Клетки животных в отличие клеток растений. Сходство и различия строения клеток растений и животных

Анализ эффективности финансовых вложений.

Финансовые вложения могут быть в виде ценных бумаг, вклады в уставный капитал, предоставленные кредиты и займы.

Ретроспективная оценка эффективности финансовых вложений производится сопоставлением суммы полученного дохода и суммы расходов конкретного вида актива.

Среднегодовой уровень доходности изменяется под влиянием структуры каждого вида вложения и под уровнем доходности каждого вклада.

СрУД = ∑ Уд.в. i × Уд.Д i

Оценка и прогнозирование экономической эффективности финансовых инвестиций производится с помощью относительных и абсолютных показателей. Основными факторами влияющими на эффективность являются:

2. текущая внутренняя стоимость.

Текущая внутренняя стоимость зависит от 3 факторов:

1) Ожидаемое поступление денежных средств;

2) Норма доходности;

3) Продолжительность периода получения дохода.

ТВнСт = ∑ (Ожид.ДС / (1 + N д) n)

Таблица 4.

Анализ эффективности использования долгосрочных
финансовых вложений

Показатели Прошлый Отчетный Отклонение
1. Сумма долгосрочных финансовых вложений всего, тыс.руб. +1700
в том числе: а) акции +1400
б) облигации +300
2.Удельный вес, %
а) акций +2
б) облигаций -2
3. Полученный доход, всего в тыс.руб. +1500
а) акции +500
б) облигации +1000
4. Доходность долгосрочных финансовых вложений
а) акций 44,4 -1,6
б) облигаций 42,6 +17,4
5. Доходность общая, % 44,71 50,02 +5,31

Д общ. = ∑ Уд.в. i × Д r i

Факторный анализ общей доходности проводится методом абсолютных разниц:

1) ∆ Д общ. (Уд.в.) = (2 × 46 + (-2) × 42,6) / 100 = + 0,068

2) ∆ Д общ. (Д r .) = (-1,6 × 64 + 17,4 × 36) / 100 = 5,24

Баланс факторов: 0,068 + 5,24 = 5,31



2. Основные химические компоненты протопласта. Органические вещества клетки. Белки – биополимеры, образованные аминокислотами, составляют 40-50% сухой массы протопласта. Они участвуют в построении структуры и функциях всех органелл. В химическом отношении белки подразделяются на простые (протеины) и сложные (протеиды). Сложные белки могут образовывать комплексы с липидами – липопротеиды, с углеводами – гликопротеиды, с нуклеиновыми кислотами – нуклеопротеиды и т.д.

Белки входят в состав ферментов (энзимов), регулирующих все жизненно важные процессы.

Нуклеиновые кислоты – ДНК и РНК – важнейшие биополимеры протопласта, содержание которых составляет 1-2 % от его массы. Это вещества хранения и передачи наследственной информации. ДНК в основном содержится в ядре, РНК – в цитоплазме и ядре. ДНК содержит углеводный компонент дезоксирибозу, а РНК – рибонуклеиновую кислоту. Нуклеиновые кислоты – полимеры, мономерами которых являются нуклеотиды. Нуклеотид состоит из азотистого основания, сахара рибозы или дезоксирибозы и остатка фосфорной кислоты. Нуклеотиды бывают пяти типов в зависимости от азотистого основания. Молекула ДНК представлена двумя полинуклеотидными спиральными цепями, молекула РНК – одной.

Липиды – жироподобные вещества, содержащиеся в количестве 2-3 %. Это запасные энергетические вещества, входящие также в состав клеточной стенки. Жироподобные соединения покрывают тонким слоем листья растений, не давая им намокать во время обильных дождей. Протопласт растительной клетки содержит простые (жирные масла) и сложные липиды (липоиды, или жироподобные вещества).

Углеводы. Углеводы входят в состав протопласта каждой клетки в виде простых соединений (растворимых в воде сахаров) и сложных углеводов (нерастворимых или слаборастворимых) – полисахаридов. Глюкоза (С 6 Н 12 О 6) – моносахарид. Особенно много его в сладких плодах, он играет роль в образовании полисахаридов, легко растворяется в воде. Фруктоза, или плодовый сахар, - моносахарид, имеющий такую же формулу, но по вкусу значительно слаще. Сахароза (С 12 Н 22 О 11) – дисахарид, или тростниковый сахар; в больших количествах содержится в сахарном тростнике и корнеплодах сахарной свеклы. Крахмал и целлюлоза – полисахариды. Крахмал – резервный энергетический полисахарид, целлюлоза – основной компонент клеточной стенки. В клеточном соке корнеклубней георгина, корнях цикоря, одуванчика, девясила и других сложноцветных встречается еще один полисахарид – инулин.

Из органических веществ в клетках также содержатся витамины – физиологически активные органические соединения, контролирующие ход обмена веществ, гормоны, регулирующие процессы роста и развития организма, фитонциды – жидкие или летучие вещества, выделяемые высшими растениями.

Неорганические вещества в клетке. Клетки включают от 2 до 6 % неорганических веществ. В составе клетки обнаружено более 80 химических элементов. По содержанию элементы, входящие в состав клетки, можно разделить на три группы.

Макроэлементы. На их долю приходится около 99 % всей массы клетки. Особенно высока концентрация кислорода, углерода, азота и водорода. Их доля составляет 98 % всех макроэлементов. К оставшимся 2 % относятся - калий, магний, натрий, кальций, железо, сера, фосфор, хлор.

Микроэлементы. К ним принадлежат преимущественно ионы тяжелых металлов, входящие в состав ферментов, гормонов и других жизненно важных веществ. Содержание их в клетке колеблется от 0,001 до 0,000001 %. К микроэлементам относятся бор, кобальт, медь, молибден, цинк, ванадий, йод, бром и др.

Ультрамикроэлементы. Доля их не превышает 0,000001 %. К ним относятся уран, радий, золото, ртуть, бериллий, цезий, селен и другие редкие металлы.

Вода – составная часть любой клетки, это основная среда организма, принимающая непосредственное участие во многих реакциях. Вода - источник кислорода, выделяемого при фотосинтезе, и водорода, который используется для восстановления продуктов ассимиляции диоксида углерода. Вода – растворитель. Различают гидрофильные вещества (от греч. «hydros» - вода и «phileo» - люблю), хорошо растворимые в воде, и гидрофобные (греч. «phobos» - боязнь) – вещества, трудно или совсем не растворимые в воде (жиры, жироподобные вещества и др.). Вода – основное средство передвижения вещества в организме (восходящие и нисходящие токи растворов по сосудам растений) и в клетке.

3. Цитоплазма. В протопласте большую часть занимает цитоплазма с органоидами, меньшую - ядро с ядрышком. Цитоплазма имеет плазматические оболочки: 1) плазмалемму – наружную мембрану (оболочку); 2) тонопласт – внутреннюю мембрану, соприкасающуюся с вакуолью. Между ними расположена мезоплазма – основная масса цитоплазмы. В мезоплазму входят: 1) гиалоплазма (матрикс) – бесструктурная часть мезоплазмы; 2) эндоплазматическая сеть (ретикулум); 3) аппарат Гольджи; 4) рибосомы; 5) митохондрии (хондриосомы); 6) сферосомы; 7) лизосомы; 8) пластиды.



Добавить свою цену в базу

Комментарий

Клетки животных и растений, как многоклеточных, так и одноклеточных, в принципе сходны по своему строению. Различия в деталях строения клеток связаны с их функциональной специализацией.

Основными элементами всех клеток являются ядро и цитоплазма. Ядро имеет сложное строение, изменяющееся на разных фазах клеточного деления, или цикла. Ядро неделящейся клетки занимает приблизительно 10–20% ее общего объема. Оно состоит из кариоплазмы (нуклеоплазмы), одного или нескольких ядрышек (нуклеол) и ядерной оболочки. Кариоплазма представляет собой ядерный сок, или кариолимфу, в которой находятся нити хроматина, образующие хромосомы.

Основные свойства клетки:

  • обмен веществ
  • чувствительность
  • способность к размножению

Клетка живет во внутренней среде организма – кровь, лимфа и тканевая жидкость. Основными процессами в клетке являются окисление, гликолиз – расщепление углеводов без кислорода. Проницаемость клетки избирательна. Она определяется реакцией на высокую или низкую концентрацию солей, фаго- и пиноцитоз. Секреция – образование и выделение клетками слизеподобных веществ (муцин и мукоиды), защищающие от повреждения и участвующие в образовании межклеточного вещества.

Виды движений клетки:

  1. амебоидное (ложноножки) – лейкоциты и макрофаги.
  2. скользящее – фибробласты
  3. жгутиковый тип – сперматозоиды (реснички и жгутики)

Деление клеток:

  1. непрямое (митоз, кариокинез, мейоз)
  2. прямое (амитоз)

При митозе ядерное вещество распределяется равномерно между дочерними клетками, т.к. хроматин ядра концентрируется в хромосомах, которые расщепляются на две хроматиды, расходящиеся в дочерние клетки.

Структуры живой клетки

Хромосомы

Обязательными элементами ядра являются хромосомы, имеющие специфическую химическую и морфологическую структуру. Они принимают активное участие в обмене веществ в клетке и имеют прямое отношение к наследственной передаче свойств от одного поколения к другому. Следует, однако, иметь в виду, что, хотя наследственность и обеспечивается всей клеткой как единой системой, ядерные структуры, а именно хромосомы, занимают при этом особое место. Хромосомы, в отличие от органелл клетки, представляют собой уникальные структуры, характеризующиеся постоянством качественного и количественного состава. Они не могут взаимозаменять друг друга. Несбалансированность хромосомного набора клетки приводит в конечном счете к ее гибели.

Цитоплазма

Цитоплазма клетки обнаруживает весьма сложное строение. Введение методики тонких срезов и электронной микроскопии позволило увидеть тонкую структуру основной цитоплазмы. Установлено, что последняя состоит из параллельно расположенных сложных структур, имеющих вид пластинок и канальцев, на поверхности которых располагаются мельчайшие гранулы диаметром 100–120 Å. Эти образования названы эндоплазматическим комплексом. В состав этого комплекса включены различные дифференцированные органоиды: митохондрии, рибосомы, аппарат Гольджи, в клетках низших животных и растений – центросома, животных – лизосомы, у растений – пластиды. Кроме того, цитоплазме обнаруживается целый ряд включений, принимающих участие в обмене веществ клетки: крахмал, капельки жира, кристаллы мочевины и т. д.

Мембрана

Клетка окружена плазматической мембраной (от лат. «мембрана» – кожица, пленка). Ее функции очень разнообразны, но основная – защитная: она защищает внутреннее содержимое клетки от воздействий внешней среды. Благодаря различным выростам, складкам на поверхности мембраны клетки прочно соединяются между собой. Мембрана пронизана специальными белками, через которые могут перемещаться определенные вещества, необходимые клетке или подлежащие удалению из нее. Таким образом, через мембрану осуществляется обмен веществ. Причем, что очень важно, вещества пропускаются через мембрану избирательно, за счет чего в клетке поддерживается нужный набор веществ.

У растений плазматическая мембрана снаружи покрыта плотной оболочкой, состоящей из целлюлозы (клетчатки). Оболочка выполняет защитную и опорную функции. Она служит внешним каркасом клетки, придавая ей определенную форму и размеры, препятствуя чрезмерному набуханию.

Ядро

Расположено в центре клетки и отделено двуслойной оболочкой. Имеет шаровидную или вытянутую форму. Оболочка – кариолемма – имеет поры, необходимые для обмена веществ между ядром и цитоплазмой. Содержимое ядра жидкое – кариоплазма, в которой содержатся плотные тельца – ядрышки. В них выделяется зернистость – рибосомы. Основная масса ядра – ядерные белки – нуклеопротеиды, в ядрышках – рибонуклеопротеиды, а в кариоплазме – дезоксирибонуклеопротеиды. Клетка покрыта клеточной оболочкой, которая состоит из белковых и липидных молекул, имеющих мозаичную структуру. Оболочка обеспечивает обмен веществ между клеткой и межклеточной жидкостью.

ЭПС

Это система канальцев и полостей, на стенках которых располагаются рибосомы, обеспечивающие синтез белка. Рибосомы могут и свободно располагаться в цитоплазме. ЭПС бывают двух видов – шероховатая и гладкая: на шероховатой ЭПС (или гранулярной) располагается множество рибосом, которые осуществляют синтез белков. Рибосомы придают мембранам шероховатый вид. Мембраны гладкой ЭПС не несут рибосом на своей поверхности, в них располагаются ферменты синтеза и расщепления углеводов и липидов. Гладкая ЭПС выглядит как система тонких трубочек и цистерн.

Рибосомы

Мелкие тельца диаметром 15–20 мм. Осуществляют синтез белковых молекул, их сборку из аминокислот.

Митохондрии

Это двумембранные органоиды, внутренняя мембрана которых имеет выросты – кристы. Содержимое полостей – матрикс. Митохондрии содержат большое количество липопротеидов и ферментов. Это энергетические станции клетки.

Пластиды (свойственны только клеткам растений!)

Их содержание в клетке – главная особенность растительного организма. Различают три основных типа пластид: лейкопласты, хромопласты и хлоропласты. Они имеют разную окраску. Бесцветные лейкопласты находятся в цитоплазме клеток неокрашенных частей растений: стеблях, корнях, клубнях. Например, их много в клубнях картофеля, в которых накапливаются зерна крахмала. Хромопласты находятся в цитоплазме цветков, плодов, стеблей, листьев. Хромопласты обеспечивают желтую, красную, оранжевую окраску растений. Зеленые хлоропласты содержатся в клетках листьев, стеблей и других частях растения, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, они часто имеют овальную форму. У высших растений в одной клетке содержится несколько десятков хлоропластов.

Зеленые хлоропласты способны переходить в хромопласты – поэтому осенью листья желтеют, а зеленые помидоры краснеют при созревании. Лейкопласты могут переходить в хлоропласты (позеленение клубней картофеля на свету). Таким образом, хлоропласты, хромопласты и лейкопласты способны к взаимному переходу.

Основная функция хлоропластов – фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Каждый хлоропласт окружен двойной мембраной, обладающей избирательной проницаемостью. Снаружи располагается гладкая мембрана, а внутренняя имеет складчатую структуру. Основная структурная единица хлоропласта – тилакоид, плоский двумембранный мешочек, ирающий ведущую роль в процессе фотосинтеза. В мембране тилакоида расположены белки, аналогичные белкам митохондрий, которые участвуют в цепи переноса электоронов. Тилакоиды расположены стопками, напоминающие стопки монет (от 10 до 150) и называемыми гранами. Грана имеет сложное строение: в центре располагается хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл.

Комплекс Гольджи

Это система полостей, отграниченных от цитоплазмы мембраной, может иметь разную форму. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов. Образует лизосомы.

Основной структурный элемент аппарата Гольджи – мембрана, которая образует пакеты уплощенных цистерн, крупные и мелкие пузырьки. Цистерны аппарата Гольджи соединены с каналами эндоплазматической сети. Произведенные на мембранах эндоплазматической сети белки, полисахариды, жиры переносятся к аппарату Гольджи, накапливаются внутри его структур и «упаковываются» в виде вещества, готового либо к выделению, либо к использованию в самой клетке в процессе ее жизнедеятельности. В аппарате Гольджи образуются лизосомы. Кроме того, он участвует в наращивании цитоплазматической мембраны, например во время деления клетки.

Лизосомы

Тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки. В лизосомах находится более 30 типов ферментов (вещества белковой природы, увеличивающие скорость химической реакции в десятки и сотни тысяч раз), способных расщеплять белки, нуклеиновые кислоты, полисахариды, жиры и другие вещества. Расщепление веществ с помощью ферментов называется лизисом, отсюда и происходит название органоида. Лизосомы образуются или из структур комплекса Гольджи, или из эндоплазматической сети. Одна из основных функций лизосом – участие во внутриклеточном переваривании пищевых веществ. Кроме того, лизосомы могут разрушать структуры самой клетки при ее отмирании, в ходе эмбрионального развития и в ряде других случаев.

Вакуоли

Представляют собой полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Клеточный центр

Состоит из двух маленьких телец – центриолей и центросферы – уплотненного участка цитоплазмы. Играет важную роль при делении клеток

Органоиды движения клеток

  1. Жгутики и реснички, представляющие из себя выросты клетки и имеющие однотипное строение у животных и растений
  2. Миофибриллы – тонкие нити длиной более 1 см диаметром 1 мкм, расположенные пучками вдоль мышечного волокна
  3. Псевдоподии (выполняют функцию движения; за счет их происходит сокращение мышц)

Сходства растительных и животных клеток

К признакам, которыми похожи растительные и животные клетки, можно отнести следующие:

  1. Схожее строение системы структуры, т.е. наличие ядра и цитоплазмы.
  2. Обменный процесс веществ и энергии близки по принципу осуществления.
  3. И в животной, и в растительной клетке имеется мембранное строение.
  4. Химический состав клеток очень похож.
  5. В клетках растения и животного присутствует похожий процесс клеточного деления.
  6. Растительная клетка и животная имеет единый принцип передачи кода наследственности.

Существенные различия между растительной и животной клеткой

Помимо общих признаков строения и жизнедеятельности растительной и животной клетки, существуют и особые отличительные черты каждой из них.

Таким образом, можно сказать, что растительные и животные клетки похожи между собой содержанием некоторых важных элементов и некоторыми процессами жизнедеятельности, а также имеют существенные отличия в структуре и обменных процессах.

Инструкция

Главным отличием растительной клетки от животной является способ питания. Растительные клетки - , они способны сами синтезировать органические вещества, необходимые для их жизнедеятельности, для этого им нужен только свет. Животные же клетки - гетеротрофы; необходимые им для жизни вещества они получают с пищей.

Правда, среди животных наблюдаются и исключения. Например, зеленые жгутиконосцы: днем они способны к фотосинтезу, но в темноте питаются готовыми органическими веществами.

Растительная клетка, в отличие от животной, имеет клеточную стенку и не может, вследствие этого, менять свою форму. Животная клетка может растягиваться и видоизменяться, т.к. нет.

Различия наблюдаются и в способе деления: при делении растительной клетки в ней образуется перегородка; животная клетка делится с образованием перетяжки.

В клетках некоторых многоклеточных беспозвоночных (губки, кишечнополостные, ресничные черви, некоторые моллюски), способных к внутриклеточному пищеварению, и в теле некоторых одноклеточных организмов образуются пищеварительные вакуоли, содержащие пищеварительные ферменты. Пищеварительные вакуоли у высших животных образуются в особых клетках - фагоцитах.

Многие ключевые различия между растениями и животными берут начало в структурных различиях на клеточном уровне. У одних есть некоторые детали, которые есть у других, и наоборот. Прежде, чем мы найдем главное отличие животной клетки от растительной (таблица далее в статье), давайте выясним, что они имеют общего, а затем исследуем то, что делает их разными.

Животные и растения

Вы, сгорбившись в кресле, читаете эту статью? Старайтесь сидеть прямо, вытяните руки к небу и потянитесь. Чувствуете себя хорошо, верно? Нравится вам это или нет, но вы - животное. Ваши клетки - это мягкие сгустки цитоплазмы, но вы можете использовать ваши мышцы и кости, чтобы стоять на ногах и передвигаться. Геторотрофы, как и все животные, должны получать питание из других источников. Если вы чувствуете голод или жажду, вам нужно просто встать и дойти до холодильника.

Теперь подумайте о растениях. Представьте себе высокий дуб или крохотные травинки. Они стоят в вертикальном положении, не имея мышц или костей, но они не могут позволить себе ходить куда-то, чтобы получить еду и питье. Растения, автотрофы, создают свои собственные продукты, используя энергию Солнца. Отличие животной клетки от растительной в таблице №1 (смотри далее) очевидно, но есть также и много общего.

Общая характеристика

Растительная и животная клетки являются эукариотическими, а это уже большое сходство. Они имеют мембранно-связанное ядро, которое содержит генетический материал (ДНК). Полупроницаемая плазматическая мембрана окружает оба типа ячеек. Их цитоплазма содержит многие из тех же частей и органелл, в том числе рибосомы, комплексы Гольджи, эндоплазматический ретикулум, митохондрии и пероксисомы и другие. В то время как растительные и животные клетки являются эукариотическими и имеют много общего, они также отличаются по нескольким параметрам.

Особенности растительных клеток

Теперь давайте рассмотрим особенности Как большинство из них могут стоять вертикально? Эта способность имеется благодаря клеточной стенке, которая окружает оболочки всех растительных клеток, обеспечивает поддержку и жесткость и часто дает им прямоугольный или даже шестиугольной внешний вид при наблюдении в микроскоп. Все эти структурные единицы имеют жесткую правильную форму и содержат много хлоропластов. Стенки могут быть толщиной в несколько микрометров. Их состав варьируется в зависимости от групп растений, но они обычно состоят из волокон углеводной целлюлозы, погруженных в матрицу из белков и прочих углеводов.

Клеточные стенки помогают сохранить прочность. Давление, создаваемое поглощением воды, способствует их жесткости и дает возможность для вертикального роста. Растения не способны передвигаться с места на место, поэтому они нуждаются в том, чтобы делать свои собственные продукты питания. Органелла, называемая хлоропластом, отвечает за фотосинтез. Растительные клетки могут содержать несколько таких органелл, иногда сотни.

Хлоропласты окружены двойной мембраной и содержат стеки мембраносвязанных дисков, в которых специальными пигментами поглощается солнечный свет, и эта энергия используется для питания растения. Одной из самых известных структур является крупная центральная вакуоль. занимает большую часть объема и окружена мембраной, называемой тонопласт. В ней хранится вода, а также ионы калия и хлорида. По мере того, как клетка растет, вакуоль поглощает воду и помогает удлинить ячейки.

Отличия животной клетки от растительной (таблица №1)

Растительные и животные структурные единицы имеют некоторые отличия и сходства. Например, у первых нет клеточной стенки и хлоропластов, они круглые и неправильной формы, в то время как растительные имеют фиксированную прямоугольную форму. И те и те являются эукариотическими, поэтому они имеют ряд общих особенностей, таких как наличие мембраны и органелл (ядро, митохондрии и эндоплазматический ретикулум). Итак, рассмотрим сходства и отличия между растительной и животной клетки в таблице №1:

Животная клетка Растительная клетка
Клеточная стенка отсутствует присутствует (формируется из целлюлозы)
Форма круглая (неправильная) прямоугольная (неподвижная)
Вакуоль одна или несколько мелких (гораздо меньше, чем в растительных клетках) Одна большая центральная вакуоль занимает до 90% объема клетки
Центриоли присутствуют во всех клетках животных присутствуют в более низких растительных формах
Хлоропласты нет Растительные клетки имеют хлоропласты, потому что они создают свои собственные продукты питания
Цитоплазма есть есть
Рибосомы присутствуют присутствуют
Митохондрии имеются имеются
Пластиды отсутствуют присутствуют
Эндоплазматический ретикулум (гладкий и шершавый) есть есть
Аппарат Гольджи имеется имеется
Плазматическая мембрана присутствует присутствует
Жгутики
могут быть найдены в некоторых клетках
Лизосомы есть в цитоплазме обычно не видны
Ядра присутствуют присутствуют
Реснички присутствуют в большом количестве растительные клетки не содержат реснички

Животные против растений

Какой позволяет сделать таблица «Отличие животной клетки от растительной» вывод? Обе являются эукариотическими. Они имеют настоящие ядра, где находится ДНК и отделены от других структур ядерной мембраной. Оба типа имеют сходные процессы по воспроизводству, включая митоз и мейоз. Животные и растения нуждаются в энергии, они должны расти и поддерживать нормальную в процессе дыхания.

И там и там есть структуры, известные как органеллы, которые являются специализированными для выполнения функций, необходимых для нормального функционирования. Представленные отличия животной клетки от растительной в таблице №1 дополняются некоторыми общими чертами. Оказывается, они имеют много общего. И те и те имеют некоторые из тех же компонентов, в том числе ядра, комплекс Гольджи, эндоплазматический ретикулум, рибосомы, митохондрии и так далее.

В чем отличие растительной клетки от животной?

В таблице №1 сходства и отличия представлены достаточно кратко. Рассмотрим эти и другие моменты более подробно.

  • Размер. Животные клетки обычно имеют меньшие размеры, чем клетки растений. Первые составляют от 10 до 30 микрометров в длину, в то время как растительные клетки имеют диапазон длины от 10 до 100 микрометров.
  • Форма. Животные клетки бывают различных размеров и, как правило, имеют круглую или неправильную форму. Растительные больше похожи по размеру и, как правило, имеют прямоугольную или кубическую форму.
  • Хранение энергии. Животные клетки запасают энергию в виде сложных углеводов (гликогена). Растительные запасают энергию в виде крахмала.
  • Дифференцировка. В клетках животных только стволовые клетки способны переходить в другие Большинство видов растительной клетки не способно к дифференциации.
  • Рост. Животные клетки увеличиваются в размерах за счет числа клеток. Растительные же поглощают больше воды в центральной вакуоли.
  • Центриоли. Клетки животных содержат цилиндрические структуры, которые организуют сборку микротрубочек во время деления клетки. Растительные, как правило, не содержат центриолей.
  • Реснички. Они встречаются в клетках животных, но не являются обычным явлением в растительных клетках.
  • Лизосомы. Эти органеллы содержат ферменты, которые переваривают макромолекулы. Клетки растений редко содержат функцию выполняет вакуоль.
  • Пластиды. Животные клетки не имеют пластид. Клетки растений содержат пластиды, такие как хлоропласты, которые необходимы для фотосинтеза.
  • Вакуоль. Животные клетки могут иметь много мелких вакуолей. Растительные клетки имеют большую центральную вакуоль, которая может занимать до 90% объема клетки.

Структурно растительные и животные клетки очень похожи, они содержат мембраносвязанные органеллы, такие как ядро, митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы и пероксисомы. Оба также содержат аналогичные мембраны, цитозоль и цитоскелетные элементы. Функции этих органелл также очень похожи. Однако то небольшое отличие растительной клетки от животной (таблица №1), которое существуют между ними, является весьма существенным и отражает разницу в функциях каждой клетки.

Итак, мы провели выяснив, в чем их сходство и отличия. Общими являются план строения, химические процессы и состав, деление и генетический код.

В то же время эти мельчайшие единицы принципиально отличаются способом питания.

Структурные отличия

1. У растений у клеток есть твердая целлюлозная оболочка, расположенная

над мембраной, у животных ее нет (т.к. у растений большая наружная

поверхность клеток нужна для фотосинтеза).

2. Для клеток растений характерны крупные вакуоли (т.к. слабо развита

выделительная система).

3. В клетках растений есть пластиды (т.к. растения автотрофы

фотосинтетики).

4. В клетках растений (за исключением некоторых водорослей) нет

оформленного клеточного центра, у животных - есть.

Функциональные отличия

1. Способ питания: растительная клетка - автотрофный, животная –

гетеротрофный.

2. У растений основное запасное вещество - крахмал (у животных - гликоген).

3. Клетки растений как правило более обводнены (содержат

до 90% воды), чем клетки животных.

4. Синтез веществ резко преобладает над их распадом, поэтому растения

могут накапливать громадную биомассу и способны к неограниченному росту.

3. Структура ядра и его функции. Ядро является особой по своей важности органеллой клетки, центром управления обменом веществ, а также местом хранения и воспроизводства наследственной информации. Форма ядер разнообразна и обычно соответствует форме клетки. Так, в паренхимных клетках ядра округлые, в прозенхимных - обычно вытянутые. Гораздо реже ядра могут быть сложного строения, состоять из нескольких долей или лопастей, или даже иметь ветвистые выросты. Чаще всего клетка содержит одно ядро, но у некоторых растений клетки могут быть многоядерными. В составе ядра принято различать: а) ядерную оболочку – кариолемму, б) ядерный сок - кариоплазму, в) одно или два круглых ядрышка, г) хромосомы.

Основную массу сухого вещества ядра составляют белки (70-96%) и нуклеиновые кислоты, кроме того, здесь же содержатся все вещества, характерные для цитоплазмы.

Оболочка ядра двойная и состоит из наружной и внутренней мембран, имеющих строение, подобное мембранам цитоплазмы. Наружная мембрана связана обыкновенно с каналами эдоплазматической сети в цитоплазме. Между двумя мембранами оболочки имеется пространство, превышающее по ширине толщину мембран. Оболочка ядра имеет многочисленные поры, диаметр которых относительно велик и достигает 0,02-0,03 мкм. Благодаря порам кариоплазма и цитоплазма непосредственно взаимодействуют.

Ядерный сок (кариоплазма), по вязкости близкий к мезоплазме клетки, имеет несколько повышенную кислотность. В ядерном соке содержатся белки и рибонуклеиновые кислоты (РНК), а также ферменты, участвующие в образовании нуклеиновых кислот.

Ядрышко - обязательная структура ядра, не находящегося в состоянии деления. Ядрышко крупнее в молодых клетках, активно образующих белок. Есть основание считать, что основная функция ядрышка связана с новообразованием рибосом, которые затем поступают в цитоплазму.

В отличие от ядрышка хромосомы, как правило, видны только в делящихся клетках. Число и форма хромосом постоянны для всех клеток данного организма и для вида в целом. Поскольку растение образуется из зиготы после слияния женской и мужской половых клеток, число хромосом их суммируется и считается диплоидным, обозначается как 2n. В то же время число хромосом половых клеток одинарное, гаплоидное – n.

Рис. 1 Схема строения растительной клетки

1 – ядро; 2 – ядерная оболочка (две мембраны - внутренняя и внешняя – и перинуклеарное пространство); 3 – ядерная пора; 4 – ядрышко (гранулярный и фибриллярный компоненты); 5 – хроматин (конденсированный и диффузный); 6 - ядерный сок; 7 – клеточная стенка; 8 – плазмалемма; 9 - плазмодесмы; 10 – эндоплазматическая агранулярная сеть; 11 - эндоплазматическая гранулярная сеть; 12 – митохондрия; 13 - свободные рибосомы; 14 – лизосома; 15 – хлоропласт; 16 – диктиосома аппарата Гольджи; 17 – гиалоплазма; 18 – тонопласт; 19 – вакуоль с клеточным соком.

Ядро является, прежде всего, хранителем наследственной информации, а также основным регулятором деления клеток и синтеза белка. Синтез белка осуществляется в рибосомах вне ядра, но под его непосредственным контролем.

4. Эргастические вещества растительной клетки.

Все вещества клетки можно разделить на 2 группы: конституционные и эргастические вещества.

Конституционные вещества входят в состав клеточных структур и участвуют в обмене веществ.

Эргастические вещества(включения, неактивные вещества) – это вещества временно или постоянно выведенные из обмена веществ и находящиеся в клетке в неактивном состоянии.

Эргастические вещества (включения)

Запасные вещества конечные продукты

обмена (шлаки)

крахмал (в виде крахмальных зёрен)

масла (в виде липидных капель) кристаллы

запасные белки (обычно в виде алейроновых зёрен) солей

Запасные вещества

1. Основное запасное вещество растений – крахмал – самое характерное, самое распространенное вещество, специфическое для растений. Это радиально разветвлённый углевод-полисахарид, имеющий формулу (С 6 Н 10 О 5) n .

Крахмал откладывается в виде крахмальных зерен в строме пластид (чаще лейкопластов) вокруг центра кристаллизации (образовательного центра, центра слоистости) слоями. Различают простые крахмальные зерна (один центр слоистости) (картофель, пшеница) и сложные крахмальные зерна (2, 3 и более центров слоистости) (рис, овес, гречка). Крахмальное зерно состоит из двух компонентов: амилазы (растворимой части зерна, благодаря которой йод окрашивает крахмал в синий цвет) и амилопектина (нерастворимой части), который только набухает в воде. По свойствам крахмальные зёрна – это сферокристаллы. Слоистость видна потому, что разные слои зерна содержат разное количество воды.

Т.о., крахмал образуется только в пластидах, в их строме и в строме же запасается.

По месту локализации различают несколько типов крахмала .

1) Ассимиляционный (первичный) крахмал – образуется на свету в хлоропластах. Образование твёрдого вещества – крахмала из образующейся при фотосинтезе глюкозы предотвращает вредное повышение осмотического давления внутри хлоропласта. Ночью, когда фотосинтез прекращается, первичный крахмал гидролизуется до сахарозы и моносахаров и транспортируется в лейкопласты –амилопласты, где и откладывается как:

2) Запасной (вторичны й) крахмал – зёрна более крупные, могут занимать весь лейкопласт.

Часть вторичного крахмала называется оберегаемый крахмал - это НЗ растения, тратится только в самых крайних случаях.

Крахмальные зёрна довольно мелкие. Их форма строго постоянна для каждого вида растений. Поэтому по ним можно определить из каких растенйи приготовлена мука, отруби и т.д..

Крахмал встречается во всех органах растений. Он легко образуется и легко растворяется (в этом его большой +).

Крахмал очень важен для человека, так как наша основная пища - углеводная. Много крахмала в зерновках злаков, в семенах бобовых и гречишных. Он накапливается во всех органах, но наиболее им богаты семена, подземные клубни, корневища, паренхима проводящих тканей корня и стебля.

2. Масла (Липидные капли)

Жирные маслаЭфирные масла

А) Жирные масла сложные эфиры глицерина и жирных кислот. Основная функции – запасающая. Это вторая после крахмала форма запасных веществ.

Преимущества перед крахмалом : занимая меньший объем, дают больше энергии (находятся в виде капель).

Недостатки : менее растворимы, чем крахмал и труднее расщепляются.

Жирные масла чаще всего находятся в гиалоплазме в виде липидных капель, иногда образуя большие скопления. Реже – откладываются в лейкопластах – олеопластах.

Жирные масла встречаются во всех органах растений, но чаще всего в семенах, плодах и древесинной паренхиме у древесных растений (дуб, береза).

Значение для человека: очень велико, так как усваиваются легче, чем животные жиры.

Важнейшие масличные культуры: подсолнечник (акад. Пустовойт создал сорта, содержащие до 55% масла в семенах) подсолнечное масло;

Кукуруза кукурузное масло;

Горчица горчичное масло;

Рапс рапсовое масло;

Лён льняное масло;

Тунг тунговое масло;

Клещевина касторовое масло.

Б) Эфирные масла – очень летучи и ароматны, встречаются специализированных клетках выделительных тканей (желёзки, железистые волоски, вместилища и т.д.).

Функции: 1) предохраняют растения отперегрева и переохлаждения (при испарении); 2) есть эфирные масла, убивающие бактерий и других микроорганизмов – фитонциды . Фитонциды обычно выделяются листьями растений (тополь, черёмуха, сосна).

Значение для человека :

1) используются в парфюмерии (розовое масло получают из лепестков казанлыкской розы; лавандовое масло, гераниевое масло и др.);

2) в медицине (ментоловое масло (мята), шалфеевое масло (шалфей), тимоловое масло (тимьян), эвкалиптовое масло (эвкалипт), пихтовое масло (пихта) и др.).

3. Белки.

В клетке различают 2 типа белков:

1) структурные белки активные, входят в состав мембран гиалоплазмы, органоидов, участвуют в обменных процессах и определяют свойства органоидов и клеток в целом. При избытке часть белков может выводиться из обмена веществ и становиться запасными белками.

2) Запасные белки

Аморфные (бесструктурные, Кристаллические

накапливаются в гиалоплазме, (мелкие кристаллы в обезвоженных

иногда в вакуолях) вакуолях – алейроновые зёрна)

Алейроновые зёрна чаще всего образуются в запасающих клетках сухих семян (например, бобовые, злаки).

Конечные продукты обмена (шлаки).

Конечные продукты обмена веществ откладываются чаще всего в вакуолях, где нейтрализуются и не отравляют протопласт. Много их скапливается в старых листьях, которые растение периодически сбрасывает, а также в мёртвых клетках корки, где они не мешают растению.

Шлаки – это кристаллы минеральных солей. Наиболее обычны:

1) оксалат кальция (щавелевокислый кальций) – откладывается в вакуолях в виде кристаллов различной формы. Могут быть одиночные кристаллы – монокристаллы , сростки кристаллов – друзы , стопки игольчатых кристаллов – рафиды, очень мелкие многочисленные кристаллы – кристаллический песок.

2) карбонат кальция (СаСО 3) – откладывается на внутренней части оболочки, на выростах внутренних стенок (цистолиты) оболочки, придаёт клетке прочность.

3) кремнезём (SiO 2) - откладывается в оболочках клеток (хвощи, бамбук, осоки), обеспечивает прочность оболочки (но в то же время хрупкость).

Обычно – шлаки – это конечные продукты обмена, но иногда, при нехватке солей в клетке, кристаллы могут растворяться и минеральные вещества опять вовлекаются в обмен веществ.

Используемая литература:

Андреева И. И., Родман Л.С. Ботаника: учеб. пособие. - М.: КолосС, 2005. - 517 с.

Серебрякова Т.И., Воронин Н.С., Еленевский А.Г. и др.. Ботаника с основами фитоценологии: анатомия и морфология растений: учебник. - М. : Академкнига, 2007. - 543 с.

Яковлев Г.П., Челомбитько В.А., Дорофеев В.И. Ботаника: учебник. - Спб: СпецЛит, 2008 г. – 687 с.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-25