita astfel de ambiguități, este mai bine să definiți regiunile prin inegalități. Suntem interesați de partea de plan situată sub dreapta $y=x+1$? Ok, deci $y ≤ x+1$. Zona noastră ar trebui să fie situată deasupra liniei $y=0$? Grozav, asta înseamnă $y ≥ 0$. Apropo, ultimele două inegalități pot fi ușor combinate într-una singură: $0 ≤ y ≤ x+1$.

$$ \left \( \begin(aligned) & 0 ≤ y ≤ x+1;\\ & x ≤ 3. \end(aligned) \right. $$

Aceste inegalități definesc regiunea $D$ și o definesc fără ambiguitate, fără a permite nicio ambiguitate. Dar cum ne ajută acest lucru cu întrebarea formulată la începutul notei? De asemenea, va ajuta :) Trebuie să verificăm dacă punctul $M_1(1;1)$ aparține regiunii $D$. Să substituim $x=1$ și $y=1$ în sistemul de inegalități care definesc această regiune. Dacă ambele inegalități sunt satisfăcute, atunci punctul se află în interiorul regiunii. Dacă cel puțin una dintre inegalități nu este satisfăcută, atunci punctul nu aparține regiunii. Asa de:

$$ \left \( \begin(aligned) & 0 ≤ 1 ≤ 1+1;\\ & 1 ≤ 3. \end(aligned) \right. \;\; \left \( \begin(aligned) & 0 ≤ 1 ≤ 2;\\ & 1 ≤ 3. \end(aligned) \right.$$

Ambele inegalități sunt valabile. Punctul $M_1(1;1)$ aparține regiunii $D$.

Acum este timpul să studiem comportamentul funcției la limita regiunii, adică. să mergem la . Să începem cu linia dreaptă $y=0$.

Linia dreaptă $y=0$ (axa absciselor) limitează regiunea $D$ în condiția $-1 ≤ x ≤ 3$. Să substituim $y=0$ în funcția dată $z(x,y)=x^2+2xy-y^2-4x$. Notăm funcția unei variabile $x$ obținută ca rezultat al înlocuirii ca $f_1(x)$:

$$ f_1(x)=z(x,0)=x^2+2x\cdot 0-0^2-4x=x^2-4x. $$

Acum, pentru funcția $f_1(x)$ trebuie să găsim cele mai mari și cele mai mici valori pe intervalul $-1 ≤ x ≤ 3$. Să găsim derivata acestei funcții și să o echivalăm cu zero:

$$ f_(1)^(")(x)=2x-4;\\ 2x-4=0; \; x=2. $$

Valoarea $x=2$ aparține segmentului $-1 ≤ x ≤ 3$, așa că vom adăuga și $M_2(2;0)$ la lista de puncte. În plus, să calculăm valorile funcției $z$ la capetele segmentului $-1 ≤ x ≤ 3$, adică. la punctele $M_3(-1;0)$ și $M_4(3;0)$. Apropo, dacă punctul $M_2$ nu ar aparține segmentului luat în considerare, atunci, desigur, nu ar fi nevoie să se calculeze valoarea funcției $z$ din acesta.

Deci, să calculăm valorile funcției $z$ în punctele $M_2$, $M_3$, $M_4$. Puteți, desigur, să înlocuiți coordonatele acestor puncte în expresia originală $z=x^2+2xy-y^2-4x$. De exemplu, pentru punctul $M_2$ obținem:

$$z_2=z(M_2)=2^2+2\cdot 2\cdot 0-0^2-4\cdot 2=-4.$$

Cu toate acestea, calculele pot fi puțin simplificate. Pentru a face acest lucru, merită să ne amintim că pe segmentul $M_3M_4$ avem $z(x,y)=f_1(x)$. Voi scrie asta în detaliu:

\begin(aligned) & z_2=z(M_2)=z(2,0)=f_1(2)=2^2-4\cdot 2=-4;\\ & z_3=z(M_3)=z(- 1,0)=f_1(-1)=(-1)^2-4\cdot (-1)=5;\\ & z_4=z(M_4)=z(3,0)=f_1(3)= 3^2-4\cdot 3=-3. \end(aliniat)

Desigur, de obicei nu este nevoie de astfel de înregistrări detaliate, iar în viitor vom nota pe scurt toate calculele:

$$z_2=f_1(2)=2^2-4\cdot 2=-4;\; z_3=f_1(-1)=(-1)^2-4\cdot (-1)=5;\; z_4=f_1(3)=3^2-4\cdot 3=-3.$$

Acum să trecem la linia dreaptă $x=3$. Această linie dreaptă limitează regiunea $D$ în condiția $0 ≤ y ≤ 4$. Să substituim $x=3$ în funcția dată $z$. Ca rezultat al acestei substituții obținem funcția $f_2(y)$:

$$ f_2(y)=z(3,y)=3^2+2\cdot 3\cdot y-y^2-4\cdot 3=-y^2+6y-3. $$

Pentru funcția $f_2(y)$ trebuie să găsim cele mai mari și cele mai mici valori pe intervalul $0 ≤ y ≤ 4$. Să găsim derivata acestei funcții și să o echivalăm cu zero:

$$ f_(2)^(")(y)=-2y+6;\\ -2y+6=0; \; y=3. $$

Valoarea $y=3$ aparține segmentului $0 ≤ y ≤ 4$, așa că vom adăuga și $M_5(3;3)$ la punctele găsite anterior. În plus, este necesar să se calculeze valoarea funcției $z$ în punctele de la capetele segmentului $0 ≤ y ≤ 4$, adică. în punctele $M_4(3;0)$ și $M_6(3;4)$. La punctul $M_4(3;0)$ am calculat deja valoarea $z$. Să calculăm valoarea funcției $z$ în punctele $M_5$ și $M_6$. Permiteți-mi să vă reamintesc că pe segmentul $M_4M_6$ avem $z(x,y)=f_2(y)$, prin urmare:

\begin(aligned) & z_5=f_2(3)=-3^2+6\cdot 3-3=6; & z_6=f_2(4)=-4^2+6\cdot 4-3=5. \end(aliniat)

Și, în cele din urmă, luați în considerare ultima graniță a regiunii $D$, adică. linie dreaptă $y=x+1$. Această linie dreaptă limitează regiunea $D$ în condiția $-1 ≤ x ≤ 3$. Înlocuind $y=x+1$ în funcția $z$, vom avea:

$$ f_3(x)=z(x,x+1)=x^2+2x\cdot (x+1)-(x+1)^2-4x=2x^2-4x-1. $$

Din nou avem o funcție a unei variabile $x$. Și din nou trebuie să găsim cele mai mari și cele mai mici valori ale acestei funcții pe intervalul $-1 ≤ x ≤ 3$. Să găsim derivata funcției $f_(3)(x)$ și să o echivalăm cu zero:

$$ f_(3)^(")(x)=4x-4;\\ 4x-4=0; \; x=1. $$

Valoarea $x=1$ aparține intervalului $-1 ≤ x ≤ 3$. Dacă $x=1$, atunci $y=x+1=2$. Să adăugăm $M_7(1;2)$ la lista de puncte și să aflăm care este valoarea funcției $z$ în acest moment. Punctele de la capetele segmentului $-1 ≤ x ≤ 3$, i.e. punctele $M_3(-1;0)$ și $M_6(3;4)$ au fost luate în considerare mai devreme, am găsit deja valoarea funcției în ele.

$$z_7=f_3(1)=2\cdot 1^2-4\cdot 1-1=-3.$$

Al doilea pas al soluției este finalizat. Am primit șapte valori:

$$z_1=-2;\;z_2=-4;\;z_3=5;\;z_4=-3;\;z_5=6;\;z_6=5;\;z_7=-3.$$

Să ne întoarcem la. Alegând cele mai mari și cele mai mici valori dintre numerele obținute în al treilea paragraf, vom avea:

$$z_(min)=-4; \; z_(max)=6.$$

Problema este rezolvată, rămâne doar să notăm răspunsul.

Răspuns: $z_(min)=-4; \; z_(max)=6$.

Exemplul nr. 2

Găsiți cele mai mari și cele mai mici valori ale funcției $z=x^2+y^2-12x+16y$ în regiunea $x^2+y^2 ≤ 25$.

Mai întâi, să construim un desen. Ecuația $x^2+y^2=25$ (aceasta este linia de delimitare a unei zone date) definește un cerc cu un centru la origine (adică în punctul $(0;0)$) și o rază de 5. Inegalitatea $x^2 +y^2 ≤ $25 satisface toate punctele din interiorul și de pe cercul menționat.

Vom acționa conform. Să găsim derivate parțiale și să aflăm punctele critice.

$$ \frac(\partial z)(\partial x)=2x-12; \frac(\partial z)(\partial y)=2y+16. $$

Nu există puncte în care derivatele parțiale găsite să nu existe. Să aflăm în ce puncte ambele derivate parțiale sunt simultan egale cu zero, adică. haideti sa gasim puncte stationare.

$$ \left \( \begin(aligned) & 2x-12=0;\\ & 2y+16=0. \end(aligned) \right. \;\; \left \( \begin(aligned) & x =6;\\ & y=-8.\end(aliniat)\right.$$

Am obținut un punct staționar $(6;-8)$. Totuși, punctul găsit nu aparține regiunii $D$. Acest lucru este ușor de arătat fără a recurge măcar la desen. Să verificăm dacă inegalitatea $x^2+y^2 ≤ 25$ este valabilă, ceea ce definește regiunea noastră $D$. Dacă $x=6$, $y=-8$, atunci $x^2+y^2=36+64=100$, adică. inegalitatea $x^2+y^2 ≤ 25$ nu este valabilă. Concluzie: punctul $(6;-8)$ nu aparține zonei $D$.

Deci, nu există puncte critice în interiorul regiunii $D$. Să trecem la... Trebuie să studiem comportamentul unei funcții la granița unei regiuni date, i.e. pe cercul $x^2+y^2=25$. Putem, desigur, să exprimăm $y$ în termeni de $x$ și apoi să înlocuim expresia rezultată în funcția noastră $z$. Din ecuația unui cerc obținem: $y=\sqrt(25-x^2)$ sau $y=-\sqrt(25-x^2)$. Înlocuind, de exemplu, $y=\sqrt(25-x^2)$ în funcția dată, vom avea:

$$ z=x^2+y^2-12x+16y=x^2+25-x^2-12x+16\sqrt(25-x^2)=25-12x+16\sqrt(25-x ^2); \;\; -5≤ x ≤ 5. $$

Soluția ulterioară va fi complet identică cu studiul comportamentului funcției la limita regiunii din exemplul precedent nr. 1. Totuși, mi se pare mai rezonabil să aplicăm metoda Lagrange în această situație. Ne va interesa doar prima parte a acestei metode. După aplicarea primei părți a metodei Lagrange, vom obține puncte la care vom examina funcția $z$ pentru valori minime și maxime.

Compunem funcția Lagrange:

$$ F=z(x,y)+\lambda\cdot(x^2+y^2-25)=x^2+y^2-12x+16y+\lambda\cdot (x^2+y^2 -25). $$

Găsim derivatele parțiale ale funcției Lagrange și compunem sistemul de ecuații corespunzător:

$$ F_(x)^(")=2x-12+2\lambda x; \;\; F_(y)^(")=2y+16+2\lambda y.\\ \left \( \begin (aliniat) & 2x-12+2\lambda x=0;\\ & 2y+16+2\lambda y=0;\\ & x^2+y^2-25=0. \end(aligned) \ dreapta. \;\; \left \( \begin(aligned) & x+\lambda x=6;\\ & y+\lambda y=-8;\\ & x^2+y^2=25. \end( aliniat)\dreapta.$$

Pentru a rezolva acest sistem, să subliniem imediat că $\lambda\neq -1$. De ce $\lambda\neq -1$? Să încercăm să înlocuim $\lambda=-1$ în prima ecuație:

$$ x+(-1)\cdot x=6; \; x-x=6; \; 0=6. $$

Contradicția rezultată $0=6$ indică faptul că valoarea $\lambda=-1$ este inacceptabilă. Ieșire: $\lambda\neq -1$. Să exprimăm $x$ și $y$ în termeni de $\lambda$:

\begin(aligned) & x+\lambda x=6;\; x(1+\lambda)=6;\; x=\frac(6)(1+\lambda). \\ & y+\lambda y=-8;\; y(1+\lambda)=-8;\; y=\frac(-8)(1+\lambda). \end(aliniat)

Cred că aici devine evident de ce am stipulat în mod specific condiția $\lambda\neq -1$. Acest lucru a fost făcut pentru a încadra expresia $1+\lambda$ în ​​numitori fără interferențe. Adică, pentru a fi sigur că numitorul $1+\lambda\neq 0$.

Să substituim expresiile rezultate pentru $x$ și $y$ în a treia ecuație a sistemului, adică. în $x^2+y^2=25$:

$$ \left(\frac(6)(1+\lambda) \right)^2+\left(\frac(-8)(1+\lambda) \right)^2=25;\\ \frac( 36)((1+\lambda)^2)+\frac(64)((1+\lambda)^2)=25;\\ \frac(100)((1+\lambda)^2)=25 ; \; (1+\lambda)^2=4. $$

Din egalitatea rezultată rezultă că $1+\lambda=2$ sau $1+\lambda=-2$. Astfel avem două valori ale parametrului $\lambda$ și anume: $\lambda_1=1$, $\lambda_2=-3$. În consecință, obținem două perechi de valori $x$ și $y$:

\begin(aligned) & x_1=\frac(6)(1+\lambda_1)=\frac(6)(2)=3; \; y_1=\frac(-8)(1+\lambda_1)=\frac(-8)(2)=-4. \\ & x_2=\frac(6)(1+\lambda_2)=\frac(6)(-2)=-3; \; y_2=\frac(-8)(1+\lambda_2)=\frac(-8)(-2)=4. \end(aliniat)

Deci, am obținut două puncte ale unui posibil extremum condiționat, i.e. $M_1(3;-4)$ și $M_2(-3;4)$. Să găsim valorile funcției $z$ în punctele $M_1$ și $M_2$:

\begin(aligned) & z_1=z(M_1)=3^2+(-4)^2-12\cdot 3+16\cdot (-4)=-75; \\ & z_2=z(M_2)=(-3)^2+4^2-12\cdot(-3)+16\cdot 4=125. \end(aliniat)

Ar trebui să selectăm cele mai mari și cele mai mici valori dintre cele pe care le-am obținut în primul și al doilea pas. Dar în acest caz alegerea este mică :) Avem:

$$ z_(min)=-75; \; z_(max)=125. $$

Răspuns: $z_(min)=-75; \; z_(max)=125 USD.

Studiul unui astfel de obiect de analiză matematică ca funcție este de mare importanță sensși în alte domenii ale științei. De exemplu, în analiza economică există o nevoie constantă de a evalua comportamentul funcții profit, și anume pentru a-i determina cel mai mare sensși să dezvolte o strategie pentru a-l atinge.

Instrucțiuni

Studiul oricărui comportament ar trebui să înceapă întotdeauna cu o căutare a domeniului definiției. De obicei, în funcție de condițiile unei probleme specifice, este necesar să se determine cea mai mare sens funcții fie pe toată această zonă, fie pe un anumit interval al acesteia cu margini deschise sau închise.

Pe baza , cel mai mare este sens funcții y(x0), în care pentru orice punct din domeniul definiției este valabilă inegalitatea y(x0) ≥ y(x) (x ≠ x0). Grafic, acest punct va fi cel mai mare dacă valorile argumentului sunt plasate de-a lungul axei absciselor, iar funcția însăși de-a lungul axei ordonatelor.

Pentru a determina cel mai mare sens funcții, urmați algoritmul în trei pași. Vă rugăm să rețineți că trebuie să puteți lucra cu unilateral și , precum și să calculați derivata. Deci, să fie dată o funcție y(x) și trebuie să găsiți cea mai mare sens pe un anumit interval cu valori la limită A și B.

Aflați dacă acest interval se încadrează în domeniul de aplicare al definiției funcții. Pentru a face acest lucru, trebuie să-l găsiți luând în considerare toate restricțiile posibile: prezența unei fracții, rădăcină pătrată etc. în expresie. Domeniul definiției este setul de valori ale argumentului pentru care funcția are sens. Determinați dacă intervalul dat este o submulțime a acestuia. Dacă da, atunci treceți la pasul următor.

Găsiți derivata funcțiiși rezolvați ecuația rezultată echivalând derivata la zero. În acest fel veți obține valorile așa-numitelor puncte staționare. Evaluați dacă cel puțin unul dintre ele aparține intervalului A, B.

În a treia etapă, luați în considerare aceste puncte și înlocuiți valorile lor în funcție. În funcție de tipul de interval, efectuați următorii pași suplimentari. Dacă există un segment de forma [A, B], punctele de limită sunt incluse în interval; acest lucru este indicat prin paranteze. Calculați valori funcții pentru x = A și x = B. Dacă intervalul este deschis (A, B), valorile limită sunt perforate, adică. nu sunt incluse în el. Rezolvați limite unilaterale pentru x→A și x→B. Un interval combinat de forma [A, B) sau (A, B), ale cărui limite îi aparține, cealaltă nu. Găsiți limita unilaterală pe măsură ce x tinde către valoarea perforată și înlocuiți-l pe celălalt în funcția.Interval infinit bilateral (-∞, +∞) sau intervale infinite unilaterale de forma: , (-∞, B).Pentru limitele reale A și B se procedează conform principiilor deja descrise, iar pentru infinite, căutați limite pentru x→-∞ și, respectiv, x→+∞.

Sarcina în această etapă