Время выведения алкоголя из организма у мужчин и женщин - расчет по объему, крепости напитка и веса человека.

Печень непрерывно разрушает стероидные гормоны, которые есть в крови, до простейшихметаболитов, которые выводятся с мочой. Поэтому если не вводить новых порций, то их концентрация будет снижаться. Разные препараты метаболизируются (разрушаются) с разной скоростью. И для ее измерения используют понятие периода полувыведения.

Период полувыведения (или полужизни) – это время, за которое концентрация препарата в крови снижается в 2 раза. То есть при введении 100мг препарата (с временем полувыведения 24 часа), через 24 часа в крови станется только 50 мг. Через 48 – 25 мг. Через 3 дня - 12,5 мг.

Таким образом, для поддержания равномерной концентрации необходимо вводить препарат 1 раз за каждый период полураспада или чаще.

У чистого тестостерона время полужизни всего около 10 минут. Это делает чистый тестостерон неудобным для использования. Так как его пришлось бы колоть очень часто. А в первые минуты после введения концентрация была бы чрезмерно велика.

Для изменения тех или иных свойств гормона (например, тестостерона) в его молекулу вносят некоторые изменения: присоединяя и/или отсоединяя от нее различные молекулы. При этом не изменяя самого стероидного скелета. В первую очередь цель этих изменений – увеличить время жизни препарата в теле или усиление анаболических свойств.

Период полужизни инъекционных стероидов

Для решения этой проблемы и создания препаратов большего срока действия применяют эстерификацию . То есть превращение стероида в эфир (соль) органической кислоты. Эфир растворяется в масле и вводится внутримышечно. При попадании в кровь эфир проходит через печень, которая отсоединяет основание органической кислоты, и препарат попадает в кровь.

Этот процесс происходит довольно медленно, и введенная доза распределяется по значительному отрезку времени.

Таким образом, эстерификация позволяет сильно увеличить время полужизни и делает препарат более удобным для применения. Однако само действие препарата не меняется. То есть тестостерона пропионат и тестостерона деканоат имеют абсолютно одинаковые свойства и эффект. И отличаются только по периоду полужизни.



Таблица периода полужизни различных эфиров

Все препараты, изготовленные таким способом, предназначены только для инъекционного введения.

Период полужизни оральных стероидов

Для создания препаратов, пригодных для употребления в виде таблеток, используется другой метод. Затруднение состоит в том, что стероиды в чистом виде не в состоянии пройти желудочно-кишечный тракт, ферменты их там мгновенно разрушают. Для того чтобы они не разрушались там, к молекуле стероида в положение 17-а присоединяют молекулу СН4. Этот процесс называется алкиляцией , а стероиды, полученные таким способом – 17-а алкилированными . Алкиляция по 17-а усиливает анаболические свойства препаратов.

Все таблетированные препараты, кроме параболана, 17-а алкированные. Алкилированные препараты активно разрушаются печенью, и у этих препаратов небольшой период полувыведения. От 3-4 до 11-12 часов. Время полужизни сильно варьируется в зависимости от того, как активно работает ваша печень. Соответственно, оральные препараты нуждаются в более частом введении в организм. Это, как правило, 2-4 приема в день.

Таблица периода полужизни оральных анаболических стероидов

Несмотря на пригодность всех 17-а алкилированных препаратов для перорального введения, некоторые из них производятся и в форме таблеток, и в форме суспензий (взвесей кристаллов в воде). Например, инъекционный метан или инъекционный станозолол. Такие суспензии действуют, как правило, сильнее, чем оральная форма, и обладают местным эффектом. То есть могут стимулировать более сильный рост мышечных тканей в месте введения. Это происходит за счет создания там более высокой концентрации действующего вещества.

Резюме

1. Анаболические стероиды - это половые гормоны, модифицированные с целью усилить их анаболические свойства и продлить их действие.

2. Принимать стероиды следует не реже, чем 1 раз за период полувыведения.

3. Для продления срока действия стероидов используют эстерификацию или алкиляцию. Эстерификация – превращение стероида в соль, эфир органической кислоты. Она не изменяет действия гормона на организм, а только лишь растягивает высвобождение препарата в кровь на большее время. Алкиляция - это присоединение к молекуле гормона молекулы СН4. Она делает препарат пригодным для орального введения. Алкиляция по 17-а положению усиливает анаболическое действие препарата.

4. Эфиры стероидов представляют собой раствор в масле для инъекций и действуют, как правило, дольше таблетированных форм анаболиков.

Период полувыведения

Период полувыведения (T 1/2) - время, в течение которого концентрация препарата в организме снижается на 50 %.

Некоторые лекарства имеют очень короткие периоды полувыведения. Для двух простых таблеток аспирина или ибупрофена период полувыведения - приблизительно 4 часа. Но некоторые нестероидные противовоспалительные препараты , такие как пироксикам имеют период полувыведения приблизительно 24 часа. Препарат золота (средство для базисной терапии ревматоидного артрита), введенный в мышцу, имеет период полувыведения 3-4 месяца.


Wikimedia Foundation . 2010 .

Смотреть что такое "Период полувыведения" в других словарях:

    Время, за которое организм выделит половину содержавшегося в нем (вредного) вещества (химического элемента). Экологический словарь, 2001 Период полувыведения время, за которое организм выделит половину содержавшегося в нем (вредного) вещества… … Экологический словарь

    период полувыведения

    период полувыведения - biologinė pusėjimo trukmė statusas T sritis Standartizacija ir metrologija apibrėžtis Laiko tarpas, per kurį radionuklido kiekis organe, audinyje arba organizme dėl biologinių procesų (biologinio išskyrimo) sumažėja pusiau. Matavimo vienetas –… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Время, в течение которого организм освобождается от половины депонированного в нем радионуклида благодаря биологическому выведению и физическому распаду изотопа. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской… … Экологический словарь

    период полувыведения из крови - Средняя продолжительность циркуляции определенной молекулы в кровяном русле Тематики биотехнологии EN serum half life …

    период полувыведения радиоактивного изотопа из живого организма - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN half life period … Справочник технического переводчика

    период полувыведения радиоактивных элементов из организма - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN half lifehalf periodhalf time … Справочник технического переводчика

    период полувыведения радиоактивного вещества - biologinė pusėjimo trukmė statusas T sritis fizika atitikmenys: angl. biological half life vok. biologische Halbwertzeit, f rus. биологический период полувыведения, m; период полувыведения, m; период полувыведения радиоактивного вещества, m pranc … Fizikos terminų žodynas

    Промежуток времени, за который половина радиоактивного вещества, содержащегося в организме или в отдельном органе, выводится за счет обменных процессовБольшой медицинский словарь

    Промежуток времени, за который активность радиоактивного вещества, находящегося в организме или отдельном органе, уменьшается в два раза вследствие радиоактивного распада и выведения … Большой медицинский словарь

В определенных случаях крайне важную роль играет владение информацией о свойствах лекарственных препаратов, а также о том, каким образом может реагировать на них организм человека. В зависимости от таких качеств медикаментов можно делать выводы о возможности и невозможности появления побочных эффектов, а также о том, каким образом нужно планировать лечение того или иного заболевания. Сегодня мы обсудим такое свойство препаратов, как период полувыведения лекарственных веществ.

Что такое период полувыведения лекарственных средств?

Под термином период полувыведения лекарственных веществ подразумевают тот промежуток времени, который нужен веществу для того, чтобы потерять половину своих фармакологических качеств. В большей части случаев такой процесс подразумевает очистку организма почками и печенью в комплекте с функцией эксекреции и удаления вещества из организма. Доктора рассматривают время полувыведения вещества из организма, как тот срок, который нужен для сокращения объема концентрации активного элемента в плазме крови вдвое.

При этом между биологическим периодом и временем полувыведения может быть сложное отношение, которое зависит от особенностей конкретного вещества, а также от того, как оно связывается с белками и взаимодействует с рецепторами.

Зачем нужна информация о периоде полувыведения препаратов?

Период полувыведения препаратов (обозначается как Т1/2) – это довольно полезная фармакологическая особенность. К примеру, после прекращения внутривенного поступления определенного лекарства его концентрация в организме снизится на пятьдесят процентов через один период полувыведения. После того, как пройдет еще один период полувыведения – концентрация уменьшится еще на двадцать пять процентов (половинку от оставшихся пятидесяти процентов) – в общем, на семьдесят пять процентов от исходной. Таким образом, совсем несложно подсчитать, что спустя четыре периода полувыведения исходный объем введенного лекарства снизится в организме до минимального.

С учетом данной закономерности можно сделать следующее утверждение: если препарат будет вводиться в организм с постоянной скоростью, то примерно спустя четыре периода полувыведения он сможет достичь максимально возможной для данной дозировки устойчивой концентрации. При этом скорость введения медикамента в кровь будет равняться скорости его выведения. Подобная концентрация носит наименование стационарной либо равновесной.

Время полувыведения лекарств – это начальный ориентир, позволяющий выбрать интервал между введениями медикаментов. Так лекарства, характеризующиеся коротким периодом полувыведения, оказывают быстрое и в то же время кратковременное воздействие. А средства с продолжительным Т1/2 характеризуются медленным и долгим эффектом, а также могут накапливаться в организме.

Для среднестатистического человека информация о том каков эффективный период полувыведения препарата из организма также очень важна. Такие знания помогают определить время, в течение которого медикамент остается эффективным. Многие специалисты советуют рассматривать период полувыведения как рекомендованное время между принятием отдельных доз лекарства.

Примеры периодов полувыведения разных лекарственных препаратов

Определенные медикаменты имеют довольно короткий период полувыведения. Так известный всем и привычный аспирин или ибупрофен, принятый в количестве двух таблеток, имеет Т1/2 равный примерно четырем часам. Однако есть другие нестероидные противовоспалительные лекарственные составы, которые способны надолго задерживаться в организме. Так, к примеру, такое активное вещество как пироксикам (препарат Фелден) характеризуется периодом полувыведения равным двадцати четырем часам.

Весьма продолжительным периодом полураспада обладают производные бензодиазепина (к примеру, Клоназепам и Диазепам). Их Т1/2 колеблется от восемнадцати и до пятидесяти (а иногда и более) часов. Также длительный период полураспада характерен для некоторых ингибиторов холинэстеразы, к примеру, Донепезила, предназначенного для лечения болезни Альцгеймера. Такое средство обладает Т1/2 равным семидесяти часам.

Весьма важной является информация о периоде полувыведения антибиотических препаратов, ведь такие лекарства активно применяются современным человеком в терапии самых разных патологических состояний. Современные антибиотики в большей части характеризуются длительным периодом полувыведения, поэтому их можно свободно принимать один раз в день. Если же лекарство имеет короткий период полувыведения, прием осуществляется до трех раз в сутки, что, стоит признать, на порядок увеличивает вероятность развития побочных эффектов. Довольно коротким Т1/2 характеризуется старенький эритромицин – эта величина у данного препарата равняется всего двум часам, таким образом его нужно принимать с интервалом в четыре-шесть часов. А современный азитромицин имеет период полувыведения равный четырнадцати-двадцати часам, поэтому его можно принимать свободно один раз на день.

При подсчете оптимальной дозировки нужно учитывать не только период полувыведения, но и способность лекарства к накоплению, и возможности его распределения по тканям. Скорость полувыведения может меняться в зависимости от индивидуальных особенностей пациента – наличия у него проблем с печенью, почками и пр.

Объем распределения

Этот второй важнейший фармакокинетический параметр характеризует распределение препарата в организме. Объем распределения (Vр) равен отношению общего содержания вещества в организме (ОСО) к его концентрации (С) в плазме крови или цельной крови. Объем распределения часто не соответствует никакому реальному объему. Этот объем, необходимый для равномерного распределения вещества в концентрации, равной концентрации этого вещества в плазме крови или цельной крови.

Vр= ОСО / С . (1.7)

Объем распределения отражает долю вещества, содержащегося во внесосудистом пространстве. У человека массой тела 70 кг объем плазмы крови составляет 3 л, ОЦК — около 5,5 л, межклеточной жидкости - 12 л, общее содержание воды в организме - примерно 42 л. Однако объем распределения многих лекарственных веществ гораздо больше этих величин. Например, если у человека массой тела 70 кг в организме содержится 500 мкг дигоксина, его концентрация в плазме крови составляет 0,75 нг/мл. Разделив общее содержание дигоксина в организме на его концентрацию в плазме крови, получим, что объем распределения дигоксина равен 650 л. Это более чем в 10 раз превышает общее содержание воды в организме. Дело в том, что дигоксин распределяется преимущественно в миокарде, скелетных мышцах и жировой ткани, так что его содержание в плазме крови невелико. Объем распределения лекарственных средств, активно связывающихся с белками плазмы крови (но не с компонентами тканей), примерно соответствуют объему плазмы крови. Вместе с тем некоторые лекарственные средства содержатся в плазме крови преимущественно в связанной с альбумином форме, но имеют большой объем распределения за счет депонирования в других тканях.

Период полувыведения

Период полувыведения (Т ½) - это время, за которое концентрация вещества в сыворотке крови (или его общее содержание в организме) снижается вдвое. В рамках однокамерной модели определить Т ½ очень просто. Полученное значение используют затем для расчета дозы. Однако для многих лекарственных средств приходится использовать многокамерную модель, поскольку динамика их концентрации в сыворотке крови описывается несколькими экспоненциальными функциями. В таких случаях рассчитывают несколько значений Т ½ .

В настоящее время общепризнано, что Т ½ зависит от клиренса и объема распределения вещества. В стационарном состоянии зависимость между Т ½ , клиренсом и объемом распределения вещества приблизительно описывается следующим уравнением:

Т½ ≈ 0,693 × Vр / Cl. (1.8)

Клиренс характеризует способность организма элиминировать вещество, поэтому при снижении этого показателя вследствие какого-либо заболевания Т ½ увеличивается. Но это справедливо лишь в том случае, если не меняется объем распределения вещества. Например, с возрастом Т ½ диазепама увеличивается, но не за счет снижения клиренса, а вследствие увеличения объема распределения (Klotzet et al., 1975). На клиренс и объем распределения влияет степень связывания вещества с белками плазмы крови и тканей, так что прогнозировать изменение Т ½ при том или ином патологическом состоянии не всегда возможно.

По Т ½ не всегда можно судить об изменении элиминации препарата, зато этот показатель позволяет рассчитать время достижения стационарного состояния (в начале лечения, а также при изменении дозы или частоты введения). Концентрация лекарственного вещества в сыворотке крови, составляющая примерно 94% средней стационарной, достигается за время, равное 4 × Т ½ . Кроме того, с помощью Т ½ можно оценить время, необходимое для полной элиминации вещества из организма, и рассчитать интервал между введениями.


А.П. Викторов "Клиническая фармакология"

Фармакокинетика - раздел клинической фармакологии, предметом которого является изучение процессов всасывания, распределения, связывания с белками, биотрансформации и выведения лекарственных веществ. Ее развитие стало возможным благодаря разработке и внедрению в практику высокочувствительных методов определения содержания лекарственных веществ в биологических средах - газожидкостной хроматографии, радиоиммунных, ферментно-химических и других методов, а также благодаря разработке методов математического моделирования фармакокинетических процессов. На основании данных о фармакокинетике того или иного препарата определяют дозы, оптимальный путь введения, режим применения препарата и продолжительность лечения. Регулярный контроль содержания лекарственных средств в биологических жидкостях позволяет своевременно корригировать лечение.

Фармакокинетические исследования необходимы при разработке новых препаратов, их лекарственных форм, а также при экспериментальных и клинических испытаниях ЛС.

Процессы, происходящие с лекарственными препаратами в организме, могут быть описаны с помощью ряда параметров.

Одним из основных показателей, определяющих фармакологический эффект, считают концентрацию ЛС на уровне рецептора, однако в условиях целостного организма установить её невозможно. В эксперименте было доказано, что в большинстве случаев между концентрацией препарата в крови и его содержанием в области рецептора существует корреляция.

В связи с этим для определения фармакокинетических параметров изучают содержание ЛС в крови. Для того чтобы получить соответствующее представление о поступлении препарата в кровь и выведении его из организма, отслеживают изменения концентрации ЛС в плазме крови на протяжении длительного времени. Содержание препаратов в плазме крови определяют методами жидкостной или газожидкостной хроматографии, с помощью радиоиммунного или иммуноферментного анализа и другими способами.

На основании полученных данных строят график. На оси абсцисс отмечают время от начала исследования, а на оси ординат - концентрацию ЛС в плазме крови (в соответствующих единицах).

Такой график носит название фармакокинетической кривой (рис. 1).

Время после введения

Концентрация лекарственного вещества (С) - это ее количество в определенном объеме крови в конкретный момент времени после введения в организм.

Константы скорости элиминации (К el), абсорбции (К а) и экскреции (К ex) – характеризуют соответственно скорость исчезновения препарата из организма путем биотрансформации и выведения, скорость поступления его из места введения в кровь и скорость выведения с мочой, калом, слюной и др.


Период полувыведения (Т 1/2) - время, необходимое для уменьшения вдвое концентрации препарата в крови, зависит от константы скорости элиминации (Т 1/2 = 0,693/К el).

где Т 1/2 – период полувыведения; 0,693 – коэффициент, который является логарифмом от 2; V d - объем распределения; Сl - общий клиренс.

Константа элиминации (Кel) - процент уменьшения концентрации ЛВ в крови за единицу времени. Чем больше Кel, тем быстрее ЛВ выводится из крови. Константа элиминации зависит от периода полувыведения:

Период полуабсорбции (Т 1/2а) - время, необходимое для всасывания половины дозы препарата из места введения в системный кровоток; пропорционален скорости абсорбции (Т 1/2а = 0,693/К а ).

Константа абсорбции (К а) - характеризует скорость всасывания ЛВ в организме человека или животного. Константа абсорбции зависит от периода полувыведения:

Распределение препарата в организме характеризуют период полураспределения, кажущаяся начальная и стационарная (равновесная) концентрации, объем распределения.

Период полураспределения (Т 1/2,a) - время, необходимое для достижения концентрации препарата в крови, равной 50% от равновесной, т.е. при наличии равновесия между кровью и тканями.

Кажущаяся начальная концентрация (С 0) - концентрация препарата, которая была бы достигнута в плазме крови при внутривенном его введении и мгновенном распределении по органам и тканям.

Равновесная концентрация (С ss) - концентрация препарата, которая установится в плазме (сыворотке) крови при поступлении препарата в организм с постоянной скоростью. При прерывистом введении (приеме) препарата через одинаковые промежутки времени в одинаковых дозах выделяют максимальную (С ssmax) и минимальную (С ssmin) равновесные концентрации.

Объем распределения препарата (Vd - volume of distribution) характеризует степень его захвата тканями из плазмы (сыворотки) крови. V d (V d = D/C 0) - условный объем жидкости, в котором нужно растворить всю попавшую в организм дозу препарата (D), чтобы получилась концентрация, равная кажущейся начальной концентрации в сыворотке крови (С 0).

Общий клиренс препарата (Cl t) характеризует скорость “очищения” организма от лекарственного препарата.

где Сl – общий клиренс; D – доза введенного препарата; AUC – площадь под фармакокинетической кривой.Выделяют почечный (Cl r) и внепочечный (Cl er) клиренсы, которые отражают выведение лекарственного вещества соответственно с мочой и другими путями (прежде всего с желчью). Общий клиренс является суммой почечного и внепочечного клиренса.

Площадь под кривой “концентрация - время” (AUC - area under the curve)- площадь фигуры, ограниченной фармакокинетической кривой и осями координат (AUC = C 0 /K el). Величина (AUC) связана с другими фармакокинетическими параметрами - объемом распределения, общим клиренсом. При линейности кинетики препарата в организме величина AUC пропорциональна общему количеству (дозе) препарата, попавшего в системный кровоток. Часто определяют площадь под частью кривой (от нуля до некоторого времени t); этот параметр обозначают AUC t , например, площадь под кривой от 0 до 8 ч - AUC 8 .

Абсолютная биодоступность (f) - часть дозы препарата (в %), которая достигла системного кровотока после внесосудистого введения, равна отношению AUC после введения исследуемым методом (внутрь, в мышцу и др.) к AUC после внутривенного введения. Относительную биодоступность определяют для сравнения биодоступности двух лекарственных форм для внесосудистого введения. Она равна отношению (AUC’/AUC)(D/D’) после введения двух сравниваемых форм. Общая биодоступность - часть принятой внутрь дозы препарата, которая достигла системного кровотока в неизмененном виде и в виде метаболитов, образовавшихся в процессе всасывания в результате так называемого пресистемного метаболизма, или “эффекта первичного прохождения”.

Биоэквивалентность (сравнительная биодоступность) - это соотношение количества ЛВ, поступающего в кровь при введении его в различных лекарственных формах (или ЛС разных фирм). Если лекарственные препараты демонстрируют схожую биодоступность, они расцениваются как биоэквивалентны.

ВСАСЫВАНИЕ - процесс поступления лекарственного вещества из места введения в кровь. Существуют четыре механизма всасывания ЛС при энтеральном введении (рис. 2):

Ø пассивная диффузия;

Ø активный транспорт;

Ø фильтрация через поры;

Ø пиноцитоз

Прохождение большинства лекарственных препаратов через слизистую оболочку пищеварительного тракта определяется их растворимостью в липидах и ионизацией. При приеме лекарственных веществ внутрь скорость их абсорбции отличается в различных отделах ЖКТ.

Q - молекула лекарственного вещества

После прохождения через стенку желудка и/или кишечника лекарственный препарат поступает в печень. Некоторые лекарственные вещества под влиянием ферментов печени подвергаются значительным изменениям (“эффект первичного прохождения”). Именно поэтому, а не вследствие плохой абсорбции, для достижения достаточного эффекта дозы некоторых препаратов (пропранолола, аминазина, опиатов) при приеме их внутрь должны быть значительно больше, чем при внутривенном введении. Биотрансформацию вещества при первичном прохождении через печень в процессе всасывания называют пресистемным метаболизмом. Интенсивность пресистемного метаболизма зависит от скорости тока крови в печени.

На процесс всасывания лекарств в желудке и кишечнике оказывает влияние рН, который в желудке равен 1-3, в двенадцатиперстной кишке - 5-6, а в тонкой и толстой кишках - около 8. Кислоты легче всасываются в желудке, а основания - в тонкой или толстой кишке.

Под действием кислой среды желудка некоторые лекарственные средства, в частности бензилпенициллин, могут разрушаться.

На лекарственные препараты оказывают также действие ферменты желудочно-кишечного тракта, которые способны инактивировать белки и полипептиды (АКТГ, вазопрессин, инсулин и т.д.), а также некоторые другие вещества (прогестерон, тестостерон, альдостерон). Соли желчных кислот в свою очередь могут ускорить всасывание лекарственных средств или замедлить его при образовании нерастворимых соединений.

На всасывание лекарственных веществ влияют также моторика желудочно-кишечного тракта, объем и состав пищи, количество принимаемой жидкости, интервал времени между едой и приемом препаратов. Так, молоко нарушает всасывание тетрациклинов, ампициллина и амоксициллина. Следует учитывать и стимулирующее действие пищи на секрецию желудочного сока и соляной кислоты.

Для переноса веществ в ЖКТ особое значение имеют большая площадь поверхности кишечника и влияние постоянного кровотока в слизистой оболочке на градиенты концентрации между просветом кишечника и кровью. Путем диффузии и осмоса через слизистую оболочку кишечника переносятся, в частности, вода, С1 ¯, а также такие вещества, как аскорбиновая кислота, пиридоксин и рибофлавин. Поскольку клеточные мембраны содержат большое количество липидов, для диффузии через мембрану вещества должны быть в некоторой степени жирорастворимыми. Согласно теории неионной диффузии, указанным путем переносятся главным образом недиссоциированные соли слабых кислот или слабых оснований. Это необходимо учитывать при назначении лекарств, большая часть которых всасывается путем диффузии. Для переноса какого-либо вещества в соответствии с уравнением Гендерсона-Гассельбаха особое значение имеет рКа этого вещества и рН в просвете кишечника:

, , где

[А¯], [ВН + ] – молярные концентрации ионизированных,

[НА], [В] – неионизированных форм кислоты НА и основы В;

рН – кислотно-основной показатель среды;

рКа – логарифм константы диссоциации соединения, количественно равный значению рН, при котором анализируемое соединение диссоциирует наполовину.

Из уравнения видно, что с увеличением значения рН среды диссоциация кислот увеличивается, а оснований - уменьшается.

Таким образом, факторы, влияющие на процессы всасывания ЛВ, разнообразны: растворимость вещества в липидах, степень ионизации молекулы (чем меньше ионизированная молекула, тем лучше она всасывается), перистальтика кишечника, характер и количество пищевой массы, особенности регионарного кровотока, состояние соединительной ткани, агрегантное состояние веществ, сочетание лекарственных средств.