Înmulțirea logaritmilor cu aceleași baze și exponenți. Expresii logaritmice

proprietăți principale.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

temeiuri identice

Log6 4 + log6 9.

Acum să complicăm puțin sarcina.

Exemple de rezolvare a logaritmilor

Ce se întâmplă dacă baza sau argumentul unui logaritm este o putere? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Desigur, toate aceste reguli au sens dacă se respectă ODZ a logaritmului: a > 0, a ≠ 1, x >

Sarcină. Găsiți sensul expresiei:

Trecerea la o nouă fundație

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

Sarcină. Găsiți sensul expresiei:

Vezi si:


Proprietățile de bază ale logaritmului

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Exponentul este 2,718281828... Pentru a vă aminti exponentul, puteți studia regula: exponentul este egal cu 2,7 și de două ori anul nașterii lui Leo Nikolaevici Tolstoi.

Proprietățile de bază ale logaritmilor

Cunoscând această regulă, veți ști atât valoarea exactă a exponentului, cât și data nașterii lui Lev Tolstoi.


Exemple de logaritmi

Expresii logaritmice

Exemplul 1.
A). x=10ac^2 (a>0,c>0).

Folosind proprietățile 3.5 calculăm

2.

3.

4. Unde .



Exemplul 2. Găsiți x dacă


Exemplul 3. Să fie dată valoarea logaritmilor

Calculați log(x) dacă




Proprietățile de bază ale logaritmilor

Logaritmii, ca orice numere, pot fi adunați, scăzuți și transformați în orice fel. Dar, deoarece logaritmii nu sunt chiar numere obișnuite, există reguli aici, care sunt numite proprietăți principale.

Cu siguranță trebuie să cunoașteți aceste reguli - fără ele, nici o problemă logaritmică serioasă nu poate fi rezolvată. În plus, sunt foarte puține dintre ele - puteți învăța totul într-o singură zi. Asadar, haideti sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceleași baze: logax și logay. Apoi pot fi adăugate și scăzute și:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este egală cu logaritmul coeficientului. Vă rugăm să rețineți: punctul cheie aici este temeiuri identice. Dacă motivele sunt diferite, aceste reguli nu funcționează!

Aceste formule vă vor ajuta să calculați o expresie logaritmică chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

Deoarece logaritmii au aceleași baze, folosim formula sumei:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Sarcină. Aflați valoarea expresiei: log2 48 − log2 3.

Bazele sunt aceleași, folosim formula diferenței:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Sarcină. Aflați valoarea expresiei: log3 135 − log3 5.

Din nou bazele sunt aceleași, deci avem:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt calculate separat. Dar după transformări se obțin numere complet normale. Multe teste se bazează pe acest fapt. Da, expresii asemănătoare testelor sunt oferite cu toată seriozitatea (uneori practic fără modificări) la examenul de stat unificat.

Extragerea exponentului din logaritm

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă ODZ al logaritmului: a > 0, a ≠ 1, x > 0. Și încă ceva: învață să aplici toate formulele nu numai de la stânga la dreapta, ci și invers. , adică Puteți introduce numerele înainte de semnul logaritmului în logaritmul însuși. Acesta este ceea ce se cere cel mai adesea.

Sarcină. Aflați valoarea expresiei: log7 496.

Să scăpăm de gradul din argument folosind prima formulă:
log7 496 = 6 log7 49 = 6 2 = 12

Sarcină. Găsiți sensul expresiei:

Rețineți că numitorul conține un logaritm, a cărui bază și argument sunt puteri exacte: 16 = 24; 49 = 72. Avem:

Cred că ultimul exemplu necesită unele clarificări. Unde s-au dus logaritmii? Până în ultimul moment lucrăm doar cu numitorul.

Formule logaritmice. Exemple de logaritmi soluții.

Am prezentat baza și argumentul logaritmului aflat acolo sub formă de puteri și am scos exponenții - am obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul conțin același număr: log2 7. Deoarece log2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne în numitor. Conform regulilor aritmeticii, cele patru pot fi transferate la numărător, ceea ce s-a făcut. Rezultatul a fost răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă motivele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă fundație vin în ajutor. Să le formulăm sub forma unei teoreme:

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

În special, dacă setăm c = x, obținem:

Din a doua formulă rezultă că baza și argumentul logaritmului pot fi schimbate, dar în acest caz întreaga expresie este „întoarsă”, adică. logaritmul apare la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt acestea numai atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există probleme care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să ne uităm la câteva dintre acestea:

Sarcină. Aflați valoarea expresiei: log5 16 log2 25.

Rețineți că argumentele ambilor logaritmi conțin puteri exacte. Să scoatem indicatorii: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Acum să „inversăm” al doilea logaritm:

Deoarece produsul nu se schimbă la rearanjarea factorilor, am înmulțit cu calm patru și doi, apoi ne-am ocupat de logaritmi.

Sarcină. Aflați valoarea expresiei: log9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să notăm asta și să scăpăm de indicatorii:

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată. În acest caz, următoarele formule ne vor ajuta:

În primul caz, numărul n devine exponent în argument. Numărul n poate fi absolut orice, deoarece este doar o valoare logaritmică.

A doua formulă este de fapt o definiție parafrazată. Așa se numește: .

De fapt, ce se întâmplă dacă numărul b este ridicat la o astfel de putere încât numărul b la această putere dă numărul a? Așa este: rezultatul este același număr a. Citiți din nou acest paragraf cu atenție - mulți oameni rămân blocați în el.

Asemenea formulelor pentru trecerea la o nouă bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

Sarcină. Găsiți sensul expresiei:

Rețineți că log25 64 = log5 8 - pur și simplu a luat pătratul de la baza și argumentul logaritmului. Luând în considerare regulile de înmulțire a puterilor cu aceeași bază, obținem:

Dacă cineva nu știe, aceasta a fost o sarcină reală de la examenul de stat unificat :)

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care cu greu pot fi numite proprietăți - mai degrabă, sunt consecințe ale definiției logaritmului. Apar constant în probleme și, în mod surprinzător, creează probleme chiar și pentru elevii „avansați”.

  1. logaa = 1 este. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze a a acelei baze în sine este egal cu unu.
  2. loga 1 = 0 este. Baza a poate fi orice, dar dacă argumentul conține unul, logaritmul este egal cu zero! Deoarece a0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați fișa cheat la începutul lecției, imprimați-o și rezolvați problemele.

Vezi si:

Logaritmul lui b la baza a denotă expresia. A calcula logaritmul înseamnă a găsi o putere x () la care egalitatea este satisfăcută

Proprietățile de bază ale logaritmului

Este necesar să se cunoască proprietățile de mai sus, deoarece aproape toate problemele și exemplele legate de logaritmi sunt rezolvate pe baza lor. Restul proprietăților exotice pot fi derivate prin manipulări matematice cu aceste formule

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Când calculați formula pentru suma și diferența de logaritmi (3.4) întâlniți destul de des. Restul sunt oarecum complexe, dar într-o serie de sarcini sunt indispensabile pentru simplificarea expresiilor complexe și calcularea valorilor acestora.

Cazuri comune de logaritmi

Unii dintre logaritmii obișnuiți sunt cei în care baza este chiar zece, exponențială sau două.
Logaritmul la baza zece este de obicei numit logaritm zecimal și este pur și simplu notat cu lg(x).

Din înregistrare reiese clar că elementele de bază nu sunt scrise în înregistrare. De exemplu

Un logaritm natural este un logaritm a cărui bază este un exponent (notat cu ln(x)).

Exponentul este 2,718281828... Pentru a vă aminti exponentul, puteți studia regula: exponentul este egal cu 2,7 și de două ori anul nașterii lui Leo Nikolaevici Tolstoi. Cunoscând această regulă, veți ști atât valoarea exactă a exponentului, cât și data nașterii lui Lev Tolstoi.

Și un alt logaritm important pentru baza doi este notat cu

Derivata logaritmului unei funcții este egală cu una împărțită la variabilă

Logaritmul integral sau antiderivat este determinat de relație

Materialul dat este suficient pentru a rezolva o clasă largă de probleme legate de logaritmi și logaritmi. Pentru a vă ajuta să înțelegeți materialul, voi da doar câteva exemple comune din programa școlară și universități.

Exemple de logaritmi

Expresii logaritmice

Exemplul 1.
A). x=10ac^2 (a>0,c>0).

Folosind proprietățile 3.5 calculăm

2.
Prin proprietatea diferenței logaritmilor avem

3.
Folosind proprietățile 3.5 găsim

4. Unde .

O expresie aparent complexă este simplificată pentru a se forma folosind o serie de reguli

Găsirea valorilor logaritmului

Exemplul 2. Găsiți x dacă

Soluţie. Pentru calcul, aplicăm la ultimul termen 5 și 13 proprietăți

O consemnăm și plângem

Deoarece bazele sunt egale, echivalăm expresiile

Logaritmi. Primul nivel.

Să fie dată valoarea logaritmilor

Calculați log(x) dacă

Soluție: Să luăm un logaritm al variabilei pentru a scrie logaritmul prin suma termenilor săi


Acesta este doar începutul cunoașterii noastre cu logaritmii și proprietățile lor. Exersați calculele, îmbogățiți-vă abilitățile practice - veți avea nevoie în curând de cunoștințele acumulate pentru a rezolva ecuații logaritmice. După ce am studiat metodele de bază pentru rezolvarea unor astfel de ecuații, vă vom extinde cunoștințele la un alt subiect la fel de important - inegalitățile logaritmice...

Proprietățile de bază ale logaritmilor

Logaritmii, ca orice numere, pot fi adunați, scăzuți și transformați în orice fel. Dar, deoarece logaritmii nu sunt chiar numere obișnuite, există reguli aici, care sunt numite proprietăți principale.

Cu siguranță trebuie să cunoașteți aceste reguli - fără ele, nici o problemă logaritmică serioasă nu poate fi rezolvată. În plus, sunt foarte puține dintre ele - puteți învăța totul într-o singură zi. Asadar, haideti sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceleași baze: logax și logay. Apoi pot fi adăugate și scăzute și:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este egală cu logaritmul coeficientului. Vă rugăm să rețineți: punctul cheie aici este temeiuri identice. Dacă motivele sunt diferite, aceste reguli nu funcționează!

Aceste formule vă vor ajuta să calculați o expresie logaritmică chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

Sarcină. Aflați valoarea expresiei: log6 4 + log6 9.

Deoarece logaritmii au aceleași baze, folosim formula sumei:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Sarcină. Aflați valoarea expresiei: log2 48 − log2 3.

Bazele sunt aceleași, folosim formula diferenței:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Sarcină. Aflați valoarea expresiei: log3 135 − log3 5.

Din nou bazele sunt aceleași, deci avem:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt calculate separat. Dar după transformări se obțin numere complet normale. Multe teste se bazează pe acest fapt. Da, expresii asemănătoare testelor sunt oferite cu toată seriozitatea (uneori practic fără modificări) la examenul de stat unificat.

Extragerea exponentului din logaritm

Acum să complicăm puțin sarcina. Ce se întâmplă dacă baza sau argumentul unui logaritm este o putere? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă ODZ al logaritmului: a > 0, a ≠ 1, x > 0. Și încă ceva: învață să aplici toate formulele nu numai de la stânga la dreapta, ci și invers. , adică Puteți introduce numerele înainte de semnul logaritmului în logaritmul însuși.

Cum se rezolvă logaritmii

Acesta este ceea ce se cere cel mai adesea.

Sarcină. Aflați valoarea expresiei: log7 496.

Să scăpăm de gradul din argument folosind prima formulă:
log7 496 = 6 log7 49 = 6 2 = 12

Sarcină. Găsiți sensul expresiei:

Rețineți că numitorul conține un logaritm, a cărui bază și argument sunt puteri exacte: 16 = 24; 49 = 72. Avem:

Cred că ultimul exemplu necesită unele clarificări. Unde s-au dus logaritmii? Până în ultimul moment lucrăm doar cu numitorul. Am prezentat baza și argumentul logaritmului aflat acolo sub formă de puteri și am scos exponenții - am obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul conțin același număr: log2 7. Deoarece log2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne în numitor. Conform regulilor aritmeticii, cele patru pot fi transferate la numărător, ceea ce s-a făcut. Rezultatul a fost răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă motivele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă fundație vin în ajutor. Să le formulăm sub forma unei teoreme:

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

În special, dacă setăm c = x, obținem:

Din a doua formulă rezultă că baza și argumentul logaritmului pot fi schimbate, dar în acest caz întreaga expresie este „întoarsă”, adică. logaritmul apare la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt acestea numai atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există probleme care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să ne uităm la câteva dintre acestea:

Sarcină. Aflați valoarea expresiei: log5 16 log2 25.

Rețineți că argumentele ambilor logaritmi conțin puteri exacte. Să scoatem indicatorii: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Acum să „inversăm” al doilea logaritm:

Deoarece produsul nu se schimbă la rearanjarea factorilor, am înmulțit cu calm patru și doi, apoi ne-am ocupat de logaritmi.

Sarcină. Aflați valoarea expresiei: log9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să notăm asta și să scăpăm de indicatorii:

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată. În acest caz, următoarele formule ne vor ajuta:

În primul caz, numărul n devine exponent în argument. Numărul n poate fi absolut orice, deoarece este doar o valoare logaritmică.

A doua formulă este de fapt o definiție parafrazată. Așa se numește: .

De fapt, ce se întâmplă dacă numărul b este ridicat la o astfel de putere încât numărul b la această putere dă numărul a? Așa este: rezultatul este același număr a. Citiți din nou acest paragraf cu atenție - mulți oameni rămân blocați în el.

Asemenea formulelor pentru trecerea la o nouă bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

Sarcină. Găsiți sensul expresiei:

Rețineți că log25 64 = log5 8 - pur și simplu a luat pătratul de la baza și argumentul logaritmului. Luând în considerare regulile de înmulțire a puterilor cu aceeași bază, obținem:

Dacă cineva nu știe, aceasta a fost o sarcină reală de la examenul de stat unificat :)

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care cu greu pot fi numite proprietăți - mai degrabă, sunt consecințe ale definiției logaritmului. Apar constant în probleme și, în mod surprinzător, creează probleme chiar și pentru elevii „avansați”.

  1. logaa = 1 este. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze a a acelei baze în sine este egal cu unu.
  2. loga 1 = 0 este. Baza a poate fi orice, dar dacă argumentul conține unul, logaritmul este egal cu zero! Deoarece a0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați fișa cheat la începutul lecției, imprimați-o și rezolvați problemele.

Unul dintre elementele algebrei de nivel primitiv este logaritmul. Numele provine din limba greacă de la cuvântul „număr” sau „putere” și înseamnă puterea la care trebuie ridicat numărul din bază pentru a găsi numărul final.

Tipuri de logaritmi

  • log a b – logaritmul numărului b la baza a (a > 0, a ≠ 1, b > 0);
  • log b – logaritm zecimal (logaritm la baza 10, a = 10);
  • ln b – logaritm natural (logaritm la baza e, a = e).

Cum se rezolvă logaritmii?

Logaritmul lui b la baza a este un exponent care necesită ca b să fie ridicat la baza a. Rezultatul obținut se pronunță astfel: „logaritmul lui b la baza a”. Soluția la problemele logaritmice este că trebuie să determinați puterea dată în numere din numerele specificate. Există câteva reguli de bază pentru a determina sau rezolva logaritmul, precum și pentru a converti notația în sine. Folosind ele, se rezolvă ecuații logaritmice, se găsesc derivate, se rezolvă integrale și se efectuează multe alte operații. Practic, soluția logaritmului în sine este notația sa simplificată. Mai jos sunt formulele și proprietățile de bază:

Pentru orice a ; a > 0; a ≠ 1 și pentru orice x ; y > 0.

  • a log a b = b – identitate logaritmică de bază
  • log a 1 = 0
  • loga a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x , pentru k ≠ 0
  • log a x = log a c x c
  • log a x = log b x/ log b a – formulă pentru trecerea la o nouă bază
  • log a x = 1/log x a


Cum se rezolvă logaritmi - instrucțiuni pas cu pas pentru rezolvare

  • Mai întâi, scrieți ecuația necesară.

Vă rugăm să rețineți: dacă logaritmul de bază este 10, atunci intrarea este scurtată, rezultând un logaritm zecimal. Dacă există un număr natural e, atunci îl notăm, reducându-l la un logaritm natural. Aceasta înseamnă că rezultatul tuturor logaritmilor este puterea la care se ridică numărul de bază pentru a obține numărul b.


Direct, soluția constă în calcularea acestui grad. Înainte de a rezolva o expresie cu un logaritm, aceasta trebuie simplificată conform regulii, adică folosind formule. Poți găsi identitățile principale revenind puțin în articol.

Când se adună și se scad logaritmi cu două numere diferite, dar cu aceleași baze, înlocuiți cu un logaritm cu produsul sau împărțirea numerelor b și, respectiv, c. În acest caz, puteți aplica formula pentru mutarea la o altă bază (vezi mai sus).

Dacă folosiți expresii pentru a simplifica un logaritm, există câteva limitări de luat în considerare. Și adică: baza logaritmului a este doar un număr pozitiv, dar nu egal cu unul. Numărul b, ca și a, trebuie să fie mai mare decât zero.

Sunt cazuri în care, prin simplificarea unei expresii, nu veți putea calcula logaritmul numeric. Se întâmplă ca o astfel de expresie să nu aibă sens, deoarece multe puteri sunt numere iraționale. În această condiție, lăsați puterea numărului ca logaritm.




Continuăm să studiem logaritmii. În acest articol vom vorbi despre calcularea logaritmilor, acest proces se numește logaritm. Mai întâi vom înțelege calculul logaritmilor prin definiție. În continuare, să vedem cum sunt găsite valorile logaritmilor folosind proprietățile lor. După aceasta, ne vom concentra pe calcularea logaritmilor prin valorile specificate inițial ale altor logaritmi. În cele din urmă, să învățăm cum să folosim tabelele logaritmice. Întreaga teorie este furnizată cu exemple cu soluții detaliate.

Navigare în pagină.

Calcularea logaritmilor prin definiție

În cele mai simple cazuri, este posibil să efectuați destul de repede și ușor găsirea logaritmului prin definiție. Să aruncăm o privire mai atentă asupra modului în care se întâmplă acest proces.

Esența sa este de a reprezenta numărul b sub forma a c, din care, prin definiția unui logaritm, numărul c este valoarea logaritmului. Adică, prin definiție, următorul lanț de egalități corespunde găsirii logaritmului: log a b=log a a c =c.

Deci, calcularea unui logaritm prin definiție se reduce la găsirea unui număr c astfel încât a c = b, iar numărul c însuși este valoarea dorită a logaritmului.

Ținând cont de informațiile din paragrafele anterioare, atunci când numărul de sub semnul logaritmului este dat de o anumită putere a bazei logaritmului, puteți indica imediat cu ce este egal logaritmul - este egal cu exponentul. Să arătăm soluții la exemple.

Exemplu.

Găsiți log 2 2 −3 și, de asemenea, calculați logaritmul natural al numărului e 5,3.

Soluţie.

Definiția logaritmului ne permite să spunem imediat că log 2 2 −3 =−3. Într-adevăr, numărul de sub semnul logaritmului este egal cu baza 2 cu puterea -3.

În mod similar, găsim al doilea logaritm: lne 5.3 =5.3.

Răspuns:

log 2 2 −3 =−3 și lne 5,3 =5,3.

Dacă numărul b sub semnul logaritmului nu este specificat ca putere a bazei logaritmului, atunci trebuie să vă uitați cu atenție pentru a vedea dacă este posibil să veniți cu o reprezentare a numărului b sub forma a c . Adesea, această reprezentare este destul de evidentă, mai ales când numărul de sub semnul logaritmului este egal cu baza cu puterea lui 1, sau 2, sau 3, ...

Exemplu.

Calculați logaritmii log 5 25 și .

Soluţie.

Este ușor de observat că 25=5 2, aceasta vă permite să calculați primul logaritm: log 5 25=log 5 5 2 =2.

Să trecem la calculul celui de-al doilea logaritm. Numărul poate fi reprezentat ca o putere a lui 7: (vezi dacă este necesar). Prin urmare, .

Să rescriem al treilea logaritm în forma următoare. Acum poți vedea asta , din care tragem concluzia că . Prin urmare, prin definiția logaritmului .

Pe scurt, soluția ar putea fi scrisă astfel: .

Răspuns:

log 5 25=2 , Și .

Când există un număr natural suficient de mare sub semnul logaritmului, nu strica să-l factorizezi în factori primi. Adesea ajută să reprezentați un astfel de număr ca o putere a bazei logaritmului și, prin urmare, să calculați acest logaritm prin definiție.

Exemplu.

Aflați valoarea logaritmului.

Soluţie.

Unele proprietăți ale logaritmilor vă permit să specificați imediat valoarea logaritmilor. Aceste proprietăți includ proprietatea logaritmului lui unu și proprietatea logaritmului unui număr egal cu baza: log 1 1=log a a 0 =0 și log a a=log a a 1 =1. Adică, atunci când sub semnul logaritmului există un număr 1 sau un număr a egal cu baza logaritmului, atunci în aceste cazuri logaritmii sunt egali cu 0 și, respectiv, 1.

Exemplu.

Cu ce ​​sunt egali logaritmii și log10?

Soluţie.

Deoarece , atunci din definiția logaritmului rezultă .

În al doilea exemplu, numărul 10 de sub semnul logaritmului coincide cu baza sa, deci logaritmul zecimal de zece este egal cu unu, adică lg10=lg10 1 =1.

Răspuns:

ȘI lg10=1.

Rețineți că calculul logaritmilor prin definiție (pe care am discutat în paragraful anterior) implică utilizarea logaritmului de egalitate a a p =p, care este una dintre proprietățile logaritmilor.

În practică, când un număr sub semnul logaritmului și baza logaritmului sunt ușor de reprezentat ca o putere a unui anumit număr, este foarte convenabil să folosiți formula , care corespunde uneia dintre proprietățile logaritmilor. Să ne uităm la un exemplu de găsire a unui logaritm care ilustrează utilizarea acestei formule.

Exemplu.

Calculați logaritmul.

Soluţie.

Răspuns:

.

Proprietățile logaritmilor nemenționați mai sus sunt, de asemenea, folosite în calcule, dar despre asta vom vorbi în paragrafele următoare.

Găsirea logaritmilor prin alți logaritmi cunoscuți

Informațiile din acest paragraf continuă subiectul utilizării proprietăților logaritmilor la calcularea acestora. Dar aici principala diferență este că proprietățile logaritmilor sunt folosite pentru a exprima logaritmul original în termenii unui alt logaritm, a cărui valoare este cunoscută. Să dăm un exemplu pentru clarificare. Să presupunem că știm că log 2 3≈1.584963, atunci putem găsi, de exemplu, log 2 6 făcând o mică transformare folosind proprietățile logaritmului: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

În exemplul de mai sus, a fost suficient să folosim proprietatea logaritmului unui produs. Cu toate acestea, mult mai des este necesar să se folosească un arsenal mai larg de proprietăți ale logaritmilor pentru a calcula logaritmul original prin cei date.

Exemplu.

Calculați logaritmul de la 27 la baza 60 dacă știți că log 60 2=a și log 60 5=b.

Soluţie.

Deci trebuie să găsim log 60 27 . Este ușor de observat că 27 = 3 3 , iar logaritmul inițial, datorită proprietății logaritmului puterii, poate fi rescris ca 3·log 60 3 .

Acum să vedem cum să exprimăm log 60 3 în termeni de logaritmi cunoscuți. Proprietatea logaritmului unui număr egal cu baza ne permite să scriem logaritmul de egalitate 60 60=1. Pe de altă parte, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Prin urmare, 2 log 60 2+log 60 3+log 60 5=1. Prin urmare, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

În cele din urmă, calculăm logaritmul original: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Răspuns:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Separat, merită menționat sensul formulei de tranziție la o nouă bază a logaritmului formei . Vă permite să treceți de la logaritmi cu orice bază la logaritmi cu o anumită bază, ale căror valori sunt cunoscute sau este posibil să le găsiți. De obicei, din logaritmul original, folosind formula de tranziție, se trec la logaritmi într-una dintre bazele 2, e sau 10, deoarece pentru aceste baze există tabele de logaritmi care permit ca valorile lor să fie calculate cu un anumit grad de precizie. În paragraful următor vom arăta cum se face acest lucru.

Tabelele logaritmice și utilizările lor

Pentru calcularea aproximativă a valorilor logaritmului pot fi utilizate tabele logaritmice. Cel mai frecvent utilizat tabel logaritm de bază 2, tabel logaritm natural și tabel logaritm zecimal. Când lucrați în sistemul numeric zecimal, este convenabil să utilizați un tabel de logaritmi bazat pe baza zece. Cu ajutorul lui vom învăța să găsim valorile logaritmilor.










Tabelul prezentat vă permite să găsiți valorile logaritmilor zecimali ale numerelor de la 1.000 la 9.999 (cu trei zecimale) cu o precizie de o zecemiime. Vom analiza principiul găsirii valorii unui logaritm folosind un tabel de logaritmi zecimali folosind un exemplu specific - este mai clar în acest fel. Să găsim log1.256.

În coloana din stânga a tabelului de logaritmi zecimal găsim primele două cifre ale numărului 1,256, adică găsim 1,2 (acest număr este încercuit cu albastru pentru claritate). A treia cifră a numărului 1.256 (cifra 5) se găsește în prima sau ultima linie din stânga liniei duble (acest număr este încercuit cu roșu). A patra cifră a numărului original 1.256 (cifra 6) se găsește în prima sau ultima linie din dreapta liniei duble (acest număr este încercuit cu o linie verde). Acum găsim numerele în celulele tabelului de logaritm la intersecția rândului marcat și coloanelor marcate (aceste numere sunt evidențiate în portocaliu). Suma numerelor marcate dă valoarea dorită a logaritmului zecimal cu precizie la a patra zecimală, adică log1,236≈0,0969+0,0021=0,0990.

Este posibil, folosind tabelul de mai sus, să găsiți valorile logaritmilor zecimali ale numerelor care au mai mult de trei cifre după virgulă zecimală, precum și ale celor care depășesc intervalul de la 1 la 9,999? Da, poti. Să arătăm cum se face acest lucru cu un exemplu.

Să calculăm lg102.76332. Mai întâi trebuie să scrieți număr în formă standard: 102,76332=1,0276332·10 2. După aceasta, mantisa ar trebui să fie rotunjită la a treia zecimală, avem 1,0276332 10 2 ≈1,028 10 2, în timp ce logaritmul zecimal inițial este aproximativ egal cu logaritmul numărului rezultat, adică luăm log102,76332≈lg1,028·10 2. Acum aplicăm proprietățile logaritmului: lg1.028·10 2 =lg1.028+lg10 2 =lg1.028+2. În final, găsim valoarea logaritmului lg1.028 din tabelul logaritmilor zecimali lg1.028≈0.0086+0.0034=0.012. Ca rezultat, întregul proces de calcul al logaritmului arată astfel: log102,76332=log1,0276332 10 2 ≈lg1,028 10 2 = log1,028+lg10 2 =log1,028+2≈0,012+2=2,012.

În concluzie, este de remarcat faptul că folosind un tabel de logaritmi zecimali puteți calcula valoarea aproximativă a oricărui logaritm. Pentru a face acest lucru, este suficient să utilizați formula de tranziție pentru a merge la logaritmi zecimali, pentru a găsi valorile acestora în tabel și pentru a efectua calculele rămase.

De exemplu, să calculăm log 2 3 . Conform formulei de tranziție la o nouă bază a logaritmului, avem . Din tabelul logaritmilor zecimali găsim log3≈0,4771 și log2≈0,3010. Prin urmare, .

Bibliografie.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. şi altele.Algebra şi începuturile analizei: Manual pentru clasele 10 - 11 ale instituţiilor de învăţământ general.
  • Gusev V.A., Mordkovich A.G. Matematică (un manual pentru cei care intră în școlile tehnice).